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Abstract: Herein, we present an electrocatalyst constructed by zinc oxide hexagonal prisms/phosphorus-
doped carbon nitride wrinkles (ZnO HPs/P-CN) prepared via a facile sonochemical method towards
the detection of nitrofurantoin (NF). The ZnO HPs/P-CN-sensing platform showed amplified re-
sponse and low-peak potential compared with other electrodes. The exceptional electrochemical
performance could be credited to ideal architecture, rapid electron/charge transfer, good conductivity,
and abundant active sites in the ZnO HPs/P-CN composite. Resulting from these merits, the ZnO
HPs/P-CN-modified electrode delivered rapid response (2 s), a low detection limit (2 nM), good
linear range (0.01–111 µM), high sensitivity (4.62 µA µM−1 cm2), better selectivity, decent stability
(±97.6%), and reproducibility towards electrochemical detection of NF. We further demonstrated the
feasibility of the proposed ZnO HPs/P-CN sensor for detecting NF in samples of water and human
urine. All the above features make our proposed ZnO HPs/P-CN sensor a most promising probe for
detecting NF in natural samples.

Keywords: metal oxide; carbonous material; heteroatom; antibiotic medication

1. Introduction

Water is an indispensable and precious reserve for every living entity to sustain life in
this world [1–3]. With human activities and the industrial revolution, water sources have
become contaminated with various types of pollutants, which bring serious harm to human
beings and other organisms throughout the world [3]. The chief water contaminants are
households, organic materials, drug manufacturers, large-scale animal feeding operations,
organic materials, industries, and pharmaceutical residues [4–6]. Notably, the World Health
Organization revealed that nearly 30% of individuals living rurally need hygienic water
sources, and more than 2,000,000 humans die every year from contamination of drink-
able water [7–9]. Among the different pollutants, the most notorious are pharmaceutical
residues, which harm biodiversity. Every day, approximately 35 billion defined daily-dose
pharmaceutical items are devoured around the world [9]. After their use, the improper
disposal of unused, unwanted, and expired pharmaceutical compounds into the biosphere
is the cause of pollution as well as other negative impacts [10,11]. Among the several types
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of pharmaceutical products, antibiotics have gained special attention due to their ability to
develop antimicrobial resistance strains, their extensive usage, low degradation properties,
and even causing death, if serious [12,13].

Antibiotics are medicines broadly used to treat or prevent bacterial infections in mi-
croorganisms as well as growth promoters in animal husbandry and aquaculture, which
have been identified as significant pollutants in water [14,15]. Nitrofurantoin (NF) is one of
the most commonly used nitrofuran antibiotics for the treatment of skin sensitizer, amebi-
cide, fungicide, coccidiosis infections, bladder cancer, anti-inflammatory, and infections
in the urinary tract [16–24]. Over use and the residues of NF produce a series of side ef-
fects such as pulmonary toxicity, neuropathy, flatulence, drowsiness, dizziness, numbness,
hepatotoxicity, and other reactions. Even worse, the metabolic path of nitro-containing
groups (NF) is reduced into the cytotoxic products (reactive oxygen species and NO•
radicals) [25,26]. Hence, NF is often released into the environment foremost as an ecological
system contagion, which can be hazardous even at a low-level amount [21–25]. On behalf
of these reasons, many countries (United States, European Union, Australia, Brazil, China,
Thailand, and the Philippines) have strictly prohibited the usage of NF due to its severe
effects against all living organisms and the ecosystem. Roughly 1% of NF is eliminated as
aminofurantoin in urine from original form [16].

