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Abstract: In the real world, analytes usually exist in complex systems, and this makes direct detection
by surface-enhanced Raman spectroscopy (SERS) difficult. Thin layer chromatography tandem
with SERS (TLC-SERS) has many advantages in analysis such as separation effect, instant speed,
simple process, and low cost. Therefore, the TLC-SERS has great potential for detecting analytes in
mixtures without sample pretreatment. The review demonstrates TLC-SERS applications in diverse
analytical relevant topics such as environmental pollutants, illegal additives, pesticide residues,
toxic ingredients, biological molecules, and chemical substances. Important properties such as
stationary phase, separation efficiency, and sensitivity are discussed. In addition, future perspectives
for improving the efficiency of TLC-SERS in real sample detecting are outlined.
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1. Introduction

Surface-enhanced Raman spectroscopy (SERS) is a type of molecular vibrational spec-
troscopy with high selectivity and sensitivity. SERS could provide fingerprints information
of analytes in a label-free, non-destructive, instant, and simple way. Since the first discov-
ery of enhanced Raman signals of pyridine from roughened silver surfaces in the 1970s,
SERS has been widely applied in analytical areas such as food safety [1], environmen-
tal detection [2], disease diagnosis [3], pesticide residues [4], and biochemistry [5]. The
common application for SERS is direct detection of the target analyte near or adsorbed
on the plasmonic-enhanced substrate. The development of nanotechnology has led to
an expansion of SERS applications by using metallic nanomaterials as active substrates.
Metallic nanomaterials, especially those that are part of the noble metals, can provide
excellent SERS sensitivity even down to the single molecule level. In the real world, the
target analytes usually exist in complex systems, and it is difficult to obtain information on
analytes from complex systems by the SERS method.

It is necessary to develop an advanced analytical method, combined with a separation
technique such as extraction or chromatography [6]. Chromatography is a commonly
used separation technique for detecting analytes in mixture samples. Examples are high
performance liquid chromatography-mass spectrometry (HPLC-MS) [7], high performance
liquid chromatography-ultraviolet (HPLC-UV) [8], and gas chromatography-mass spec-
trometry (GC-MS) [9]. These combined analytical methods are reliable. However, the
GC and HPLC are expensive, time consuming, and complex, which is not convenient for
on-site detection [10]. Thin-layer chromatography (TLC) is a simple and instant separation
method, which has been commonly used as a cost-effective technique for separating and
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identifying products in organic synthesis. The tandem of TLC and SERS (TLC-SERS) is an
efficient technology for separating and identifying analytes from complex systems. The
TLC-SERS has been employed in food safety [11], healthcare [12], chemical analysis [13],
and environment protection [14].

In this review, we will focus on the research of the application of TLC-SERS. First,
we will briefly overview the phenomenon of SERS and the basic concept of the TLC
method. Next, we will discuss the construction and application of TLC-SERS, which
show excellent performance in detecting analytes from complex samples. Finally, we
will conclude with the challenges and prospects of TLC-SERS, as well, such as how to
improve the sensitivity, uniformity, and separation efficiency of TLC-SERS. Meanwhile, it
can be predicted that TLC-SERS technology will have broad development space in terms of
analysis and instrumentation. Therefore, it is particularly important to review the progress
of TLC-SERS.

2. SERS

SERS is a powerful analytical technique that has received considerable attention [15].
In the 1970s, the intense Raman spectra of pyridine was observed from the rough surface
of a silver electrode [16]. In 1977, Van Duyne et al. found a new discovery through electro-
chemical experiments [17,18]. The Raman signal of pyridine adsorbed on the rough silver
surface showed higher intensity compared with ordinary Raman spectroscopy, and the
increase was nearly 105–106 times. The significant enhancement of Raman signal was highly
related to the feature of noble metal substrate [19–25]. Additionally, the SERS phenomenon
was observed from transition metals and semiconductor materials. The detection perfor-
mance of SERS is highly dependent on the enhancement substrate [26]. Thus, numerous
nanomaterials were developed and used as SERS substrates. There are many strategies
for preparing SERS substrates [27–32] such as chemical synthesis, photolithography, and
self-assembly. The colloidal nanomaterials is one of the most commonly used substrates in
SERS [33]. The nanoparticles with different geometry such as nanorods, nanocubes, and
nanostars have shown high performance in SERS sensing. However, in the real world, the
analytes mostly exist in complex systems, and the interference from other components
hinder the detection performance of SERS. Therefore, the sample pretreatment or separation
process was necessary in tandem with SERS [34,35].

