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Abstract: More than half of all pleural effusions are due to malignancy of which lung cancer is the
main cause. Pleural effusions can complicate the course of pneumonia, pulmonary tuberculosis,
or underlying systemic disease. We explore the application of label-free surface-enhanced Raman
spectroscopy (SERS) as a point of care (POC) diagnostic tool to identify if pleural effusions are due
to lung cancer or to other causes (controls). Lung cancer samples showed specific SERS spectral
signatures such as the position and intensity of the Raman band in different wave number region
using a novel silver coated silicon nanopillar (SCSNP) as a SERS substrate. We report a classification
accuracy of 85% along with a sensitivity and specificity of 87% and 83%, respectively, for the detection
of lung cancer over control pleural fluid samples with a receiver operating characteristics (ROC)
area under curve value of 0.93 using a PLS-DA binary classifier to distinguish between lung cancer
over control subjects. We have also evaluated discriminative wavenumber bands responsible for
the distinction between the two classes with the help of a variable importance in projection (VIP)
score. We found that our label-free SERS platform was able to distinguish lung cancer from pleural
effusions due to other causes (controls) with higher diagnostic accuracy.

Keywords: lung cancer; pleural effusion; surface-enhanced Raman spectroscopy; clinical study;
chemometrics; diagnosis

1. Introduction

Cancer is one of the many diseases with a high mortality rates, and an increasing
prevalence of cancer due to the increase in aging population and adoption of unhealthy
lifestyles has led to immense economic strains on healthcare systems, especially in develop-
ing countries [1]. Lung cancer, in particular, was the most diagnosed cancer, accounting for
13% of total cancer incidences and 20% of total cancer mortality as of 2012 [2]. It remains a
lethal disease with one of the lowest 5-year survival rates of 10–15%. Between 1975 and
2009, patients diagnosed with clinical stage IV lung cancer had a 5-year overall survival rate
of only 2% while those diagnosed with the lowest stage IA had a 5-year overall survival
rate of 50% [3,4].

The typical diagnosing procedure includes a series of assessments, such as physical
examination, imaging tests, and biopsies which can all be invasive and time consuming [5].
As with any disease, the need for accurate, rapid and non-invasive diagnostic methods
for the early detection of lung cancer is crucial to good patient prognosis. Diagnosing and
screening diseases using Raman spectroscopy is emerging as a promising viable avenue for
cancer diagnosis as it allows for the spectral analysis of biofluids and tissues in the body.
Several studies have attempted using this technique to identify biomolecular and chemical
changes in biofluids, such as serum, plasma, saliva, cervical fluid, and urine in relation to
cancer [6–10].
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A study consisting of approximately 400 subjects with different types of cancer condi-
tions has successfully differentiated normal patients from cancer patients with a sensitivity
of 92% and specificity of 81% using a Raman spectral analysis of the serum collected.
However, additional reports on the effectiveness of this method in investigating certain
types of cancers have been limited. This is because Raman signals are intrinsically weak,
so the Raman tool by itself is not sufficiently sensitive to warrant clinical value. Raman
signal intensity can be enhanced by as much as an order of 10 by a phenomenon called
surface-enhanced Raman spectroscopy (SERS) owing to different substrates [11–13]. SERS
substrates can be fabricated by assembling metallic nanocolloidal clusters and nanopar-
ticles with SERS properties onto surfaces of various shapes, or by an etching process to
obtain planar nanostructures such as nanopillars [14,15]. Raman enhancement using such
fabricated SERS substrates was successfully implemented in recent studies investigating
Raman spectroscopy of biofluids [15,16]. Studies attempting biofluid SERS analysis have
observed differences in Raman peaks and peak intensities between normal and diseased
patients, allowing for a non-invasive diagnosis of oral, breast, head, neck, and cervical
cancer [16–18].