Likewise, from the drug (expired pills) and trade production waste (residues) of NF
that is directly discharged into local groundwaters, rivers, and soils, it may cause severe
well-being effects in both human beings and other living microbes. Therefore, it is essential
to stringently supervise the residual levels of NF in potable water and biological samples.
The conventional methods such as colorimetry, photoluminescence, polarography, flow
injection-spectrophotometry, surface-enhanced Raman spectroscopy, high-performance
liquid chromatography, and flow injection-spectrophotometry were used for detecting
NF [16–18,21–30]. Amongst the mentioned analytical methods, one of the most ideal
platforms for the detection of trace amounts of molecules in food and environmental
samples is the electrochemical sensor, due to their special features including high sensitivity,
low cost, excellent selectivity, and portability [31–34]. However, the traditional electrode
is usually limited by sluggish kinetics with low electrochemical performance and high
overpotentials. Electrochemical sensor performances are dependent on electrocatalysts that
play a vital role to produce amplified peak intensity and low-on-set peak potential.

In this sense, metal oxides (MOs) in the electrochemical sensors’ field have been con-
sidered promising electrocatalysts [35]. Amongst a wealth of MOs, zinc oxide (ZnO) has
gained extensive attention as an electrode material for electrochemical sensors owing to its
conspicuous advantages such as biocompatibility, tunable bandgap, non-toxicity, economic
synthesis, and good catalytic activity [36–39]. Up to now, various types of morphology has
been reported for ZnO such as spheres, pompons, mushrooms, rods, wires, cubes, aggre-
gates, wrinkles, hexagonal prisms, plates, and so on [36,40–43]. In particular, the hexagonal
prism’s structure may be a preferable candidate for electrochemical detection. Substantial
research pursuits were devoted to improving the stability and conductivity, including
ZnO incorporation into desirable conductive materials that could enhance the electrocat-
alytic activity. According to previous knowledge, the two-dimensional graphitic-carbon
nitride (g-CN) with a unique property is regarded as a potential catalyst for electrochemical
sensing [43–45].

Recently, non-metal heteroatom-doped g-CN has ignited tremendous research interests
in electrochemical sensors owing to it modifying the physicochemical properties such
as active sites, electronic conductivity, synergy, more defects, charge transfer mobility,
high stability, its electronic structure, and excellent biocompatibility [46,47]. Phosphorus-
doped g-CN could greatly modulate the physicochemical properties [48–52]. Based on the
above statements, P-CN was chosen to be the supporting material for the electrochemical
sensing. To date, no work was carried out on electrochemical sensing using P-CN-modified
electrodes. Herein, a ZnO HPs/P-CN composite was designed and synthesized via a facile
sonochemical method, and further utilized modified electrode material for NF sensing.
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The fabricated electrode presented excellent electrochemical activity to NF compared with
the other electrodes. Moreover, the proposed electrochemical platform was productively
applied to detect NF in biological and water samples with high accuracy.

2. Experimental Details
2.1. Chemicals and Reagents

Zinc acetate tetrahydrate (Zn(CH3CO2) ≥ 98%), hexamethylenetetramine (HMTA,
(CH2)6N4 ≥ 99%), ammonium fluoride (NH4F ≥ 98%), nitrofurantoin (NF), N, N-dimethylf-
ormamide, and melamine were purchased from Sigma Aldrich and Merck and used without
further purification. All the electrochemical experiments were carried out using 0.05 M
phosphate buffer (PB) as the supporting electrolyte.

2.2. Synthesis of P-CN

The wrinkled P-CN were prepared by thermal polymerization method [53]. Briefly,
a definite quantity of C3H6N6 was dispersed into 50 mL DI water under vigorous stirring.
With vigorous stirring, an appropriate amount of NH4H2PO4 was added to the aforesaid
solution and kept for 1 h to prepare the homogenous mixture. The product was then
collected by centrifugation and dried at 50 ◦C in the oven. Then, the product was transferred
into the muffle furnace under an air atmosphere to heat for about 3 h at 550 ◦C. Finally,
the P-CN was washed by DI water multiple times to get rid of unreacted impurities
and was dried overnight. For comparison, g-CN was prepared without NH4H2PO4 in a
similar process.

