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Abstract: Sodium alginate (SA) was used to functionalize the surfaces of silver nanoparticles (AgNPs)
to form SA-AgNPs for sensing dimethoate with a rapid and sensitive visual readout. UV–Vis
spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray
photoelectron spectroscopy, and zeta potential measurements were used to characterize SA-AgNPs
that were synthesized under the ideal conditions. SA-AgNPs were spherical with an average size
of 14.6 nm. The stability of SA-AgNPs was investigated with changes in pH, salinity, and storage
time. This colorimetric assay of dimethoate relied on the change in the absorption ratio (A475/A400)
of SA-AgNPs, resulting in their aggregation caused by dimethoate, leading to a visual change for
SA-AgNPs from yellow to pale yellow. As a result, the absorption ratio (A475/A400) of SA-AgNPs
showed good linearity in the range of 0.05 to 2.0 ppm (R2 = 0.9986) with a limit of detection (LOD)
of 30 ppb. Adding other pesticides did not significantly change the absorption ratio of SA-AgNPs,
indicating its high selectivity as a colorimetric assay. The sensor was successfully used to detect
dimethoate in actual water samples.

Keywords: colorimetric assay; dimethoate; silver nanoparticles; sodium alginate; water samples

1. Introduction

In modern agriculture, organophosphorus pesticides have been extensively applied
to control diseases and insect pests in crops because of their low cost, low persistence,
and biodegradation [1,2]. However, the excessive or improper use of organophosphorus
pesticides results in high amounts of pesticides and their residues in the environment, which
may harm organisms and human health [2]. Dimethoate (O,O-dimethyl S-[2-(methylamino)-
2-oxoethyl] phosphorodithioate) is an efficient organophosphorus insecticide, and it acts
by inhibiting the activity of acetylcholinesterase and disturbing the normal function of
the central nervous system [3,4]. The widespread application of dimethoate in agriculture,
homes, and gardens has led to its high-level residuals accumulating in the soil, surface and
groundwater, and food chain. These chemicals may cause serious problems, such as fetal
health hazards, birth defects, and even death [5,6]. Thus, developing a rapid, facile, and
cost-effective approach for monitoring dimethoate levels is important to protect human life
and prevent the ecosystem from being destroyed.

Various conventional approaches have been reported for detecting and identifying pes-
ticides and their residues, including high-performance liquid chromatography combined
with mass spectrometry, gas chromatography coupled with mass spectrometry, immunoas-
says, and molecularly imprinted polymer-based sensors [7–10]. Although these approaches
exhibit high accuracy and sensitivity, most require time-consuming sample pretreatment
procedures, expensive, bulky equipment, and experienced operators. Therefore, simple,
rapid, low-cost approaches are still needed to facilitate routine pesticide analysis more
conveniently. Colorimetric approaches are simple, cost-effective, and highly selective for
determining pesticides compared to other approaches [11–14]. The obvious color changes
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in the sensing probes enable direct observation with the naked eyes upon the addition of
target analytes. Recently, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs)
have been used as colorimetric probes for sensing various analytes due to their unique
optical and electronic properties [15–17]. AgNPs possess high extinction coefficients and
strongly localized surface plasmon resonances in the visible region, which are very sensitive
to the size, shape, and surrounding chemical environment [15]. Thus, AgNPs functional-
ized with various molecules can be used as colorimetric sensors and have been successfully
used for detecting various target pesticides [18–23]. The sensing principle depends on the
dramatic color change by the aggregation of AgNPs. For instance, Hong et al. [18] have
designed colorimetric sensing of thiram using various surface capping agents, such as
polyhexamethylene biguanide hydrochloride, polyvinylpyrrolidone, and borohydride ions
on the AgNPs, with the LOD of 36 nM; and Dhavle et al. [19] prepared glutathione-lactose
functionalized AgNPs to detect thiram with the LOD of 3.0 nM. Su et al. [20] have shown
that fluorescein functionalized AgNPs for colorimetric detection of tricyclazole, and the
LOD was down to 0.051 ppm. Chadha et al. [21] developed a colorimetric and Raman
spectroscopy sensor for detecting trace chlorpyrifos using γ-cyclodextrin-capped AgNPs.
Graphene quantum dots have been used to cap on the AgNPs and as sensors for sensing
glyphosate [22] and parathion methyl [23]. Chen et al. [24] developed a rapid colorimetric
detection of terbuthylazine and dimethoate based on citrate-stabilized AuNPs. The LOD
for dimethoate was down to 6.2 nM. Li et al. [25] demonstrated a dual-channel localized
surface plasmon resonance system based on the adsorption bands of AuNPs via optical
fibers to detect dmethoate. The LOD was 5.5 nM. Although these two methods exhibit
high sensitivity, their linear ranges are limited. Thus, development of a high-selectivity,
high-sensitivity, linear-range assay for detecting dimethoate is needed.