3. TLC

TLC is an effective separation technology and has shown excellent performance in
isolating analytes from mixture samples. The mixture sample was firstly spotted onto the
TLC plate, then the TLC plate was placed in a chromatographic chamber with a suitable
mobile phase. Next, the analytes migrated with the development of the mobile phase.
After that, the TLC plate was illuminated under the UV light or sprayed with a color
reagent. Different components undergo adsorption–desorption equilibrium during the
development process. The adsorption capacity of the mixture is proportional to the polarity.
The components with strong adsorption move slowly with the developing agent, while
the components with weak adsorption move faster. The position of the analytes on the
TLC plate is represented by the ratio shift value (Rf), and the components in the mixture
are separated due to their different inherent polarities [36]. TLC has the advantages of low
cost, fast separation speed, simple process, and low requirements for sample pretreatment
in detection.

The stationary phase of the TLC plate is a key factor in the separation process. In
the conventional TLC process, the silica gel, alumina, diatomaceous earth, and cellulose
were used as the stationary phase. The mobile phase is divided into single- and multi-
solvent according to the target mixture. Ewa Bębenek et al. studied the lipophilicity
parameters of birch resin and betulin ester derivatives on silica TLC plates [37], and the
mobile phase comprised the mixture of acetone and tris buffer. High-performance thin-
layer chromatography (HPTLC) was proposed to improve the separation efficiency, in
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which the particles with small diameter and narrow size distribution were used as the
stationary phase. The smaller size of particles in the stationary phase could provide a
high theoretical plate height (H) and, hence, higher separation efficiency. HPTLC has
been widely used in quantitative analysis in various fields. Oellig et.al. first separated
ricinoleic acid from rye by using HPTLC on a silica-gel plate [38], in which the mixture
solution of cyclohexane/diisopropyl ether/formic acid (86:14:1) was chosen as the mobile
phase. After separation, the ricinoleic acid spot on the HPTLC plate was visualized by
UV light (254 nm) irradiation, the limit of detection could achieve 0.1 ppm. In order to
obtain the quantitative and qualitative information in a more reliable and sensitive way, the
analytical instrument was tandem with TLC, such as the TLC-Fourier transform–infrared
microscopy [39], TLC-mass spectroscopy [40–42] and TLC-Raman spectroscopy [43].

4. TLC-SERS

SERS spectroscopy is a facile and powerful analytical method, which could provide the
inherent molecular information of analytes. The combination of chromatography and SERS
has presented obvious advantages in separating and identifying analytes from mixture
samples [44–47]. The simple, instant, and cost-effective merits of TLC-SERS make it widely
applicable in analytical and organic chemistry [48]. Zhang et al. used a simple TLC-SERS
analysis technique to effectively in situ monitor the chemical reaction process as shown in
Figure 1 [49]. Since the pioneering research of TLC-SERS was developed by Zeiss and his
coworkers [50], this technology has been successfully applied for separating and detecting
analytes in complex samples. The interference from the molecules of the mobile phase
is negligible in TLC-SERS. First, the mobile phase used in TLC is commonly an organic
solvent, and after separation, the TLC plate is dried in air or heat conditions; thus, the
molecules of the mobile phase are evaporated as their volatile property [51,52]. Second,
the control experiment is usually developed in the TLC-SERS method, and no SERS signal
of molecules of the mobile phase is measured from the TLC plate [53,54]. Following the
understanding of the SERS and TLC, we will discuss the application of TLC-SERS in
real cases, which include the detection of environmental pollutants [55], pesticides, food
additives [12], food spoilage, biological sample [56], and chemical substances. Thereby, we
hope TLC-SERS could be effectively applied to detect analytes from practical samples.
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4.1. Environmental Pollutants