2.3. Synthesis of ZnO HPs

The ZnO HPs were prepared using the hydrothermal method [54,55]. In the classic
synthesis, 0.1 M of Zn (CH3CO2)2 was dissolved in 40 mL of DI water and stirred for 15 min.
After that, 3 mmol of HMTA and 6 mmol of NH4F were slowly injected into the above
solution under vigorous stirring and the mixture was stirred for 1 h. Next, the mixture was
placed in a stainless-steel autoclave to carry out the hydrothermal reaction at 180 ◦C for
about 12 h in an air oven. The precipitate was then collected by centrifugation, washed
many times in ethanol and DI water, and dried overnight. Finally, the as-prepared ZnO
HPs were calcined for a period of 3 h at 400 ◦C under air-atmosphere.

2.4. Synthesis of ZnO HPs/P-CN Composite

The ZnO HPs/P-CN composite was synthesized via a facile sonochemical technique
as schematically illustrated in Scheme 1. Briefly, ZnO HPs and P-CN were taken in 1:1 ratio
and ultrasonicated for 3 h, followed by overnight drying at 50 ◦C to form a ZnO/P-CN
composite.
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2.5. Instrumentations and Methods

Phase identification was performed by using X-ray diffraction (XRD) using (XRD,
Rigaku D/maxB, DMX-2200) and the Fourier transform infrared spectra in the range of
500–4000 cm−1 using a PerkinElmer IR spectrometer. The chemical state was examined
via X-ray photoelectron spectroscopy (XPS, Thermo scientific multi-lab 2000, Waltham,
MA, USA). The surface morphology was studied using scanning electron microscopy
(JSM-6510series) and energy dispersive X-Ray (JEOL service advanced technology) spec-
troscopy. The electrochemical properties were explored using electrochemical impedance
spectroscopy (EIS) through Autolab. CHI workstation was functional to carry out the
electrochemical measurements in the three-electrode cell. The glassy carbon electrode
(GCE) (surface area = 0.071 cm2), saturated Ag|AgCl, and Pt wire were active as working,
reference, and counter electrodes, respectively.

2.6. Fabrication of Electrode

The bare GCE was polished with alumina slurries, continued by ultrasonic cleaning
in DI water/ethanol mixture for a few minutes, and later rinsed with ample DI water. To
prepare electrocatalyst ink, 4 mg of ZnO HPs/P-CN composite was dispersed in 1 mL DI
water with the assistance of ultrasonication for about 30 min at room temperature. Then,
5 µL of ZnO HPs/P-CN ink was coated onto a GCE surface, and then dried at a certain
temperature. A similar protocol was followed to fabricate ZnO HPs-, P-CN- and g-CN-
modified GCEs for electrochemical comparison study.

3. Results and Discussion
3.1. Physical Characterization of ZnO HPs/P-CN Composite

The crystallographic structure of the ZnO HPs/P-CN composite was obtained by an
XRD technique (Figure 1A). The XRD patterns demonstrated that all diffraction peaks
of the prepared sample are well-indexed with the standard spectrum diffraction peaks
corresponding to the (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and
(202) planes of ZnO (JCPDS no. 36–1451). The characteristic peaks located at 27.4◦ can be
well-ascribed to the (002) planes of pure g-CN. Likewise, pronounced peaks at 27.4◦ were
observed for P-CN [56]. The evident attenuation of the (002) peak intensity of P-CN reflected
the heteroatom (P) substituted on the tri-s-triazine unit structure of CN nanosheets [53].
Hence, the intensity reduced while P-atoms were incorporated. It was mainly initiated
by reducing the volume of piled carbon nitride interlayers and minor planar size of the
constant tri-s-triazine unit disordered by P atoms [57]. The result obtained diffraction peaks
corresponding to the (002), (100), (002), (101), (102), (110), (103), (200), (112), (201), (004),
and (202) planes of the ZnO HPs/P-CN composite. It confirmed the formation of the ZnO
HPs/P-CN composite.