In this pilot study, we explore the application of label-free SERS for the biochemical
analysis of pleural fluid samples from control and cancer patients. We also investigate
the potential of obtaining valuable information from the cancer patient samples compared
with that of the control samples without having to target any specific biomarker or protein.
Cancer is typically identified by observing and comparing the differences of spectrum and
spectral parameters (peak position, peak height, peak area, and peak shape, etc.) between
control samples and cancer patient samples. However, due to the limitation, complexity,
and subjectivity of this traditional method, it is hard to obtain objective and accurate results.
To extract meaningful information and systematically research the spectral data acquired,
the method of chemical information, or chemometrics, is helpful and necessary. Herein,
we have implemented a reliable and high level of uniformity across the SERS substrate
to generate SERS spectra [14]. We have collected multiple SERS spectra via mapping
for each pleural fluid sample. Controls and cancer patients were distinguished by using
the SCSNP SERS substrate and pattern recognition methods of chemometrics, including
principal component analysis (PCA), linear correlation analysis (LDA), partial least squares-
discriminant analysis (PLS-DA), and uncorrelated linear discriminant analysis (ULDA).
Our proof-of-concept study with a small sample size affirms the potential of the SERS
platform in combination with the use of a binary classifier algorithm for the rapid diagnosis
of lung cancer using pleural fluid with a high level of sensitivity and specificity.

2. Materials and Methods

Pleural fluid samples were transferred into 1.5 mL Eppendorf™ tubes and centrifuged
at 10,000 rpm for 10 min at 4 ◦C to separate fluid from the cells. The supernatant was
removed, aliquoted, and stored at −20 ◦C. Only samples with no signs of blood contamina-
tion were used for measurement.

Prior to use, these substrates were cleaned with ethanol followed by Millipore water
to increase the wettability of aqueous samples. Stored pleural fluid was thawed and 5 µL
placed onto the substrate. SERS measurements of the pleural fluid were carried out using a
Renishaw InVia Raman upright microscope (Renishaw InVia, Gloucestershire, UK) with a
785 nm laser. A microscope (Leica) was integrated with this Raman system and the laser
light was coupled through an objective lens (50X, 0.75 N.A), which was used to excite the
sample and to collect the scattered Raman signal. The dominant Rayleigh scattering was
blocked using a notch filter and the beam spot on the sample was ~1 µm. A minimum of
500 spectra per pleural fluid sample were acquired via mapping over 3 different locations.
Integration time for each spectrum was 10 sec and the resultant mapping data were collected
in the range of 700–1800 cm−1 wavenumber region. Figure 1 shows the schematic for the
label-free SERS measurement of the pleural fluid on an SCSNP substrate. The fabrication of
the SCSNP has been described in our earlier work [14]. Briefly, an etching method based on
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blanket inductive coupled plasma (ICP) was used to etch the Si wafer to generate a random
silicon-based nanograss structure followed by pure silver (Ag) vapour deposition using the
E-beam evaporation process.
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Figure 1. Schematic showing the label-free SERS platform for pleural fluid analysis.

In this pilot study, we acquired the SERS spectra from pleural fluid samples of subjects
with different medical conditions (lung, breast, ovarian cancer, etc.) using benchtop confocal
Raman spectroscopy. The Raman fingerprint for the pleural fluid sample was acquired
between 735 cm−1 to 1700 cm−1 and was further used in the chemometrics analysis.
Multiple spectra were acquired for each subject via mapping the related pleural fluid
SERS sample. The mapping data in terms of multiple SERS spectra were affected by
autofluorescence from the sample when illuminated with the laser light source in the
confocal Raman spectroscopy system. A representative pleural fluid SERS spectra obtained
using ~220 individual spectra across multiple SERS substrates is shown in Figure S1
(Supplementary Material). The autofluorescence from the sample overlapped with the
SERS spectral signal from the sample under investigation and, hence, caused a deviation
from the linear relationship between the SERS signal intensity and the associated molecular
concentration [19,20]. Thus, it was important to preprocess the SERS spectra and remove
any autofluorescence baseline effect. In order to subtract the effect of autofluorescence
mathematically, a spectral baseline correction was implemented using the asymmetric least
squares (AsLS) baseline correction method [21]. The baseline-corrected SERS spectra were
further processed using the Savitzky–Golay smoothing algorithm in order to remove any
contribution from the cosmic ray spikes and enhance the signal-to-noise ratio (SNR) [22].
The preprocess routine was repeated for each SERS spectrum acquired for each pleural
fluid sample. The baseline-corrected SERS spectrum with improved SNR from the subject
was further subdivided between the control and cancer groups and analyzed using the
partial least squares-discriminant analysis (PLS-DA) binary classification method.

