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Abstract: The use of a large amount of toxic synthetic materials leads to an increase in the pollution
of environmental objects. Phthalates are compounds structurally related to esters of phthalic acid that
are widely used in the manufacturing of synthetic packaging materials as plasticizers. Their danger
is conditioned by leaching into the environment and penetrating into living organisms with negative
consequences and effects on various organs and tissues. This work presents the first development of
lateral flow immunoassay to detect dibutyl phthalate, one of the most common representatives of
the phthalates group. To form a test zone, a hapten–protein conjugate was synthesized, and gold
nanoparticles conjugated with antibodies to dibutyl phthalate were used as a detecting conjugate.
The work includes the preparation of immunoreagents, selectivity investigation, and the study of the
characteristics of the medium providing a reliable optical signal. Under the selected conditions for the
analysis, the detection limit was 33.4 ng/mL, and the working range of the determined concentrations
was from 42.4 to 1500 ng/mL. Time of the assay—15 min. The developed technique was successfully
applied to detect dibutyl phthalate in natural waters with recovery rates from 75 to 115%.

Keywords: phthalates; dibutyl phthalate; environment; contaminant; lateral flow immunoassay;
natural water; spring water

1. Introduction

Disubstituted phthalates (phthalic acid esters) are widely used as plasticizers in con-
sumer products–food packaging, bottles for drinking water, containers for storing food
products, and raw materials for their manufacturing. A feature of their inclusion to end
products is the absence of covalent chemical bonds; therefore phthalates can migrate into
the environment–water and food from packages of non-decomposable waste [1]. The
biodegradation of disubstituted phthalates leads to the formation of the more toxic effects
of phthalates [2–4]. Esters of phthalic acid demonstrate embryotoxic action, damaging
effects on DNA, toxic effects on nervous and immune systems, and other negative health
effects [5,6]. Their destructive influence on the reproductive system is associated with the
chemical similarity with estrogens that causes binding with their receptors [7–9], as well
as with other pathological pathways, including apoptosis [10]. According to the USEPA,
priority phthalates for monitoring are dimethyl phthalate (DMP), diethyl phthalate (DEP),
di-n-butyl phthalate (DBP), di-n-octyl phthalate (DnOP), butyl benzyl phthalate (BBP), and
di-ethyl-hexyl phthalate (DEHP) [11].

Dibutyl phthalate and other phthalates are released from microplastics, which are
recognized as significant environmental pollutants along with chemical wastes [12]. An
important feature is the more intense release of DBP in the combined presence of salts
and fulvic acids–natural components of soil [12]. In addition to these factors, Ye et al. [13]
showed that light emission, the small particle size of the plastic, and elevated temperature
are also factors contributing to the release of DBP from plastic. With the growth in the
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manufacturing and the use of plastic products, the need to control DBP content in water
and food is increasing.

The values of the reference dose (RfD) for DBP in rats are 0.1 mg/kg-day (no side
effects), 125 mg/kg-day (observed side effects), and 600 mg/kg-day (mortality) [7]. The
officially controlled maximum allowable concentrations for DBP in drinking water vary
by country and range from 0.2 mg/L [14] to 0.45 mg/L [15,16]. The main sources of DBP
entry into the body are drinks, grains, and cereal products [17]. At the same time, some
products accumulate phthalates from the package, while others accumulate freely circulat-
ing phthalates from the environment. Song et al. [18] showed that DBP is the dominant
pollutant of natural river waters among all used phthalate esters, and its concentrations
exceed the permissible levels of phthalates in water.

Among the methods used for detecting DBP and other phthalic acid esters, instrumen-
tal methods such as gas and liquid chromatography dominate [19–21]. These methods have
undeniable advantages in terms of sensitivity, selectivity, and reproducibility, but require
long sample preparation, as well as a trained specialist to work with the special expensive
equipment. However, routine monitoring of pollution requires rapid and efficient analytical
methods with sufficient sensitivity and reliability. Most often, immunoassay methods are
proposed for this purpose, as they are widely used in clinical practice and environmental
monitoring [22]. The advantages of immunochemical analytical techniques are specificity,
accuracy, the ability to analyze multiple samples simultaneously, and the possibility of their
implementation in most laboratories. Such immunochemical techniques as enzyme im-
munoassay [23,24], immunofluorescence [25], polarization fluorescent immunoassay [26],
and electrochemical immunoassay [27] have been developed and applied to detect dibutyl
phthalate in natural waters (rivers), tap water, drinking water, and leachate from plastic
bottles in drinking water [28,29].