Figure 1B represents the FTIR spectra, which characterized the functional groups and
surface information of ZnO, g-CN, P-CN, and the ZnO HPs/P-CN composite. The foremost
vibrational frequency (M-O) in ZnO was at 886 cm−1 owing to the Zn–O lattice [58]. P-
CN kept similar vibration modes to g-CN, thus signifying that the P-doped 3D wrinkles
structure array did not terminate the essential chemical structure of g-CN. The characteristic
g-CN heterocycles in P-CN had stretching modes between 900 and 1700 cm−1 [59]. The
peak M-O in the ZnO HPs/P-CN composite at 886 cm−1 was vibrational frequency owing
to the Zn–O lattice and P-CN displayed peaks around between 900 and 1700 cm−1 in the
ZnO HPs/P-CN composite.
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Figure 1. (A) XRD patterns and (B) FTIR spectra of ZnO HPs, g-CN, P-CN, and ZnO HPs/P-CN.

The XPS survey spectrum of the ZnO HPs/P-CN composite is shown in Figure 2A,
where the peaks of Zn 2p, O 1s, C 1s, N 1s, and P 2p can be observed. Figure 2B represents
a broad extended peak for Zn 2p3/2 and Zn 2p1/2 at a spectrum range of 1024.8 eV and
1047.9 eV, illustrating the presence of Zn lattice deities. Figure 2C shows that the O 1s
spectrum attained at 533.9 eV could be ascribed to lattice oxygen as peaks of Zn–O bond.
However, the weaker peak at 534.9 eV was related to oxygen in –OH species on the surface
of ZnO. In the C 1s XPS spectrum (Figure 2D), the strong peak at a binding energy of
287.4 eV can be ascribed to carbon and the formation of defect-containing sp2-hybridized
carbon atoms. The C 1s spectrum can be fitted with three peaks: C=O (288.8 eV), (N2)–
C=N (287.3 eV), and C–P–C (298.5 eV). Where the N 1s spectrum peak (Figure 2E) is a
mixture of three adjacent peaks in which the strong peak attained at 399.6 eV is due to
the Sp2 hybridization of the triazine rings of N–(C) and the other two peaks are due to
tertiary nitrogen radical deities and surface amino groups such as N–C=N and C=N–C
compositions [60]. Where the doping of heteroatom sourced phosphorous P 2p signal
(Figure 2F) is ascribed at a peak potential of 134.7 eV, which is an enclosure of two adjutant
peaks attributed to the variation in P–N species of P 2p3/2 and P 2p1/2, this variation
in chemical composition indicates that the C atoms were replaced by P forming a P–N
bonding, illustrating the P-CN structure [60–62].

SEM was adopted in observing the microscopic morphologies of the ZnO HPs/P-CN
composite, as presented in Figure 3. As shown in Figure 3A, the ZnO material displays a
hexagonal prism-like morphology with a smooth surface, with the inset image showing the
hexagonal prism model. The pure g-CN (Figure 3B) was made of a nanosheets-like struc-
ture with wrinkles and stacking at the surface. It was observed that the P-CN (Figure 3C)
possessed a 3D wrinkle-like morphology. The SEM of Figure 3D–F reveals the P-CN was
well-dispersed on the ZnO HPs without agglomeration. This morphology would accelerate
the transfer of electron rate and improve electrochemical properties. The elemental mapping
images (Figure 4A–F) further confirmed the presence and homogeneous distributions of Zn,
O, P, C, and N elements in the ZnO HPs/P-CN composite. The above physical characteriza-
tion results were evident for the justification of ZnO HPs/P-CN composite formation.
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3.2. Electrochemical Performance of ZnO HPs/P-CN Composite
3.2.1. Electrochemical Characterization