Sodium alginate (SA) is a naturally linear anionic carbohydrate polymer with many
carboxyl groups. It is highly biocompatible and has high hydrophilicity [26]. According
to previous literature [27], the carboxyl groups on the surfaces of the nanoparticles can
be used to improve the stability of the nanoparticles. Owing to the electrostatic repulsion
of the alginate on the surfaces of AgNPs, SA-AgNPs were well dispersed in the aqueous
solution. Thus, a simple colorimetric approach based on the SA-functionalized AgNPs
(SA-AgNPs) was developed for the selective determination of dimethoate. AgNPs were
prepared by reducing silver salt using sodium borohydride (NaBH4) as a reducing agent
and functionalized with SA. It is observed that only dimethoate with SA-AgNPs showed
the spectral change due to the aggregation of nanoparticles caused by the interactions
between dimethoate and SA-AgNPs (Scheme 1). The resulting color changes of SA-AgNPs
in the absence and presence of dimethoate were further confirmed using UV–visible (UV–
vis) absorption spectrometry, Fourier transform infrared (FTIR) spectrometry, transmission
electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and zeta potential
measurements. The parameters such as buffer pH and reaction time were optimized to
obtain improved results for determining dimethoate. Using SA-AgNPs as colorimetric
probes, the current assay exhibits high selectivity, a wide linear range (0.05 to 2.0 ppm), and
sensitivity to dimethoate, having a LOD of 30 ppb. Subsequently, the approach was tested
in actual samples with satisfactory recoveries.

Scheme 1. Preparation of sodium-alginate-functionalized AgNPs and their application for the
colorimetric detection of dimethoate.
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2. Materials and Methods
2.1. Chemicals and Instruments

All chemicals were of analytical grade and were used as received without further
purification. Silver nitrate (AgNO3) was bought from Acros Organics (Geel, Belgium). 2,4-
D(Sodium), acetamiprid, bifenthrin, carbaryl, carbendazim, carbofuran, chlorothalonil, chlor-
pyrifos, dichlorvos, dicofol, dimethoate, fenvalerate, glufosinate-ammonium, glyphosate,
imidacloprid, kresoxim-methyl, methomyl, pencycuron, profenofos, propanil, trichlor-
fon, thiodicarb, and NaBH4 were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Sodium alginate was bought from Echo Chemical Co., Ltd. (Miaoli, Taiwan). Hydrochlo-
ric acid (HCl) was bought from Aencore (Surrey Hills, Australia). Tris(hydroxymethyl)
aminomethane (Tris) was purchased from J.T. Baker (Phillipsburg, NJ, USA). The prepara-
tion of 100 mM Tris-HCl buffer dissolved 0.6067 g Tris in 50 mL deionized (DI) water and
adjusted its pH from 5.0 to 9.0 with 1.0 M HCl.