Due to the absence of lateral flow immunoassays for phthalates in earlier develop-
ments, the aim of this work was to develop and characterize this simple and rapid analytical
technique. Widely presented dibutyl phthalate was the target analyte. The study integrated
the estimation of factors influencing the parameters of the lateral flow assay and finding
solutions to ensure sensitive and reproducible measurements. To carry out this work,
the necessary reagents have been synthesized, and factors affecting the interaction in the
immunochromatographic system were studied.

2. Materials and Methods
2.1. Materials and Components

Di-n-butyl phthalate (DBP), monobutyl phthalate (MBP), diethyl phthalate (DEP),
mono- n-octyl phthalate (MnOP), mono-2-octyl phthalate (M2OP), di- n-octyl phthalate
(DnOP), mono benzyl phthalate (MBzP), mono cyclohexyl phthalate (McHP), mono methyl
phthalate (MMP), Dimethyl phthalate (DMP), Butyl benzyl phthalate (BBzP), diheptyl
phthalate (DHP), monobutyl phthalate (MBP), diethylhexyl phthalate (DEHP), diphenyl
phthalate (DPhP), were from Sigma-Aldrich (St. Louis, MO, USA). 4-amino-DBP was
synthesized and provided by Prof. Suqing Zhao (Guangdong University of Technology,
Guangzhou, China) in lyophilized form. Sodium tetraborate was from Sigma-Aldrich (St.
Louis, MO, USA).

Monoclonal antibody to DBP was from Fapon (Songshan Lake, Dongguan, China)
and had a concentration of 2.4 mg/mL (in 0.1 M PBS, pH 7.2–7.4). Goat anti-mouse IgG
polyclonal antibodies were from IMTEK (1 mg/mL in 0.05 M PBS, pH 7.4, Moscow, Russia).
Albumin from bovine serum was from Sigma-Aldrich (St. Louis, MO, USA). Gold (III)
chloride and sodium citrate were from Fluka (St. Louis, MO, USA). Dimethylformamide,
sodium citrate, potassium carbonate, sodium borate, boric acid, Tris, and Tween-20 were
from Sigma-Aldrich (St. Louis, MO, USA). Potassium dihydrogen phosphate, sodium
chloride, potassium carbonate, potassium hydroxide, and hydrochloric acid were from
Chimmed (Moscow, Russia). All salts, powders, and liquids in their pure form were of
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analytical grade. The preparation of solutions was carried out in accordance with the rules
of work in an analytical laboratory.

Milli-Q water with a resistance of no more than 18.6 MΩ·cm at 25 ◦C was obtained
with the use of the Simplicity Water Purification System (Millipore, Bedford, MA, USA).
Both water and water solutions were filtered by 0.22 µm filters. Nitrocellulose membranes
(CNPC type) for lateral flow assays were from Advanced Microdevices (MDI, Ambala
Cantt, India) and from Millipore (Millipore 180 type, Bedford, MA, USA). Absorption pad
CFSP223000 and macroporous CFCP203000 glass-fiber membrane were also from Millipore
(Bedford, MA, USA).

2.2. Methods
2.2.1. Synthesis of Hapten-Protein Conjugates

The procedure was based on the azo coupling reaction, when the primary amino
group of the hapten reacted with the carboxyl group of the protein as a carrier [30]. For this
purpose, 12.5 µL of 31% hydrochloric acid, 375 µL of H2O, and 15 µL of Tween-20 were
added at 0 ◦C to 5.8 mg of amino-dibutyl phthalate in 25 µL dimethylsulfoxide (DMSO),
with the followed addition of 500 µL of water containing 1.375 mg of NaNO2.