Electrochemical impedance spectroscopy (EIS) was employed to expose essential re-
sistivity and concourse changes among modified and unmodified electrodes. Figure 5A
demonstrates EIS curves derived for bare GCE, g-CN/GCE, P-CN/GCE, ZnO HPs/GCE,
ZnO HPs/g-CN/GCE, and ZnO HPs/P-CN/GCE in 0.1 M KCl consisting of 5 mM
Fe(CN)6

3−/4−. The Randles equivalent circuit model was utilized for investigating the
electron charge transfer (Rct), assembly of series resistance (Rs), double layer capacitance
(Cdl), and Warburg diffusion (Zw) which was attained to suit the experimental data and
perform analysis, as shown in Figure 5A. As per the results, the bare GCE (1682.9 Ω)
showed a larger Rct value associated with the modified electrodes. Now, the Rct value of
the ZnO HPs/P-CN/GCE (102.2 Ω)-modified electrode seemed to be a smaller semicircle
than the g-CN/GCE (1261.6 Ω), P-CN/GCE (884.8 Ω), ZnO HPs/GCE (677.8 Ω), and
ZnO HPs/g-CN/GCE (253.4 Ω), which shows that owing to a smaller contact, less charge
transfer impedance has happened in the modified electrodes. From the analysis results,
the fabricated ZnO HPs/P-CN/GCE has an efficient electrochemical activity towards the
determination of NF [63].

3.2.2. Electrochemical Behavior of Electrodes

The electrochemical behavior of the modified electrode with and without the addition
of NF in 0.05 M PB (pH 7.0) was investigated by CV at the scan rate of 50 mV/s. This
can be seen in Figure 5B, where a reduction peak of NF was observed at bare GCE, ZnO
HPs/GCE, g-CN/GCE, P-CN/GCE, and ZnO HPs/P-CN/GCE, which is due to the direct
electrocatalytic reduction of NF to phenyl hydroxylamine with the 4e−/4H+ transfer
process. During this reverse scan, there was not any anodic peak observed related to
the reduction peak of NF, indicating that the catalytic reduction of NF is an irreversible
process [64]. Among these electrodes, the ZnO HPs/P-CN/GCE showed a sharp and
well-distinct reduction response of −45.07 µA at about −0.35 V. The reduction response
of NF at the ZnO HPs/P-CN/GCE is relatively 8.82-, 4.95-, 3.17-, 1.9-, and 1.62-folds
greater than those of bare GCE, g-CN/GCE, P-CN/GCE, and ZnO HPs/GCE, respectively
(Figure 5C). The preference of the electrochemical performance of the ZnO HPs/P-CN/GCE
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compared to the other electrodes was credited to numerous advantages. Especially, the
enhanced activity may be owed to the synergistic effect between ZnO HPs and P-CN in the
composite towards NF reduction. Likewise, the ZnO HPs/P-CN composite provides a more
active site, a large specific surface area, improved electrical conductivity, and favorable
transportation. The proposed electrochemical mechanism of the ZnO HPs/P-CN modified
electrode to NF was stated based on the literature (Scheme 2) [21–23]. The results proved
that the best and good electrocatalytic properties were observed with the ZnO HPs/P-CN
modified electrode.