UV–vis measurements were conducted on an Analytikjena Specord 210 Plus (Analytik
Jena, Jena, Germany). Chemical bonding in the samples was identified using FTIR anal-
ysis via the KBr pellet method with a Nicolet iS5 spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) in the mid-IR range (500–4000 cm−1). TEM images were obtained
using a JEM-2100 transmission electron microscope (JEOL, Tokyo, Japan). Zeta potential
measurements were collected using a Zetasizer Nano ZS90 particle size analyzer (Malvern
Panalytical, Malvern, UK). XPS was conducted using an ESCALAB 250 X-ray photoelectron
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) to analyze the chemical states
of the species present and elemental composition.

2.2. Preparation of Sodium Alginate Functionalized AgNPs

Sodium-alginate-functionalized AgNPs (SA-AgNPs) were prepared according to our
previously reported approach with minor modifications [20]. Briefly, 10 mM AgNO3
(250 µL) and 0.054, 0.270, 0.540, 2.701, and 5.403 mg/mL sodium alginate (250 µL) were
dissolved in DI water (10 mL). Then, freshly prepared 2.5 mM NaBH4 (6 mL) in DI water
was rapidly added to the solution under vigorous stirring at room temperature. In this
study, the silver nitrate was reduced to AgNPs by NaBH4, and sodium alginate was used
as a stabilizing agent. The color of the solution changed from colorless to bright yellow
immediately after adding NaBH4, signifying the formation of uniformly dispersed colloidal
SA-AgNPs. The SA-AgNPs were then utilized directly in subsequent studies without
being purified.

2.3. Colorimetric Detection of Dimethoate

DI water (600 µL), 0.1 M Tris-HCl buffer (200 µL, pH 7.0), SA-AgNPs (1000 µL), and
various concentrations (0.05–10 ppm) of dimethoate (200 µL) were added to a 2 mL cen-
trifuge tube to investigate the detection ability of dimethoate. The mixture was vigorously
stirred for 40 min. The resulting solution experienced a color change obvious to the naked
eye, and the corresponding UV–vis absorption spectra were scanned within the 200–900 nm
range. The absorption ratio at 475 to 400 nm was directly proportional to the concentration
of dimethoate and was used as the analytical signal.

2.4. Determination of Dimethoate in Water Samples

The capability of the detecting system for actual sample analysis was tested by the
determination of dimethoate in water samples. For this purpose, three concentrations
(0.5, 1.0, and 1.5 ppm) of dimethoate were spiked in the drinking water samples. All
water samples were filtered with 0.22 µm membranes and stored at 4 ◦C. The detection
procedures were the same as in Section 2.3, and all experiments were repeated in triplicate
to minimize experimental errors.
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3. Results and Discussion
3.1. Characterization of SA-AgNPs in the Absence and Presence of Dimethoate

First, a color change from colorless to yellow confirmed the formation of the SA-
AgNPs. Then, using UV–vis spectroscopy, the synthesized SA-AgNPs were characterized.
The monodispersed SA-AgNPs exhibited a single characteristic absorption band at 400 nm,
which is attributed to the surface plasmon resonance effect of AgNPs and shows a yel-
low color (inset of Figure 1). The collective oscillation of the metal-free electrons for the
nanoparticle lattice in resonance with the electromagnetic source was caused by the intense
interaction of incident light with metal nanoparticles [28,29]. This phenomenon is known as
the SPR. The UV–vis absorption spectrum of SA-AgNPs in the presence of dimethoate is dis-
played in Figure 1 to investigate the feasibility of the colorimetric detection of dimethoate.
It can be seen that adding dimethoate to SA-AgNPs results in a great decrease in the
absorption peak at 400 nm and a slight increase in the absorption wavelength at 475 nm,
revealing that dimethoate induces the aggregation of SA-AgNPs. Thus, SA-AgNPs can be
fabricated to be colorimetric probes for sensing dimethoate.
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Figure 1. UV–vis spectra of SA-AgNPs solution (blue line) and SA-AgNPs with 10 ppm dimethoate
(green line). Inset: corresponding images of (a) SA-AgNPs and (b) SA-AgNPs with dimethoate.