The environment is one of the most important issues for human beings. With the
development of industry and economy, environmental pollution has occurred and presents
a serious trend. There are several kinds of pollutants commonly presented in the environ-
ment such as organic pollutants, heavy metal pollutants, inorganic pollutants, biological,
and radioactive pollutants. Inorganic, radioactive, and biological pollutants have rela-
tive single sources and are easily identified. Organic pollutants have strong toxicity and
difficult degradation features. With a wide range of characteristics, once the pollutants
are enriched for a long time, this will seriously threaten the ecological environment and
human health. Therefore, it is urgent to develop analytical technologies that can detect
organic pollutants in a simple and rapid way. There are several methods commonly used
for detecting organic pollutants including gas chromatography [57], FTIR spectroscopy [58],
and electrochemical analysis [59]. These methods are reliable but the complicated sample
pretreatment hinders the wide application. Li et al. proposed TLC-SERS technology for
on-site detection of benzene pollutants in water as shown in Figure 2 [14], in which the
aggregating agent, concentration of Ag colloids, integration time, and laser power were
optimized. The qualitative and quantitative detection of p-toluidine, p-nitroaniline, and
m-phenylenediamine from mixture samples was achieved, and the detection accuracy was
comparable with the GC-MS method. No sample pretreatment was needed before the
TLC-SERS method, and the detection process took a short time. Thereby, errors caused by
transportation and storage were reduced. It provides a fast and convenient way for on-site
monitoring of environmental pollutants. Takei’s group prepared a TLC plate with a built-in
SERS layer [11], in which the Au layer (40 nm) was firstly deposited onto the surface of
the quasi-monodisperse silica nanoparticles by vacuum evaporation. The mixture of 1,2-
bis(4-pyridyl)ethylene (BPE), crystal violet (CV), and rhodamine 6G (R6G) was successfully
separated and detected. The built-in SERS layer TLC is different with normal TLC-SERS
whereby plasmonic colloids are added after separation of the sample. Incidentally, having a
built-in enhanced substrate significantly facilitates detection and provides better uniformity
of SERS signals. This method provides a fast and convenient route for on-site monitoring
of environmental pollutants. Zhang et. al. demonstrated an advanced strategy to pre-
pare the TLC plate with metal-organic frameworks (MOFs), and the gold nanoparticles
were composed in the MOF layer to form an eTLC-SERS device [60], which was used
for detecting R6G with outstanding sensitivity. Compared with the normal TLC-SERS
method, the eTLC-SERS device showed several merits. First, it eliminates interference
from the additional nanoparticles and has a simpler process. Second, the eTLC platform
could provide sensitive instant SERS sensing with excellent uniformity. The eTLC-SERS
method based on the MOF layer can shorten analytical time and be used in a wider range
of applications.

The TLC-SERS technology has been continuously improved in the detection of environ-
mental pollutants, from the optimization of experimental conditions to new materials used
to fabricate the TLC plate. Guaranteeing the feasibility of TLC-SERS for detecting more
types of pollutants in the environment is one direction of this technology. Moreover, the
miniaturization and simplification of the instrument would also be beneficial in detecting
pollutants in the environment by TLC-SERS.
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4.2. Illegal Additives

Recently, food safety issues have created considerable concerns as foodborne diseases
are highly related with the morbidity in the world. Nearly one third of people in industrial-
ized countries suffer from foodborne illness every year. Food additives were commonly
used in the modern food industry as they could provide brilliant color, rich flavor, or long
shelf life. Meanwhile, chemicals are illegally added in food stuffs for imparting special
standards or effect, which brings serious problems to food safety. Thus, instant, accurate,
and simple methods for detecting food additives is of high significance to ensure food
safety. Many technologies have been used to detect illegal additives in food; most of them
involve the application of chromatography coupled with different detectors [61–63]. TLC-
SERS technology has been widely applied for separating and detecting harmful ingredients
in food.