3.2.3. Effects of Concentration, pH, and Scan Rate

The electrochemical performance of ZnO HPs/P-CN/GCE was evaluated by the CV
approach with various concentrations of NF in 0.05M PB (pH 7.0) at a scan rate of 50 mV/s
(Figure 5D). The electrochemical reduction current increased linearly with increasing target
analyte concentrations ranging from 50 to 250 µM. The linear regression equation was
expressed as Ipc (µA) = −0.1511 [NF] (µM) − 8.648 with a correlation coefficient (R2) of
0.99 (Figure 5D inset image). These results suggest that the proposed ZnO HPs/P-CN/GC
shows an outstanding catalytic performance towards detecting NF.
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Figure 5. (A) EIS of bare GCE, g-CN/GCE, P-CN/GCE, ZnO HPs/GCE, ZnO HPs/g-CN/GCE,
and ZnO HPs/P-CN/GCE (inset: Randles equivalent circuit). (B) CVs of unmodified and modified
GCEs in 0.05 M PB presence of 200 µM NF. (C) Bar diagram for electrodes versus current from (B).
(D) CVs of different concentrations of NF (50–250 µM) at ZnO HPs/P-CN/GCE in 0.05 M PB (inset:
calibration plot of [NF]/µM vs. current (µA)).
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The effect of the pH on the reduction response of NF was examined from pH 3.0 to 11.0
in 0.05 M PB using the ZnO HPs/P-CN/GCE (Figure 6A). As seen, the reduction current
increased with increasing pH starting with 3.0 towards 7.0 and, beyond that, decreased
when the pH was more than 7.0 for NF reduction, which is in agreement with the literature.
We noted that the peak potential shifted for NF reduction towards more cathodic values
with pH values increasing, which is due to the direct association of protons in the electrode
reaction. In addition, a higher reduction current was observed at pH 7.0 (Figure 6B).
Moreover, a linear relationship was observed between the reduction peak potential (Epc)
and pH values, as the following equation: Epc (µA) = y = −0.0385 pH − 0.0865 (R2 = 0.992)
(Figure 6B). A slope of 38.5 mV for each pH value was obtained, which is closer to the
theoretical Nernstian value of 59 mV pH-1, implying an electron transfer number convoyed
by an equal quality of electrons and protons on the surface of ZnO HPs/P-CN/GCE.
Hence, the 0.05M PB at pH 7.0 was chosen as the effective channel for subsequent NF
electrochemical detection.

The influence of the scan rates on the electrochemical reduction response of NF at
the ZnO HPs/P-CN-modified GCE was derived by the CV approach. Figure 6C displays
the CV signals of ZnO HPs/P-CN/GCE in a 0.05 M PB (pH 7.0) containing 100 µM NF at
different scan rates. The cathodic peaks current was amplified with the increasing scan rate
in a range of 20–200 mV/s. A linear relationship between the reduction peak current and
scan rate with a regression equation of Ipc (µA) = −0.2605 υ (mV/s) −11.633 (R2 = 0.995)
was observed (Figure 6D). The linear dependencies of the reduction peak currents on the
sweep rate indicate that the ZnO HPs/P-CN-modified electrode is a process controlled by
adsorption [65].

3.2.4. Electrochemical Detection of the Sensor

The quantitative analysis of NF on ZnO HPs/P-CN-modified GCE was carried out
through the amperometry (i-t) method based on the optimal parameters. The reduction
peak currents were found to be enhanced linearly with injection in the concentration of
NF from 0.01 to 914 µM, as illustrated in Figure 7A. Our proposed electrochemical sensor
detected NF with a linear region of concentration in 0.01–111 µM with a R2 value of 0.997
(Figure 7B). The LOD and sensitivity were determined as 2 nM and 4.62 µA µM−1·cm2 for
the ZnO HPs/P-CN-modified electrode towards NF detection, respectively. The electro-
chemical performance of ZnO HPs/P-CN/GCE was compared with other previous NF
sensors as shown in Table 1. These results demonstrate that the ZnO HPs/P-CN sensor
exhibits greater electrochemical reduction ability towards NF sensing.
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HPs/P-CN/GCE. (D) Corresponding linear plot of scan rates versus current.

Table 1. Analytical performance of the ZnO HPs/P-CN-modified electrode for NF determination
compared with the previous literature.

Electrode Materials Quantitative
Method

Linear Range
(µM)

Sensitivity
(µA µM−1 cm−2)

LOD
(µM) Ref.