Figure 2 shows the representative TEM images of SA-AgNPs and SA-AgNPs in the
presence of 10 ppm dimethoate. SA-AgNPs exhibited uniform spheroidal and monodis-
perse morphology in the TEM image. The size distribution of SA-AgNPs in diameter was
9.0–21.0 nm, and the average size was 14.6 nm. In the presence of dimethoate, the TEM
image shows aggregated SA-AgNPs, and the average size of SA-AgNPs is larger than that
of monodispersed SA-AgNPs. FTIR spectra of SA, SA-AgNPs, dimethoate, and SA-AgNPs
with dimethoate are shown in Figure 3. A broad band centered at 3450 cm−1 is due to
the stretching vibration band of the OH group [30]. The absorption bands at 1618 and
1420 cm−1 are attributed to the asymmetric and symmetric –COO stretching vibrations,
respectively. The observed band at 1031 cm−1 can be assigned to the C–O–C stretching
vibration [31]. This confirms the two main functional groups (–COO and C–O–C) in the SA
molecules. SA-AgNPs contain vibrational modes consistent with the functional groups in
SA, with absorption bands consistent with the two main vibrations compared with the FTIR
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spectra. These results suggest that the SA molecules are adsorbed on the surfaces of AgNPs.
Dimethoate shows the absorption bands at 3260, 2947, 1649, 1569, 832, and 654 cm−1,
representing the stretching vibrations of N–H, C–H, C=O, N–CH, P=S, and P–S groups,
respectively [32,33]. After adding dimethoate to SA-AgNPs, the intensity and sharpness of
–COO, P=S, and P–S stretching vibrations of dimethoate decreased. These spectral changes
are the results of the interactions between the functional groups of dimethoate with the
surface of AgNPs.
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XPS was performed to investigate the chemical compositions, bonding environments,
and electronic states of SA-AgNPs in the absence and presence of dimethoate (Figure 4). The
binding energies at 284.8, 368.2, 400, and 531.0 eV are assigned to C 1s, Ag 3d, N 1s, and O
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1s, respectively, which denotes the presence of carbon, silver, nitrogen, and oxygen. Further,
the XPS spectra were recorded for SA-AgNPs after treatment with 10 ppm dimethoate. It
contains characteristic peaks at 130.2, 163.9, 284.8, 368.2, 400.0, and 531.0 eV for P 2p, S 2p,
C 1s, Ag 3d, N 1s, and O 1s regions, respectively. Their atomic percentages are summarized
in Table S1. The high-resolution spectra of Ag 3d were measured to analyze the electronic
state of AgNPs in the absence and presence of dimethoate. Two peaks associated with the
spin–orbit doublets at 367.7 eV (Ag 3d5/2) and 373.7 eV (Ag 3d3/2) with a spin energy
separation of 6.0 eV (Figure S1 in Supplementary Material), which is a characteristic of zero
valent metallic Ag [34]. The lower-intensity peak contribution at higher binding energy is
assigned to Ag atoms at the nanoparticle surface chemically bonded to the sulfur atom of
dimethoate. The two Ag 3d spin–orbit pairs are separated by about 0.3 eV.
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3.2. Stability of SA-AgNPs

Furthermore, the stability of the as-prepared nanoparticles is considered an important
analytical parameter for evaluating their potential applications. Nanoparticles without
suitable functionalized molecules are easy to aggregate; hence, stabilizing agents are vital
for the preparation of stabilized nanoparticles. This study used sodium alginate as a func-
tionalized ligand to stabilize AgNPs. The experimental parameters such as the amount of
SA, pH of the buffer, and ionic strength have a major effect on the stability of the SA-AgNPs.
One important objective of the current study was the verification of sodium alginate as a
biopolymer to stabilize AgNPs. In this regard, several amounts of SA, including 0.054, 0.270,
0.540, 2.701, and 5.403 mg/mL, were considered, and their absorption ratios (A475/A400)
were characterized (Figure S2a). The absorption ratio (A475/A400) is an important parame-
ter to confirm the non-aggregation or aggregation state of the nanoparticles in colorimetric
assays. The optimal amount of SA in the SA-AgNPs solution is 0.540 mg/mL, according to
the results.