Next, 10 mg of soybean trypsin inhibitor (STI, carrier protein) was dissolved in 5 mL
0.1 M Na-borate buffer, pH 8.3, and added to the mixture. The color of the reaction mixture
changed to terracotta. Then, after incubation for 2 h at room temperature, dialysis was
performed against 10 mM phosphate buffer, pH 7.4. The concentration of preparation was
calculated from the carrier protein, based on the data of the material balance. The resulting
conjugate STI-DBP was aliquoted into small volumes of 10–40 µL and stored at −20 ◦C
until use. In this way, each aliquot was defrosted once before use. The molar ratio STI: DBP
under the synthesis was 1:40.

2.2.2. Synthesis of Gold Nanoparticles and Their Conjugation with Antibody

Gold nanoparticles (GNPs) were synthesized via protocol from [31]. First, 200 µL of
5% HAuCl4 and 93 mL of Milli-Q water were mixed in the glass vessel and maintained at
boiling point. Then, 6 mL of 1% sodium citrate solution in water was added to the solution,
and the boiling was continued for the next 5 min. After this, 200 µL of 5% HAuCl4 was
dropped and kept boiling for 15 min. The freshly synthesized nanoparticles were cooled in
the same vessel and used for the conjugation with the antibody. Excess of nanoparticles
was stored at 4–6 ◦C.

Mouse IgG antibody against DBP (mAb) was dialyzed against 10 mM Tris-HCl buffer
(pH 8.6). Then, freshly prepared GNPs were pre-adjusted to a pH of 8.6 by 0.2 M K2CO3.
To prepare the conjugate, 2 mL of GNPs were dropped into the glass vessel containing
300 µL of diluted mAb with followed stirring (at Shaker IntelliMixer (ELMI, Riga, Latvia))
for incubation within 45 min at room temperature. Then, 30 µL of 10% solution of BSA in
Milli-Q water was added to the mixture, and additional incubation followed under stirring
for 15 min at room temperature and 8 h overnight at +4 ◦C. The obtained conjugate was
separated from the unbound antibody and excess amount of BSA by centrifugation at
13,000 g at +4 ◦C for 15 min with decanting of the supernatant. Then, 200 µL of 10 mM
Tris-HCl buffer with 2 µL of 10% BSA water solution was added. An optical density of
the obtained conjugate was established using a Shimadzu UV-2450 spectrophotometer
(Shimadzu, Japan).

2.2.3. Characterization of the Obtained Conjugates

UV-Vis Spectroscopy
Absorption spectra of gold nanoparticles-antibody conjugate, as well as hapten–

protein conjugate, were registered by Shimadzu UV-2450 spectrophotometer (Shimadzu,
Japan). The optical density of the synthesized conjugate of gold nanoparticles at 527 nm
(OD527 nm) with the antibody was 11.9.

Fourier transform infrared (FTIR)



Biosensors 2022, 12, 1002 4 of 16

The STI-DBP conjugate was lyophilized using a freeze dryer (ALPHA 1–2 LDplus,
Martin Christ GmbH, Germany) and stored at 4 ◦C. The characteristic bands in the spectrum
of STI-DBP were measured using Fourier-transform infrared spectroscopy (FT-IR) in the
4000–400 cm–1 frequency range was conducted using FT/IR-6700 FT-IR Spectrometer
(JASCO Corporation, Japan).

Transmission Electron Microscopy (TEM)
First, 7 uL of native GNPs or the mAb−GNPs conjugate diluted to OD = 1.0 was

dropped onto the surface of 300-mesh grids (Pelco International, Redding, CA, USA) with
preliminarily formed polyform films. JEM CX-100 electron microscope (JEOL, Tokyo, Japan)
was used to obtain images of the nanoparticles, CanoScan 9000F Mark 2 (Canon, Tokyo,
Japan)–for scanning microphotographs at 1200 dpi resolution, and Image Tool software
(San Antonio, TX, USA)–for data handling.