We implemented a supervised PLS-DA based on the partial least squares regression
(PLSR) for dimensionality reduction and further classification. The PLS regression-based
PLS-DA binary classification method further rotated the components (latent variables (LVs))
to achieve the maximum group separation compared with the PCA model resulting into
better classification results. The basic theory behind the PLS-DA classification method
has been described elsewhere [23–25]. To validate the accuracy of this PLS-DA binary
classification model, a stratified K (10)-fold cross-validation method was used that was
helpful to further reduce classification errors resulting from class imbalance. The variable
importance in projection (VIP) score is an important parameter that can be evaluated from
the PLS-DA classification model and estimates the importance of each variable. The VIP
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score is the weighted sum correlation between PLS latent variables. Variables with a VIP
score value greater than the numerical value of one (1) are considered as important and
can further help to optimize the PLS-DA classification model [26]. The VIP score helps to
identify important wavenumbers or Raman band regions that are significantly different
in two groups under investigation, i.e., the VIP score can be further used to discriminate
between the two subject groups by selecting certain wavenumbers.

In this study, we investigated pleural fluid samples from three different classes, i.e.,
lung cancer, all other conditions of cancer, and control subjects. To understand how the
pleural fluid SERS signature could assist to identify the different health condition, we used
the advanced machine learning tools noted above.

3. Results and Discussion

SCSNP substrates were fabricated as described in the materials and methods section.
For SERS measurements on the pleural fluid samples, a silver coated silicon nanopillar
(SCSNP) was fabricated in-house. Figure 2A,B shows the silicon nanopillar (SNP) before
and after silver coating, respectively [14]. We had also tested with a commercial SERS
substrate from Silmeco (Denmark) for the initial studies.
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Figure 2. FE-SEM cross-sectional view of silicon nanopillar (SNP) structure. (A) Clean SNP without
metal coating. (B) Silver coated silicon nanopillar (SCSNP).

Excess pleural fluid is secreted when the pulmonary system is triggered by irritation
or inflammation that could be due to infections like tuberculosis (TB), allergies, or from
various cancers. When it comes to cancer totals, the major contributors are lung cancer or
breast cancer. In our study we collected pleural fluid samples from a total of 34 patients;
we have provided the details of the patients and their condition in Table 1. The breakdown
based on the type of cancer and the non-cancer subjects are also shown in Table 1. Briefly,
there were 15 patients with lung cancer, 7 with other cancers, and 12 controls (who were
non-cancerous and had pleural fluid secretions due other infections).

Table 1. List of patients with lung cancer, other cancers, and control subjects.

Cancer Types No. of Subjects

LUNG CANCER 15
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Table 1. Cont.

Cancer Types No. of Subjects

OTHER CANCERS
- BREAST CANCER 1
- OVARIAN CANCER 1
- PERITONEAL CANCER 1
- MALIGNANT MESOTHELIOMA 2
- MULTIPLE MYELOMA 1
- LYMPHOMA 1

NON-CANCER (CONTROL)
- Exudate 8
- Transudate 4

TOTAL 34

3.1. Case One: Lung Cancer vs. Control

Figure 3a shows that for the mean SERS spectra for the lung cancer (n = 12 subjects)
and control (n = 11 subjects) groups, each group constituted approximately 4000 SERS
spectra. A great difference between the lung cancer and control subjects mean normalized
SERS spectrum is observed in the spectral ranges of 1000–1100 cm−1, 1200–1400 cm−1,
1440 cm−1, and 1500–1600 cm−1. These spectral ranges are related to protein (Amide III and
Amide II) and lipid conformations (CH2 scissoring vibration). Zhiwei et al. distinguished
tumor tissue from normal bronchial tissue with a sensitivity and specificity of 94% and
92%, respectively, using near infrared Raman spectroscopy [27]. The spectral difference
achieved on the bronchial tissue specimen are consistent with our observation from the
pleural effusion on the SERS platform. Thus, this method could be preferred to distinguish
lung cancer subjects from control subjects by using the non-invasive pleural fluid method
on the SERS platform.