The stability of SA-AgNPs was evaluated at a pH ranging from 5.0 to 9.0 (Figure S2b).
The SA-AgNPs were found to be stable in pH values from 5.0 to 8.0, and the stability
of SA-AgNPs slightly decreased at pH 9.0. The various NaCl concentrations (0–25 mM)
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were treated with SA-AgNPs to evaluate the stability of the SA-AgNPs, and changes
in the absorption ratio (A475/A400) of SA-AgNPs were recorded (Figure S2c). It can
be seen that SA-AgNPs were stable up to 25 mM NaCl. No obvious change in the ab-
sorption ratio of SA-AgNPs was detected during the initial 35 days of SA-AgNPs being
stored at 4 ◦C (Figure S2d). Excellent batch-to-batch reproducibility was also achieved
(Figure S3). All these results confirmed that the as-prepared SA-AgNPs were highly stable
and reproducible.

3.3. Sensing Mechanism

The preparation of sodium-alginate-functionalized AgNPs and their application for
the colorimetric detection of dimethoate are shown in Scheme 1. The prepared SA-AgNPs
were highly monodispersed and considered stable. The pKa of the carboxyl group of
sodium alginate has been reported to be 3.38 [35]. Thus, the negative charges of alginate
ions on the surface of AgNPs prevent the aggregation of the SA-AgNPs. However, adding
dimethoate to SA-AgNPs induces the aggregation of the SA-AgNPs and causes a color
change at the optimal Tris-HCl buffer (pH 7.0). The aggregation phenomenon is due to
hydrogen bonding and electron donor–acceptor interactions between dimethoate molecules
and SA-AgNPs. At the optimal conditions, the hydrogen bonds can be simultaneously
formed between dimethoate and alginate on the surfaces of AgNPs through –NH and
–C=O of dimethoate with –COOH of alginate [36]. The electron donor–acceptor interactions
could also be observed between electron-withdrawing carboxyl groups of alginate on the
surfaces of AgNPs and electron-donating (N–H and P=S) groups of dimethoate. These
interactions between dimethoate molecules and SA-AgNPs decreased the surface charge,
inducing the aggregation of SA-AgNPs and a color change. In addition, the zeta potential
measurements of SA-AgNPs and SA-AgNPs with dimethoate were −26.0 and −17.4 mV
(Figure S4), further confirming the interactions between the dimethoate and SA-AgNPs.
The experimental results proved the strong interactions between dimethoate and SA-AgNPs
through the hydrogen bonding and electron donor–acceptor interactions.

3.4. Optimization of Reaction Conditions

Two analytical parameters, the pH of the solution and incubation time of SA-AgNPs
with dimethoate, were optimized according to the sensing effect of the SA-AgNPs-based
colorimetric assay for the determination of dimethoate. The absorption ratios of A475/A400
for the SA-AgNPs were used to optimize conditions. The results are shown in Figure S5.
The pH range of the Tris-HCl buffer was adjusted from 5.0 to 9.0 to obtain the optimum
condition for sensing dimethoate. It could be seen that the absorption ratios at different pH
values exhibited similar outcomes. In addition, the reaction time-dependent absorption
ratio of SA-AgNPs with dimethoate (1 ppm) at A475/A400 was also investigated. As
depicted in Figure S5b, the absorption ratio increased in time from 0 to 40 min until it
reached a plateau. The absorption ratio had almost no change from 40 to 120 min, indicating
that dimethoate completely induced the aggregation of SA-AgNPs. Therefore, based on
these observations, pH 7.0 and 40 min were chosen as the optimal conditions for sensing
dimethoate and used throughout the experiments.