Botanical dietary supplements (BDS) have shown positive effects on chronic or system-
atic diseases from long-term ingesting. Lu’s group applied the TLC-SERS method for rapid
on-site detecting adulteration of antidiabetes drugs in botanical dietary supplements [12],
in which the accuracy was determined by liquid chromatography–triple quadrupole mass
spectrometry. As adding ephedrine analogues into BDS, which brought difficulty in detect-
ing adulteration of BDS. Lv et al. applied the TLC-SERS method for detecting ephedrine
and its analogues in BDS [64], in which the characteristic peaks of additives were firstly
measured. The supervised PLS-DA method was used to clarify the differences of the four
ephedrine analogues. The detection method was effective for detection of BDS adulterated
with ephedrine analogues, and the novel TLC-SERS mode could ensure the quality of
BDS in a simple and instant way. The enhanced substrate used in most TLC-SERS was
hydrophilic, which hinders the sensitive detection of hydrophobic analytes as their incom-
patibility with water. Zhu et al. synthesized a universal silver colloid, which is applicable
for both hydrophilic and hydrophobic analyte sensing by TLC-SERS [65]. After optimizing
the preparation conditions of the silver colloid, they successfully detected hydrophilic and
hydrophobic adulterants in real BDS samples by TLC-SERS.

The performance of TLC-SERS is highly related with the chromatographic materials of
the TLC plate. Currently, most TLC-SERS were based on a silica gel or cellulose TLC plate.
Several strategies were proposed for fabricating the TLC plate with a novel stationary phase.
Gao et al. [66] developed molecularly imprinted polymer TLC-SERS (MIPs-TLC-SERS)
to detect Sudan red in pepper powder, and the limit of detection reached 1 ppm. The
pretreatment of the pepper sample was nearly eliminated and the separation process was
extremely instant due to the “lock and key” principle between MIPs and Sudan I. Kong et al.
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have fabricated a diatomite TLC plate; the periodic pores on diatomite have photonic crystal
features that could bring additional SERS enhancement [67]. The TLC-SERS method based
on the diatomite plate successfully separates and detects Sudan I from real chili product as
shown in Figure 3. Zhao and coworkers used the silver nanorod arrays as the stationary
phase for constructing the ultra-thin-layer chromatography-SERS (UTLC-SERS) method,
in which the nanorod arrays were prepared by oblique angle deposition (OAD) [68,69].
The novel plate was used for the detection of PAHs from cooking oil by TLC-SERS, the
ultra-thin-layer stationary of silver nanorod arrays provided uniform SERS signals and
with little amounts of sample consuming. The TLC-SERS method can also be applied
for detecting poppy peels in hot pot condiments, melamine from milk, and hydrophilic
vitamins from food [45,70–72]. The TLC-SERS method is preferable for on-site detection of
additives in food to enhance food safety.
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4.3. Pesticide Residues

In modern agriculture, pesticides play an important role as the chemical control
method, but their residues on the surfaces of vegetables and fruits are difficult to be avoided
totally. TLC-SERS has been applied for detecting pesticide residues in food samples. Our
group used TLC-SERS for separating and detecting carbendazim in orange juice and kale, in
which the diatomite chip exhibited excellent separation and detection performance [73]. The
detection could be finished in 5 min, and the pyrimethanil, pymetrozine, and carbendazim
could be detected simultaneously by the TLC-SERS method as shown in Figure 4. TLC-
SERS was also used to separate and detect organophosphate pesticides from tea leaves [74].
In that research, the different TLC plate, Au/Ag colloid, and concentration of enhanced
substrate were investigated; five different organophosphorus pesticides were identified
with a limit of detection down to 0.1 ppm. The enhanced substrate is a critical issue that
is associated with the performance of TLC-SERS. Metallic colloids are commonly used
as enhanced substrates in TLC-SERS, and that enhancement effect usually varied from
one substrate to another, and from one spot to another of the same TLC plate. Kang and
coworkers fabricated dendritic-like gold nanomaterials and wrapped them with carbon
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fiber [54]; this novel substrate could provide a huge number of hotspots for SERS as
the dendritic-like nanostructure. That material was successfully used as an enhanced
substrate in TLC-SERS for detecting acetamiprid pesticides in cabbage. The needle tip of
the SERS substrate was inserted into the stationary phase of the TLC plate to collect the
molecule information of analytes. Recently, the TLC-SERS method with high sensitivity
was achieved by using a state translation process of metallic colloid from wet state to dry
state, namely thin-layer chromatography-dynamic metastable state nanoparticle-enhanced
Raman spectroscopy (TLC-MSNERS) [75]. The metallic nanoparticles tended to move
closer to produce hot spots during the solvent volatilization process. Additionally, it is a
challenge to seize the state of metallic colloid before the solvent is completely dry to collect
the best SERS signal. Du’s group prepared Ag nanoparticles by using amphiphilic polymer
polyurethane as the stabilizing agent, in which the polyurethane could form micelle to
adsorb metallic nanoparticles and analytes. The polymer-Ag nanocomposite was used as
an enhanced substrate in the TLC-MSNERS method to successfully separate and detect
the mixture pesticides of triazophos, phosmet, and thiabendazole from fruit [76]. The
time-dependent SERS signal showed that the polymer could significantly improve the
stability of metallic colloid during their volatilization process.
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4.4. Toxic Ingredients