The mean-centered, baseline-corrected SERS spectra within the 735–1700 cm−1 fin-
gerprint wavenumber range from the two study groups are used as the descriptor (X)
matrix, whereas the response (Y) vector has been artificially generated to designate group
affinities. PLS-DA determines the fit between the descriptor matrix and class groups by
maximizing the covariance and, as a result, latent variables (LVs) in terms of the PLS score
are determined. Figure 3b shows the scatterplot of the first two LVs from the PLS score
showcasing the group clustering from each subject group. To validate the accuracy of this
PLS-DA classification model, a stratified K (10)-fold cross-validation method is used, which
preserves the proportions of subgroups under training and test samples. A classification
accuracy of 0.85 is achieved along with a sensitivity and specificity of 87% and 83%, re-
spectively. Figure 3c shows an averaged receiver operating characteristic (ROC) curve
with mean value the area under curve of 0.93 from multiple cross-validation folds that
demonstrates the capability of the PLS-DA binary classifier to distinguish between lung
cancer and control subjects with threshold variation. Finally, Figure 3d shows the VIP score
evaluated from the PLS-DA classification model. The VIP score with a numerical value
greater than one (1) indicates that the spectral bands and wavenumbers are discriminative
between the two subject groups. The most discriminative (higher VIP score or width of the
band) wavenumber bands, their peak positions, and the vibrational mode assignment have
been explained in Table 2 below. As evident from the spectral difference between the two
subject groups, the VIP score also shows that the protein and lipid conformations are the
most discriminative.
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Figure 3. (a) Mean-centered, preprocessed mean SERS spectra and their difference for lung can-
cer (n = 12) and control (n = 11) groups within a wavenumber range of 735–1700 cm−1. (b) Two-
dimensional scatterplot for first two latent LVs from the PLS-DA classification model. (c) Receiver
operating characteristics (ROC) curve demonstrating classification capability of PLS-DA classifica-
tion model at different thresholds. (d) Variable importance in projection (VIP) score highlighting
important discriminative wavenumber bands between lung cancer and control group.

Table 2. Assignment of Raman wavenumbers and bands evaluated using VIP score. ν = stretch,
δ = deformation [28].

Peak Position (cm−1) Vibrational Mode Assignment [26]

1002 Phenylalanine, C-C aromatic ring stretching

1068 C-C skeletal stretching (lipids)

1168 ν (C=C) δ(COH) (lipid)

1198 Nucleic acids and phosphates

1310 CH3/CH2 twisting or bending mode of
lipid/protein assignment

1398 C=O symmetric stretch, CH2 deformation

1432 CH2 scissoring vibration (lipid)

1590 C=C olefinic stretch (protein)

From the VIP score that is evaluated using the PLS-DA classification model, the
1002 cm−1, 1068 cm−1, 1160–1205 cm−1, 1300–1330 cm−1, 1420–1440 cm−1, 1558 cm−1 and
1580–1600 cm−1 wavenumbers and wavebands constitute a scoring value of greater than
one (1). This signifies the role of these wavenumbers and wavebands as discriminative
between the two subject groups under the PLS-DA classification model. Although the mean
normalized difference spectrum shows a great difference between the two subject groups’
mean spectra at multiple spectral locations, the VIP score from the PLS-DA classification
model evaluates the most discriminative wavenumbers, waveband peak positions, and
the related vibrational mode assignment as tabulated in Table 2. In alignment with other
published research, the SERS-based lung cancer pleural fluid shows the spectral difference
with respect to control subjects at the major protein and lipid conformations as depicted
in Table 2.
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3.2. Case 2: All Cancer vs. Control