3.5. Selectivity, Interference, and Sensitivity of the Assay

The selectivity of the colorimetric assay was evaluated for dimethoate compared with
other interfering pesticides. Different types of pesticides, such as dimethoate, trichlorfon,
dichlorvos, chlorothalonil, chlorpyrifos, glufosinate-ammonium, methomyl, 2,4-D(Sodium),
propanil, glyphosate, dicofol, carbaryl, fenvalerate, thiodicarb, acetamiprid, kresoxim-
methyl, carbofuran, pencycuron, profenofos, imidacloprid, bifenthrin, and carbendazim
were added to the SA-AgNPs, to final concentrations of 1.0 ppm. Another 21 pesticides had
no obvious effect on the UV–vis absorption spectra of the SA-AgNPs, indicating that only
dimethoate can result in obvious absorption ratio (A475/A400) changes to the SA-AgNPs,
as shown in Figure 5. The results imply excellent selectivity of this colorimetric assay for
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detecting dimethoate. Additionally, to further verify the feasibility of the SA-AgNPs for
the recognition of dimethoate, potential interference from other pesticides (1.0 ppm) was
recorded (Figure 5). According to the data, other pesticides cause very slight changes in the
absorption ratio (A475/A400). To further confirm the practical application, the interference
tests of the SA-AgNPs towards dimethoate were performed with lake water samples. As
shown in Figure S6, only a slight change in absorption ratio (A475/A400) was observed.
These results show that other pesticides cause no interference with dimethoate detection.
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Figure 5. Absorption ratio (A475/A400) of SA-AgNPs for dimethoate over other pesticides (yellow bar)
and the mixture of dimethoate with other pesticides (blue bar). BK: background; 1 to 22 are various pes-
ticides (i.e., dimethoate, trichlorfon, dichlorvos, chlorothalonil, chlorpyrifos, glufosinate-ammonium,
methomyl, 2,4-D(sodium), propanil, glyphosate, dicofol, carbaryl, fenvalerate, thiodicarb, acetamiprid,
kresoxim-methyl, carbofuran, pencycuron, profenofos, imidacloprid, bifenthrin, carbendazim).

Various concentrations of dimethoate ranging from 0 to 10.0 ppm were examined under
optimal conditions to show the performance of the sensing system. UV–vis absorption
spectroscopy monitored the variations in colorimetric response at the absorption ratio
(A475/A400) of SA-AgNPs upon adding dimethoate. The concentration of dimethoate
increases and the absorption ratio (A475/A400) of SA-AgNPs increases over a wide range of
concentrations (0.05–2.0 ppm), as shown in the inset of Figure 6. The change in absorption
ratio (A475/A400) plot against the dimethoate concentration from 0.05 to 2.0 ppm gave a
straight line with R2 = 0.9983. The LOD of dimethoate was calculated from the standard
deviation (σ) of the blank (n = 10) and slope (s) of the calibration curve using the following
equation [37]:

LOD = 3σ/s (1)
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The calculated LOD of dimethoate was 30 ppb.
Table 1 compares the analytical performances of the developed colorimetric assay for

dimethoate based on the aggregation of SA-AgNPs to other reported assays. Although
some assays exhibit lower LODs, their linear ranges are limited. The proposed method has
higher selectivity for detecting dimethoate than other assays. Thus, the results show that
SA-AgNPs can be used as efficient probes for the colorimetric detection of dimethoate with
a wider linear range, higher selectivity, and a comparable LOD.

Table 1. Comparison of the proposed assay with other reported assays for the colorimetric detection
of dimethoate.

Probes Linear
Range (ppb)

LOD
(ppb) Selectivity Applications Ref.

Ni(PhDP)2 98.5–596 91.7 3 inorganic salts Urban, lagoon, stream, groundwater,
treated wastewater [38]

MIP-CoZn ZIF 4.59–275 1.28 11 pesticides Orange, Lemon, agriculture
wastewater [39]

GO 2–200 2 – – [40]
Citrate-AuNPs 10–400 4.7 8 pesticides Tomato, cucumber, cabbage [41]
Citrate-AuNPs 0.23–9.2 1.42 19 pesticides Tap water, green tea, apple juice [24]
Citrate-AuNPs 2.29–22.93 1.26 4 pesticides Apple [25]

Ag2O NPs 20–160 14 11 pesticides Pepper, Green beans, Cabbage [42]
pSC4R-AgNPs 22.9–229 18.3 7 pesticides Industrial waste water [43]