2.2.4. Characterization of Antibody by ELISA Technique

ELISA was conducted using 96-well transparent polystyrene microplates (Costar
9018, Corning Costar, NY, USA). For this purpose, 100 µL of STI−DBP solution with a
concentration 2 µg/mL in 50 mM phosphate buffer saline, pH 7.4, were dropped into
wells of microplate and incubated at +4 ◦C overnight. Then, the microplate was washed
three times with 50 mM phosphate buffer, pH 7.4, with 0.05% Tween-20 (PBST). A series
of antibody dilutions were added to interact with adsorbed STI−DBP conjugate and
incubated for 1 h at +37 ◦C. Then, after the washing step, anti-species antibody (goat
anti-mouse IgG) conjugated with horseradish peroxidase (anti-species conjugate, Jackson,
USA, working dilution 1:3000) was added and incubated for 1 h at +37 ◦C. Next, 100 µL
of the substrate solution (commercial TMB + H2O2 solution, Immunotech, Russia) was
added, and after 15 min reaction was stopped by the addition of 50 µL 0.1 M H2SO4. The
optical density was measured at 450 nm and plotted using Origin 9.0 software (OriginLab
Corporation, MA, USA). The curve was obtained by plotting the relationship between
antibody concentration and the optical density at 450 nm. The concentration of antibody
corresponding to OD450 = 1.0 was chosen for competitive ELISA.

For the competitive assay and the study of selectivity, the same initial stages were
provided. After the incubation of STI−DBP and the washing step, different concentrations
of DBP or other structure analogues were added in the volume of 50 µL to the wells. After
that, 50 µL of antibody solution in PBST was added, and this mixture was incubated for
1 h at +37 ◦C. Further stages were carried out as described above, namely adding the
anti-species conjugate, developing the resulting complexes with a substrate solution, and
measuring the optical density. The curve was obtained by plotting the relationship between
the optical density at 450 nm and DBP concentration. The dependences of OD450 from the
antigen concentration were approximated by a four-parametric sigmoidal equation.

Cross-reactivity values were calculated according to the following equation:

CR(%) = IC50(DBP)/IC50(analogue) × 100%

2.2.5. Composition of Lateral Flow Tests

Assembling of Lateral Flow Tests
The lateral flow strip was prepared using a working membrane, absorbent membrane

(AP 110), and membrane for sample adsorption. STI−DBP and goat-anti-mouse antibodies
were immobilized on the working membrane to form the test line and the control line,
respectively (Scheme 1). The loading regime used in this work was 0.1 µL per 1 mm.
The reagents were dispensed with the use of Isoflow dispenser (Imagene Technology,
Inc., Hanover, NH, USA). Then, the multimembrane composite was assembled, dried
at 37 ◦C for 2 h and overnight at 21 ± 1◦C, and cut onto the test strips with a width of
3.5 mm with the use of a guillotine cutter (IndexCutter, Port Washington, NY, USA). In the
laboratory room used for the manufacturing of test strips, a constant humidity of 27 ± 2%
was supported. All dimensional characteristics of the test strip are shown in Scheme 1.
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distances: a—60 mm (total length), b—21 mm (sample pad), c—2 mm (overlap), d—12 mm (distance
from the beginning of working membrane to test line), e—8 mm (distance between test and control
zone), f—16 mm (adsorption pad).

Lateral Flow Assay of DBP
The assay was carried out at room temperature (21 ± 1 ◦C). First, 100 µL of the probe

or 10 mM Tris-HCl buffer solution (pH 8.8) containing 1% Tween-20 with different DBP
concentrations were dropped into the microplate wells. After this, 1.0 µL of the conjugate
of GNPs with antibody was added to the solution for 10 s. Then, the test strip was inserted
vertically by a sample pad for 8 min to provide fluid current over the entire surface of the
working membrane. The depth of immersion of the test strip was 5 mm. After that, the test
strip was removed and placed horizontally to dry for 5 min.

Collection and Processing Data of Lateral Flow Assays
The color intensity in the test zone after the assay was assessed by processing scanned

digital images. The test strips were loaded onto the working surface of the CanoScan 9000F
Mark II (Canon, Japan) scanner, and the images were saved and processed. For this purpose,
TotalLab software (Nonlinear Dynamics, Newcastle upon Tyne, UK) with 1D regimen was
used. When processing the images of the test strips, the image was automatically converted
to grayscale, then the test zones were selected in accordance with their location, and the
intensity of staining was calculated. Calibration curves were obtained by plotting the
relationship between color intensity in the test zone and concentration of DBP in the
solution by using Origin 9.0 software (OriginLab) with the use of the four-parametric
sigmoidal equation.