Corrosion and deterioration problems commonly exist in food stuff because the im-
proper storage of food leads to infection with bacteria. In seafood, the bacteria could
convert histidine into histamine, which is associated with pathological processes, such as
acute allergies and the inflammation of the immune system. Our group applied TLC-SERS
for separating and identifying histamine from real spoiled tuna [53]; the diatomite photonic
crystal was used to construct the TLC plate. The spoiled tuna sample was directly applied
on the diatomite TLC plate without pretreatment; the separation process was within 3 min.
After separation, the molecule information of histamine was measured by SERS, and the
concentration of histamine in the decomposed tuna was almost at 150 ppm. Histamine
has a low Raman cross-section and colorless features, which hinder the sensitive detection
by normal TLC-SERS. Derivatized TLC-SERS methods were developed, in which the fluo-
rescamine was employed for derivatizing histamine [77,78]. As shown in Figure 5, after
derivatization, the new compound presented a fluorescence feature and intense Raman
signal, and the limit of detection of histamine from mixture sample by TLC-SERS could
achieve 9 ppb. Another challenge in the TLC-SERS method for food spoilage detection is
in the nonlinear relationship between the SERS signal and the concentration of analytes,
which brings difficulty in quantitative detection. The machine learning analysis based
on support vector regression and principal component analysis was introduced in TLC-
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SERS; the quantitative model achieved excellent predictive performance for monitoring
the spoiled process of the tuna sample in 48 h [79]. This study indicates that the TLC-SERS
combined with machine-learning analysis is a simple, reliable, and accurate method for
on-site detection and quantification of toxic components in food.
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Improper storage of nuts or soybeans can produce aflatoxins (AFs), which bring
irreversible damage to the human body. Qu et al. established a portable, fast, and simple
method for on-site detecting of AFs in peanuts by TLC-SERS [52], in which the concentrated
gold colloid was used as the SERS substrate. This method showed high selectivity and
sensitivity for identifying four kinds of AFs in complex samples from moldy peanuts. The
result proves that TLC-SERS could be effectively applied for distinguishing four AFs, which
shows good prospects for on-site qualitative monitoring toxic materials in food. The citrus
flavonoids, benzidine, and 4-aminobiphenyl were also successfully detected from food
stuff by TLC-SERS.

4.5. Biological Molecules

TLC-SERS has been used to detect biological molecules. Apomorphine is a type of
short-acting dopamine agonist for treating Parkinson disease. The instant detection of
apomorphine plays an important role in human health. Lucotti et al. developed a method
for detecting apomorphine in blood plasma by TLC-SERS. The detection process could be
finished in a few minutes, in which the information of drugs was observed from the SERS
spectra after TLC separation. Furthermore, they proved the interaction between the analyte
and metallic SERS substrate by density functional theory calculation [80].

Kong et. al. have fabricated plasmonic nanoparticles-decorated diatomite biosilica
for separating and detecting analytes in blood plasma [48]. That device demonstrated
significant potential in biomedical diagnosis; the phenethylamine and miR21cDNA were
separated and identified in human plasma. The experimental results showed high sensitiv-
ity, which is more than 10 times compared to the commercial silica-gel TLC plate. In order
to further improve the sensitivity in TLC-SERS, a microfluidic diatomite analytical device
(µDADs) was developed [81]. The µDADs device was prepared by spin-coating and tape-
stripping the diatomite channel with width and height at 400 and 30 µm, respectively. The
µDADs device showed high confinement of the analyte due to the ultra-small dimension of
the diatomite channels, which demonstrated high sensitivity for sensing cocaine (10 ppb)
in human plasma. Sivashanmugan et al. applied TLC-SERS for monitoring cannabis-based
drug abuse; a trace number of cannabis biomarkers was successfully detected in biofluids,
and the multivariate statistical method of PCA was used to quantitatively evaluate the
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concentration of tetrahydrocannabinol and its metabolites [82]. Such a portable sensing
platform can play a pivotal role in future forensic and biological applications. TLC-SERS
has been used for detecting nicotine metabolites and paracetamol in urine samples [83,84].
The simple and instant features of TLC-SERS enable the potential application in bioanalysis.