The PLS-DA binary classification model is used to classify all cancers (n = 22, ~6000
Raman spectra’s) found in the subjects into the specific cancer types (15 lung, 1 lymphoma,
1 ovarian, 1 breast, 1 peritoneal, 2 malignant mesothelioma and 1 multiple myeloma)
and control group (n = 12, ~5000 Raman spectra); please refer to Table 1 for more details.
Figure 4a shows the mean-centered, preprocessed mean Raman spectra for these two subject
groups along with their spectral difference value. Figure 4b shows the two-dimensional
scatterplot using the first two LVs from the two subject groups evaluated using the PLS
regression model. Here again, the spectral data are used as the descriptor, whereas the
artificial affinities are defined for the two different subject groups for the supervised
classification. In order to evaluate the accuracy of the PLS-DA classification model, a
stratified K (10)-fold cross-validation method is used. For this PLS-DA classification model,
a classification accuracy of 81% is achieved with the sensitivity and specificity of 77% and
84%, respectively, to predict the cancer condition. An ROC curve computed for all the
cross-validation folds is shown in Figure 4c along with the VIP score in Figure 4d. The
important discriminative wavenumber peaks and wavebands evaluated with the help
of the VIP score are tabulated in Table 3 along with their respective peak positions and
vibrational mode assignments [27,29,30].
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Table 3. Assignment of Raman wavenumbers and bands evaluated using VIP score. ν = stretch,
δ = deformation [28].

Peak Position (cm−1) Vibrational Mode Assignment [26]

887 Protein bands, Structural protein modes of tumors

959 Single bond stretching vibrations for the amino acids proline, valine and polysaccharides

1008 Phenylalanine ν(CO), ν(CC), δ(OCH)

1078 ν(C-C) or ν(C-O), phospholipids and nucleic acid

1120–1170 ν(C-N), C-C skeletal trans conformation, phospholipidsνC-C of proteins (also carotenoids)

1222 Amide III (β-sheet)

1325 CH3CH2 wagging mode in purine bases of nucleic acids

1655 Amide I (protein) and C=C stretch (lipid)
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This study was performed as a proof-of-concept demonstration to show the feasibility
of using the label-free SERS technique in combination with the robust SERS substrate
SCSNP. There are still some limitations such as the patient sample size not being substantial
enough to offset the individual variation that might arise from different patients. We did
not take into consideration the smoking or non-smoking aspect of the patients in this study.
Moreover, the control patients’ pleural effusions may have more variations due to different
infections. In our future work, we have planned to expand the study with a larger patient
cohort that has a statistically significant number of lung cancer and control along with TB
patients in order to be able to develop a more distinctive and robust algorithm that can,
with the help of the SERS spectra, classify the pleural effusion as a cancer or TB.

4. Conclusions

This proof-of-concept study with a small sample size affirms the potential of the SERS
platform in combination with the use of a binary classifier algorithm for the rapid diagnosis
of lung cancer using pleural fluid. We have used chemometrics methods comprising
principal component analysis followed by linear discrimination analysis (PCA-LDA) and
partial least squares-discriminant analysis (PLS-DA), etc., in our current study to derive the
disease condition. We report a classification accuracy of 85% along with a sensitivity and
specificity of 87% and 83%, respectively, for the detection of lung cancer over control pleural
fluid samples with an area under the ROC curve value of 0.93 using the PLS-DA binary
classifier to distinguish between lung cancers over control subjects. We have also evaluated
the discriminative wavenumber bands responsible for the differentiation between the
two classes with the help of the variable importance in projection (VIP) score. Our proof-
of-concept study demonstrates the feasibility of using the label-free SERS technique in
combination with advanced chemometrics methods along with the robust and reproducible
SERS substrate (SCSNP) to rapidly diagnose the presence of lung cancer using just the
pleural effusions of the patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12110940/s1, Figure S1: Overlay plot of representative pleural
fluid SERS spectra obtained using ~220 individual spectra across multiple SERS substrates.
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