2.2.6. Collection and Preparation of Water Samples

The probes of spring water were collected (n = 10) from April to July 2022 from points
in Russia where springs have existed for more than 20 years. About 50–100 mL of each
probe was gathered into the glass vial and sent for storage in the laboratory. For the
storage at −20 ◦C, the probes were aliquoted and frozen. In most cases, water was used
without additional pretreatment. If it was needed, spring waters were filtered through a
0.22 µm syringe filter (Millipore, Bedford, MA, USA) to remove insoluble impurities. All
the samples were confirmed by gas chromatography as pure from dibutyl phthalate and
used for further experiments.
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3. Results and Discussion
3.1. Synthesis and Characterization of DBP–Protein Conjugate

To form a test zone of the lateral flow test, the hapten–protein conjugate was obtained
from an amino derivative of DBP and a soybean trypsin inhibitor (STI). As native DBP
does not contain a reactive (carboxyl, hydroxyl, or amino) group, its amino derivative
substituted in position 4 was used for the synthesis. The conjugation was based on an
azo coupling reaction and the use of succinic anhydride [30]. The resulting conjugate was
characterized by FT-IR and UV-vis spectrophotometry.

The FT-IR spectra of the STI−DBP conjugate and the initial STI are shown in Figure 1.
In the vibrational spectra of proteins, the amide group of polypeptides can be distinguished
by the characteristic frequencies in the regions of 1700–1600 cm−1, 1575–1480 cm−1, and
1300–1230 cm−1 [32]. The peak at 1645 cm−1 (Figure 1a) is due to stretching vibrations of
the C=O groups [33]. The band at 1549 cm−1 is denoted to the C–N stretching vibrations,
as well as to the bending of NH in the peak plane [34]. The peak at 1248 cm−1 indicates
bending vibrations of the N–H bond. The similarity of the absorption peaks is shown
in both FT-IR spectra of pure STI (a, black line) and the synthesized STI−DBP (b, red
line). Specifically, the band at 1066 cm−1 refers to the C=O vibrations. It was recorded
both in the spectrum of pure DBP and in the protein molecule (ether bond) with other
abovementioned bands. However, after conjugation, the IR spectra revealed the resulting
peaks at 1725 cm−1 (ester-C=O stretching vibrations) and 996 cm−1 (C–O–C stretching
vibrations) that are obviously characteristics of dibutyl phthalate, which corresponds to the
data on dibutyl phthalate described earlier in the literature [35,36]. The FT-IR spectrum
showed the characteristic absorption frequency at 1725 cm−1, which is associated with the
vibration of the stretching of the carbonyl group of the ester (Figure 1, red line), as well as
the absorption peaks at 2920 and 2867 cm−1 representing the saturated C–H symmetric
and asymmetric stretching vibrations of alkyl groups. The FT-IR spectrum showed the
absorption peaks at 2920 and 2867 cm−1 representing the saturated C–H symmetric and
asymmetric stretching vibrations of alkyl groups of DBP. As a whole, the obtained FT-IR
spectra confirmed that the conjugate STI−DBP was successfully synthesized.
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The UV-vis absorption spectra of STI, DBP, and the synthesized STI−DBP conjugate
are given in Figure 1b. DBP has a strong absorbance peak at 295 nm. The carrier protein
STI has a peak at 280 nm. The conjugate shows a peak at 281 nm, which is characteristic
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of the carrier protein, as well as its own unique absorption in the range of 320–430 nm
corresponding to its yellow coloration.

In addition, storage stability was studied up to 1.5 years after synthesis. Since the
most labile part of the conjugate is the carrier protein, frequent freezing and thawing can
adversely affect its stability [37]. However, when stored in aliquots of up to 50 µL, the
necessity of repeated defrosting–freezing cycles was excluded, and the reached retaining
activity was confirmed by stable values of LOD and working range for ELISA.