ErGO-CNT i-t 0.005–2.81 36.3 0.0187 [9]
LuV/GR i-t 0.008–256 1.709 0.001 [10]
NiSnO i-t 0.0066–466.6 – 0.003 [12]

rGO/Fe3O4 NRs DPV 0.1–100 – 0.083 [14]
NiO/BCN i-t 0.05–230 1.15 0.01 [15]

BDDFE SWV 0.497–5.66 – 0.0082 [21]
NiFe/f -MWCNT DPV 0.1–352.4 11.45 0.03 [22]

MgFe2O4 DPV 3–302 – 0.033 [23]
ZnO HPs/P-CN i-t 0.01–111 4.62 0.002 This Work
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Figure 7. (A) The i-t responses of NF at the ZnO HPs/P-CN/GCE for the various additions of NF from
0.01 to 914 µM into constantly stirred 0.05 M PB (pH = 7.0). (B) Calibration plot of the concentration
(NF/µM) vs. current (µA). (C) Selectivity and (D) stability of the ZnO HPs/P-CN/GCE.

3.2.5. Specificity and Stability of the Sensor

The ZnO HPs/P-CN-modified electrode behavior toward NF sensing was inspected us-
ing the i-t technique in the occurrence of various potentially interfering species (Figure 7C).
The anti-interference ability of the ZnO HPs/P-CN-modified electrode was examined
towards NF with possible interferents, including furazolidone (a), nitrofurazone (b), 4-
nitrophenol (c), chloramphenicol (d), flutamide (e), hydroquinone (f), catechol (g), uric acid
(h), hydrogen peroxide (i), hypochlorous acid (j), sodium (k), nitrite (l), iron (m), mercury
(n), copper (o), and lead (p). A 100-fold excess of a-g and 200-fold of h-p was added
individually in the 0.05 M PB (pH 7.0) with 100 µM NF. There were almost no significant
changes in NF response for potentially interfering species. The obtained results indicate
that the ZnO HPs/P-CN-modified electrode has an outstanding selectivity towards NF
sensing. The operational stability of the ZnO HPs/P-CN-modified electrode was evaluated
with an injection of 100 µM NF (Figure 7D). The reduction current for NF maintains (±)
2.6% after 2000 s of the fabricated ZnO HPs/P-CN modified electrode. The above outcome
reveals that the ZnO HPs/P-CN-modified electrode possesses superior selectivity and
excellent stability.
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3.2.6. Detection in Real Samples

The feasibility of the fabricated ZnO HPs/P-CN sensor was confirmed by its real-time
analysis of NF in environmental and biological samples. The river water sample was used
as the environmental and the urine samples were used as biological samples for detection of
NF via the i-t technique. However, NF was not detected in the environmental and biological
samples. To assess the practicability of the ZnO HPs/P-CN sensor, a standard solution with
a known concentration of NF was spiked into the environmental and biological samples.
The recovery rate of NF was estimated by a typical addition procedure. As displayed in
Figure 8A,B, reduction peak current intensity increased step-wise with the addition of
NF-spiked water, and the biological samples were in the range from 0.083 to 6 µM with
a rapid response of 3 s. Based on the above, the fabricated ZnO HPs/P-CN sensor can
accurately, and satisfactorily detect the NF in water and biological samples, which has
confident application prospects in real-time applications.
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Figure 8. The amperometric real-world sample analysis responses in (A) water and (B) human urine
samples of ZnO HPs/P-CN/GCE for the various additions of NF into constantly stirred 0.05 M PB
(pH = 7.0).

4. Conclusions

In brief, we have effectively synthesized a ZnO HPs/P-CN composite for selective
electrochemical detection of NF. The formation of the ZnO HPs/P-CN composite was
confirmed by including XRD, FTIR, SEM, and elemental mapping. The ZnO HPs/P-CN
composite modified electrode showed lower Rct values than other modified electrodes
with significant performance to the reduction of NF compared to the other electrodes.
Particularly, the ZnO HPs/P-CN composite modified electrode displayed an advantage in
its outstanding low detection limit, wide linear range, good sensitivity, high stability, and
good selectivity. More importantly, the ZnO HPs/P-CN-based sensor was successful in
detecting NF in environmental and human samples with high accuracy.
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