Smartphone-printed-paper 100–2000 30 8 pesticides Tomato, radish [33]
Cu@AgNPs 50–2500 16 8 pesticides – [33]

AgNPs 688–4585 688 – – [44]
CuO NPs 688–4585 688 – – [44]

Ag-Cu NPs 688–4585 688 – – [44]
SA-AgNPs 50–2000 30 22 pesticides Drinking water This work

GO: graphene oxide; LOD: limit of detection; MIP: molecularly imprinted polymer; Ni(PhDP)2: bis 5-
phenyldipyrrinate of nickel (II); NPs: nanoparticles; pSC4R: p-sulphonato-calix [4]resorcinarene; SA: sodium
alginate; ZIF: zeolitic imidazole framework.

3.6. Determination of Dimethoate in Water Samples

The drinking water samples were analyzed using SA-AgNPs as colorimetric probes to
test the practicability and accuracy of the developed sensor for dimethoate detection. Under
the optimal experimental conditions, SA-AgNPs were treated with 0.5, 1.0, and 1.5 ppm
dimethoate in the drinking water samples. The ultimate concentrations of dimethoate
could be obtained based on the changes in absorption ratio (A475/A400) and the linear
regression equation of the calibration curve. Table 2 summarizes the quantitative results.
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The recoveries varied from 90.3% to 106.6%, and the relative standard deviation (RSD) was
within 7.4%. It was observed that there were no severe interferences in drinking water
samples, which revealed relatively high precision. Consequently, it was believed that the
SA-AgNPs-based colorimetric assay could be successfully applied to determine dimethoate
with high precision and accuracy in drinking water samples.

Table 2. Recoveries for detecting dimethoate with the proposed assay in drinking water samples.
(n = 3).

Sample Spiked (ppm) Found (ppm) Recovery (%) RSD (%)

1 0.5 0.52 104.0 7.4
2 1.0 1.06 106.6 3.8
3 1.5 1.35 90.3 3.9

4. Conclusions

In this study, SA-AgNPs were synthesized via a chemical reduction method. The
as-prepared SA-AgNPs were characterized through UV–vis, FTIR, TEM, and XPS mea-
surements. The recognition ability of SA-AgNPs towards dimethoate was evaluated using
UV–vis, FT-IR spectrometry, XPS, and zeta potential measurements. Adding dimethoate
to SA-AgNPs produces a significant decrease in the absorption ratio (A475/A400) of SA-
AgNPs, along with a color change. The yellow color of the SA-AgNPs changed into light
yellow via the electron donor–acceptor interactions and hydrogen bonding with dimethoate
molecules. The other tested pesticides did not produce an obvious change in the absorption
spectra or color of the SA-AgNPs. In the presence of other pesticides, the SA-AgNPs
were highly selective in recognizing the dimethoate, as no interference was observed in
the competitive experiments. Furthermore, SA-AgNPs were successfully used to detect
dimethoate in drinking water. The current assay’s detection limit is comparable to those of
other reported methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12121086/s1. Figure S1: High-resolution Ag 3d XPS spectra
of (a) SA-AgNPs and (b) SA-AgNPs with dimethoate. Figure S2: Effects of (a) the amount of SA,
(b) pH, (c) NaCl concentrations, and (d) storage time on the absorption ratio A475/A400 of SA-
AgNPs. Inset: the images of various amounts of SA stabilized AgNPs. Figure S3: The batch-to-batch
reproducibility for the preparation of the SA-AgNPs. Figure S4: Zeta potentials of SA-AgNPs and
SA-AgNPs with dimethoate (10 ppm). Figure S5: Effects of (a) pH and (b) incubation time on
the absorption ratio of A475/A400 of SA-AgNPs with dimethoate. Figure S6: The absorption ratio
(A475/A400) of the SA-AgNPs towards dimethoate with other pesticides in the lake water samples.
The peak identifies are the same as in Figure 5. Table S1: XPS results of elemental analysis.
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