The antibodies were characterized by enzyme immunoassay (Figure 2). Since the
oxidized TMB absorbs at 450 nm after adding a stop reagent (1M H2SO4), all measurements
in the ELISA on characterization of the antibodies were carried out with this wavelength.
The antibody concentration required to provide the competitive ELISA was determined in
non-competitive ELISA. By replacing DBP with other phthalates, the selectivity of antibod-
ies was analyzed. As seen from Figure 2a, the concentration of antibodies corresponding to
an optical density of about 1.0 was 16 ng/mL (Figure 2a), and this concentration was chosen
for competitive ELISA. Figure 2b shows the competitive ELISA curve obtained for DBP. The
detection limit was 0.9 ng/mL and the working range was from 2.5 to 83 ng/mL. The anti-
bodies testing showed their suitability for the development of a lateral flow immunoassay
due to the competition at low concentrations of DBP (Figure 2b).
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Figure 2. The ELISA curves representing the dependence of registered signal (optical density at
450 nm) from (a) antibody concentration, (b) DBP concentration (inhibition curve), n = 3.

The specificity of the antibody was assessed by ELISA testing of 15 derivatives of ph-
thalic acid esters whose chemical formulas are presented in Figure 3. The compounds were
chosen to take into account not only the priority of contamination and production volumes
among disubstituted phthalates but also their possible degradation to monoderivatives
(Figure 3). The cross-reactivity of the antibody with other structurally related compounds
was less than 0.1%.

3.2. Synthesis and Characterization of Gold Nanoparticles Conjugated with the
Anti-DBP Antibody

Gold nanoparticles are widely used as markers in immunoassays [38,39]. Usually,
preparations of GNPs with a diameter of about 30–40 nm are considered as preferable
for LFIA [40]. However, the advantages of smaller GNPs for competitive schemes were
sometimes noted–13 nm [41,42], 15 nm [43], and 20 nm [44]. The use of larger GNPs in LFIA
could be associated with unproductive competition, as described in [45]. For our work,
preparations of GNPs with a diameter of about 12 nm were obtained. Characterization
of GNPs and their conjugate with antibodies (mAb−GNPs) was provided separately in
comparison to each other.
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The mAb–GNPs conjugate has been synthesized by physical adsorption. The quantity
of the antibodies used for the conjugation was 14 µg per 1 mL of the GNPs’ sol. This
amount was calculated to reach complete stabilization of the GNPs and exclude less stable
multilayer adsorption. As well as the commonly used 50 mM phosphate buffer, pH 7.4,
with 0.1 M NaCl [46] was found to be unacceptable to exclude aggregation, it was replaced
with 10 mM Tris-HCl, pH 8.8. The used stabilizing agent was BSA, because its effectiveness
has been shown in a number of works [47,48]. In this media, the mAb−GNPs conjugate
was stored for 10 months without changes in the properties of its colloid solution.

According to spectrophotometry, the conjugate had an absorption peak at 527 nm
(Figure 4a), which was close to the peak location for the initial GNPs (525 nm). The optical
density of the prepared conjugate at the peak wavelength was 11.9. Based on the registered
UV-Vis absorption spectrum, the location of their maximums and OD values at these
wavelengths were determined. The given parameters were used to control the stability of
colloidal solutions of mAb−GNP conjugates [49,50].

A histogram of the distribution of the conjugated particles by size was obtained using
TEM data (Figure 4b,c). The average diameter was 11.8 ± 1.3 nm (n = 105, minimum
value–8.76 nm, maximum value–14.86 nm), with a degree of ellipticity of 1.17 ± 0.11. The
absence of aggregates in the preparation and small deviations from the average diameter
indicates the receipt of a high-quality preparation.
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3.3. The LFIA Format

The mAb–GNPs conjugate was incubated with DBP-containing samples for about 10 s
for mixing. Then, the test strips were dipped by the sample pad to absorb the mixture. The
conjugate moved along the membrane with the liquid flow, and in the absence of DBP in the
sample it was bound by free antibody binding sites in the test zone with the formation of a
colored band. As the concentration of DBP in the sample increased, the coloration intensity
decreased and then disappeared. The sample was completely absorbed and passed the
entire distance to the end of the working membrane in less than 8 min, around 2.5 min. We
chose a time of 8 min for sufficient accumulation of the analytical signal.