4.6. Chemical Substances

TLC has advance features such as simple operation and instant process, which plays
an important role in differentiating chemicals and monitoring synthetic organic reactions.
The limited specificity and low sensitivity hinder the application of TLC in identifying
chemicals. SERS could provide specific information of target molecules with high sensitivity.
Ian White’s group has performed advance work on TLC-SERS based on plasmonic paper
substrates [85–87], in which the plasmonic Ag NPs were firstly deposited onto the surface
of the filter paper by inkjet printing. The plasmonic paper substrates provide a high SERS
enhancement effect as the dense Ag NPs. In addition, the inherent porous structure of
cellulose fiber in the paper provides unique capabilities, which function as the TLC plate.
The paper-based TLC-SERS methods have successfully separated and detected different
pigments from mixture. Van Duyne’s group has applied TLC-SERS for detecting artist
dyestuffs [88]. The low sensitivity of TLC was overcome by combing it with SERS, and the
colorants such as alizarin, purpurin, carminic acid, lac dye, crocin, and Cape jasmine were
successfully distinguished. Zhang et al. applied TLC-SERS for continuous and automatic
on-site monitoring the chemical reaction processes [49]. After separated by TLC, the Raman
signals provide all the information of the different components. The Raman mapping
could cover a large area on the TLC plate, and the byproducts were identified by SERS
spectra. This facile TLC-SERS method can be exploited in monitoring the progresses of
organic reactions. The separation efficiency is a key factor in TLC-SERS for identifying
chemicals. The normal silica-gel TLC plate is hard to separate chemicals with similar
structure or polarity. Several types of materials such as silver/polymer nanocomposite,
plasmonic diatomite, monolithic silica gel, silicon nanowires array, and silver nanorod array
were used to fabricate the TLC plates, which could significantly improve the separation
capability and signal uniformity of TLC-SERS [13,89–92]. These TLC plates were used
for distinguishing polycyclic aromatic hydrocarbons, diterpenoic acids, malachite green
isothiocyanate, 4-aminothiophenol, and dyes by TLC-SERS.

5. Conclusions and Future Perspectives

As a facile analytical method, TLC-SERS is simply combined separation technology
(TLC) and Raman spectroscopy (SERS). There has been considerable work on applying
the TLC-SERS method for either multiplex analyte detection or identifying harmful in-
gredients from food and environments. The TLC-SERS method is instant, simple, and
cost-effective for on-site detecting of analytes in complex systems. Nevertheless, opportuni-
ties and challenges remain in TLC-SERS, for example, to improve the separation efficiency,
detection sensitivity and reproducibility in application. Researchers should fabricate high-
performance TLC plates, optimize SERS substrates, and precisely control the distribution
of enhanced substrates on the TLC plate.

Most research works have attempted to show proof-of concept about the TLC-SERS
method as a facile analytical method. Despite possible impediments such as sensitivity,
reproducibility, and separation efficiency issues, TLC-SERS has the potential to promote
the field of analytical science. It also has some valuable research directions. In the future,
research about TLC-SERS should also focus on moving the application from lab to on-site.
Therefore, first, the portable Raman spectrometer is a future direction that would be benefi-
cial for on-site sensing by TLC-SERS. Second, the engineering plasmonic-based stationary
phase in the TLC plate construction could improve the detection sensitivity and repro-
ducibility. Third, the separation efficiency could be improved by using porous materials or
polymers. For example, the smaller size of particles in the stationary phase could provide a
lower theoretical plate height and provide higher separation efficiency. Additionally, by
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taking advantage of the chemometric analysis or machine learning, more accurate and
quantitative information could be obtained from the signal. All in all, we believe that this
review may help many researchers’ work on analytical chemistry, environment protection,
food safety, and biomedicine.
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