Similarly to the organic hydrophobic dyes studied in our previous work [46], the
competition was absent when the conjugate was loaded onto the conjugate pad. This effect
probably is caused by the different speeds of analyte and conjugate movement limiting
possibilities of their interaction during the lateral flow. Therefore, the pre-incubated LFIA
format was applied in the work. The obtained test strips were processed as described
in Section 2.2.5 with image conversion to grayscale, but there are other ways to process
data [51,52].

3.4. The Choice of STI−DBP Immobilization Medium

In the primary experiment, the medium for immobilization of the STI−DBP conjugate
was 10 mM PBS, pH 7.4. However, in this case, the binding of the mAb−GNPs conjugate in
the test zone was weak (Figure 5, columns 1 and 2). Similarly, weak binding was observed
after the addition of 0.05% Tween-20 to the PBS (Figure 5, columns 3 and 4); thus, we have
replaced the immobilization medium with Milli-Q. Test strips prepared in this way showed
a much more intense binding (Figure 5, columns 5–7).
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Changing the medium for the interaction of DBP-containing sample and antibody−GNP
conjugate to 10 mM Tris-HCl, pH 8.8, with 1% Tween-20 demonstrated a logical increase in
coloration intensity in the test zone (Table 1). Other media were also tested–10 mM borate
buffer, pH 9.0, and 10 mM carbonate buffer, pH 10.0, with 1% Tween-20 for better conjugate
mobility. The comparison of test zone coloration made it possible to choose the optimal
medium–10 mM borate buffer, pH 9.0, see Table 1, strip 2. A similar coloration of the test
zone was obtained for measurements in natural spring water (Table 1, strip 4). However, if
spring water is diluted with the 10 mM Tris-HCl buffer, pH 8.8, the signal drops (Table 1,
strip 3).

Table 1. The appearance of the test strips obtained as a result of the selection of running buffer.

No. Running Buffer
The Appearance of Test Strips

Control Line Test Line

1 10 mM Tris-HCl (pH 8.8)
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The choice of the working membrane in LFIA depends on the medium viscosity and
the size of the conjugate particles. The CNPC15 membrane is often used for analysis in
various media. Previously, we applied this membrane for LFIA of low molecular weight
analytes–antibiotic chloramphenicol and Sudan I dye [53,54], and heavy metals such as
lead [55]. However, in the case of DBP, a weak coloration was formed during the interaction
in LFIA and the band in the test zone looked pale (Figure 5, columns 1 and 2). A similar
situation was observed when working with two hydrophobic compounds, Sudan I [46]
and aflatoxin B1 [56]. Due to this, we have changed the working membrane to Millipore
180 (capillary flow rate 180 s/4 cm) which allowed working with water samples (Table 1)
unlike the CNPC15 membrane (capillary flow rate is close to 240 s/4 cm).

The choice of membrane for sample absorption also plays an important role. Two
sample pads were tested–glass fiber from Millipore non-treated by detergents and pre-
treated cellulose PTR7 (MDI). As seen from Table 2, the use of a pre-treated membrane
reduces signal intensity in the test zone. Strip 3 showed only 68% coloration intensity in the
test zone as compared with strip 1, and strip 4 showed 47% of the value for strip 2. Therefore,
a glass fiber membrane was chosen for the sample. In each case, the choice depended
on the test zone coloration. The main conditions for choosing the concentrations of the
gold conjugate were the presence of an intense signal (at least 20,000 AU) in the absence of
DBP and its decrease with increasing analyte concentration (effective competition). The
optimization of the analysis conditions is summarized in Table 3.

3.6. Analytical Characteristics in Optimized Conditions

Under optimized conditions (Table 3), a calibration curve has been obtained, shown
in Figure 6. Two detection options are possible–visual (by the disappearance of a band
in the test zone in the presence of DBP) and instrumental, based on registered coloration
intensities. The cut-off level for visual detection was 1500 ng/mL when the band disap-
peared; the negative result is when the intensity of staining was less than 2700 arbitrary
units. This level has been established as a relative cut-off of visual detection when the test
line is not seen by the naked eye. For instrumental registration of the assay results, the
calculated limit of detection (LOD) was 33.4 ng/mL, the limit of quantification (LOQ) was
42.4 ng/mL, and the working range was 42.4—1500 ng/mL with linear approximation in
semi-logarithmic coordinates. The coefficient of variation was less than 12%. The value
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of the coefficient of variation in experiments during the day did not exceed 11.5%, and in
day-to-day experiments it was no more than 12.8%.

Table 2. The appearance of the test strips obtained as a result of the selection of sample pads.

No. Conditions, Sample Pad
The Appearance of Test Strip

Control Line Test Line

1 10 mM borate buffer (pH 9.0),
(OD527 nm mAb−GNPs = 0.06), glass-fiber
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3.7. Analysis of Natural Water Samples

The concentration of dibutyl phthalate as well as other phthalic acid esters in natural
waters varies depending on the geographical location in a different concentration range–
from several ng/mL [57] to several µg/mL [58]. Thus, to determine low concentrations
of DBP in natural water, the use of a calibration curve as well as instrumental processing
of the data is required. In addition, the analysis of samples with relatively low content
of DBP is preferably provided without their dilution to keep the sensitivity and to avoid
false-negative results.
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The test strips prepared by the chosen optimal protocol were applied to detect DBP
in spring water (Figure 7). As mentioned above, the dilution of natural water with buffer
decreases coloration in the test zone (Table 1, strip 3). Therefore, water samples were used
without dilution. Analysis of spring water samples showed good reproducibility and high
recovery of DBP in added-found experiments (Table 4), which demonstrated the absence of
the influence of the matrix.
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Table 4. Determination of DBP in spring water samples by the developed lateral flow assay.

Added DBP
Found DBP/Recoveries

Water 1 Water 2 Water 3

ng/mL ng/mL % ng/mL % ng/mL %

50 43.7 87.4 ± 4.9 43.35 86.7 ± 5.8 39.4 78.5 ± 7.2

100 75.0 75.0 ± 5.9 110.4 110.4 ± 7.4 80.7 80.7 ± 11.2

200 230 115.0 ± 6.5 186.4 93.2 ± 9.4 230 115.0 ± 13.5

Table S1 integrates data about the possibilities and limitations of different immunoas-
say formats that were realized for DBP detection (Supplementary Materials). As can be
seen, instrumental techniques for testing in laboratory conditions dominate among these
developments. Often, they demonstrated low detection limits, but these improvements
accord to the concentrations being much lower than MRLs for phthalates. The main trend
of the last few years has been to replace the traditionally used peroxidase as a label in
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ELISA with new markers [57,59–62]. The proposed LFIA fills an empty niche of simple
on-site tests, meeting practical requirements for sensitivity.

4. Conclusions

A simple and rapid assay of dibutyl phthalate in natural waters has been developed.
Under chosen conditions the developed LFIA technique allowed for the LOD of 33.4 ng/mL.
The factors influencing the coloration intensity of the test zone have been established, and
the conditions for reliable determination of dibutyl phthalate in spring water samples have
been selected. The advantages of the developed test system are rapidity, simplicity, and the
possibility to visually detect the presence and evaluate instrumentally the content of dibutyl
phthalate in natural waters. The effectiveness of the development has been demonstrated
in “added-found” experiments. The obtained results are promising background for dibutyl
phthalate assays in other samples. This development solves specific problems associated
with the demand for monitoring phthalates in water samples. On the other hand, it is
not limited to the target analyte, but considers issues that arise when carefully choosing
the conditions of immunochromatographic analysis. It has been shown that varying the
environment of immobilization and the interaction medium can significantly improve
the characteristics of the system. The article, in our opinion, systematizes approaches to
overcome the “underwater rocks” under the development of immunochromatographic
test-systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12111002/s1, Table S1: Examples of DBP immunoassays in
different samples.
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