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Abstract: Herein, we present a comprehensive investigation of rationally designed zinc selenide
(ZnSe) nanostructures to achieve highly negatively charged ZnSe nanostructures. A Microwave-
assisted hydrothermal synthesis method was used to synthesize three types of ZnSe nanostructures,
i.e., nanorods, µ-spheres and nanoclusters, as characterized by a zeta potential analyzer, X-ray
diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and BET, which were
labeled as type A, B and C. Three different solvents were used for the synthesis of type A, B and C ZnSe
nanostructures, keeping other synthesis conditions such as temperature, pressure and precursors
ratio constant. Based on two heating time intervals, 6 and 9 h, types A, B and C were further divided
into types A6, A9, B6, B9, C6 and C9. ZnSe nanostructures were further evaluated based on their
fluorescent quenching efficiency. The maximum fluorescence quenching effect was exhibited by the
ZnSe-B6 type, which can be attributed to its highly negative surface charge that favored its strong
interaction with cationic dye Rhodamine B (Rh-B). Further, the optimized ZnSe-B6 was used to
fabricate an aptasensor for the detection of a food-based toxin, ochratoxin-A (OTA). The developed
aptasensor exhibited a limit of detection of 0.07 ng/L with a wide linear range of 0.1 to 200 ng/L.

Keywords: Förster resonance energy transfer; ZnSe nanostructures; ochratoxin A; aptamer; zeta
potential; fluorescence detection

1. Introduction

The development of biosensing devices that can monitor environmental and dietary
hazards has grabbed much attention in recent years [1,2]. In particular, fluorescent biosen-
sors based on bio-conjugated nanomaterials and involving a Förster resonance energy
transfer (FRET) mechanism have great advantages in term of sensitivity and simple operat-
ing procedures [3]. The choice of materials used to develop fluorescent biosensors is very
crucial because surface charge, electron transport behavior and structural and optical prop-
erties decide the ability of materials to perform selective, sensitive and reliable detection [3].
Thus, there is a dire need of such materials in which controlling their synthesis parameters
can induce different properties and functionalities such as surface charge and morphology.
Recently, diverse types of nanomaterials such as carbon nanotubes, 2D nanomaterials,
gold nanoparticles and quantum dots have been explored and investigated as potential
fluorescent quenchers for the development of fluorescent biosensors [4].

Zn-based II–VI nanostructures such as zinc selenide (ZnSe) exhibit wide direct bandgap
(2.67 eV) along with high exciton binding energy (21 meV); thus, ZnSe has been consid-
ered as an excellent choice for optoelectronic devices [5–7]. In recent times, researchers
working in the domain of nanostructured materials have reported a number of different
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dimensional ZnSe nanostructures including nanorods, nanoplates, nanoneedles, nanobelts,
nanoparticles and nanowires [8–14]. Diverse approaches have been applied for the synthe-
sis of ZnSe nanostructures, such as microwave irradiation, hydrothermal, chemical vapor
deposition and solvothermal [15–18]. Among these, the microwave-assisted synthesis
technique has several advantages such as fast and uniform heating, higher product yield
and short reaction time, low energy requirement, less expensive, high purity and small
narrow particle size distribution as compared to other techniques [19]. As the fluorescent
sensing performance is directly linked to surface charge, size, dispersity and morphology of
nanostructures materials, thus the synthesis of ZnSe nanostructures with controlled surface
charges, morphology, and physicochemical properties has great potential for biosensing
applications [20–23].

Here, we show that by varying the synthesis reaction time and changing precursors,
ZnSe nanostructures with different morphology, size, surface charge and physicochemical
properties can be designed for fluorescent detection applications. The microwave-assisted
synthesis route was used to synthesize three types of ZnSe nanostructures by changing
their precursors and reaction time (6 and 9 h) at fixed temperatures. Based on synthesis con-
ditions, three different shapes including spherical, rods and cluster-like morphologies were
formed. XRD results of synthesized ZnSe nanostructures revealed through Williamson–
Hall equations that nanostructures contain strains. It is well-established that due to the
strain, defects are produced, which strongly influence the intrinsic properties [24] of syn-
thesized ZnSe, resulting in improvements to their dispersion [25]. At the same time, defects
induce negative charge; thus, the surface of the ZnSe nanostructures exhibited highly
negative surface charges, which were confirmed by measuring their zeta potentials [26].
This highly negative surface charge made the synthesized ZnSe nanostructures highly
stable and dispersive [27,28]. With the increase in size, the negative surface charge also
increased, which may be ascribed to a larger steric hindrance [29]. The highly negative
surface charges of ZnSe nanostructures were further exploited to interact with Rh-B a
cationic dye and their behavior as nanoquenchers was confirmed. Ochratoxin A (OTA) is a
mycotoxin classified as a (Group-2B) carcinogen by the International Agency for Research
on Cancer (IARC). OTA released in the form of Aspergillus and Penicillium results in the
contamination of foods such cereals, fruit juices, beans, wine, corn, wheat and barley [30].
The European Commission has released guidelines about the permittable content of OTA,
which is 5 µg/kg and 10 µg/kg in raw grains and soluble coffee and 2 µg/kg in grape juice
or wine [31].

ZnSe nanostructures were exploited as nanoquenchers to develop the fluorescent
aptasensor for the detection of OTA. The quenching response of type ZnSe-B6 on the
emission spectrum of Rh-B dye in the presence of an OTA aptamer was evaluated with and
without an OTA target. Pure Rh-B exhibited a sharp fluorescence peak, which significantly
reduced after the addition of ZnSe-B6 nanoquencher, which primarily can be attributed
to an FRET mechanism based on the strong binding interaction between cationic Rh-B
dye and the highly negatively charged surface of ZnSe-B6 [32,33]. Scheme 1B shows step
by step details of the fabrication of a ZnSe-nanostructure-based fluorescent aptasensor
for the detection of OTA. Firstly, exploiting very high negative surface charge of ZnSe-B6
and positive charge of amino modified OTA aptamer, the ZnSe-B6–aptamer complex was
formed. Afterwards, when Rh-B dye was introduced to the ZnSe-B6–aptamer complex,
fewer ZnSe-B6 particles were available to quench the fluorescence of the Rh-B dye, and
thus a fluorescence recovery response was achieved. Finally, when target analyte (OTA)
was introduced, it made specific interactions with the aptamer, which weakened aptamer
and ZnSe-B6 interactions. The stronger conjugation between the amino-modified OTA
aptamer and target analyte OTA resulted in ZnSe-B6 particles being released from the
ZnSe-B6–aptamer complex, which quenched the fluorescence of the Rh-B dye, and thus
fluorescence quenching recovered. There was a direct proportional relation between
the fluorescence quenching percent and the concentration of OTA in the assay. In this
work, based on synthesis reaction time and precursors, we have rationally designed ZnSe
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nanostructures with highly negative surface charges and different morphologies and
exploited these properties to develop an aptasensor for OTA detection.
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Scheme 1. Schematic illustration of the fluorescence-quenching-based detection of OTA; quenching
response of ZnSe-B6 on fluorescence emission spectra of Rh-B dye (A), quenching response of ZnSe-B6
on fluorescence emission spectra of Rh-B dye in the presence of OTA aptamer with and without OTA
target (B).

2. Experimental
2.1. Synthesis of ZnSe Nanostructures

A microwave-assisted hydrothermal synthesis approach was used to synthesize three
types of ZnSe nanostructures under control synthesis conditions by keeping temperature,
pressure and precursors ratio constant by using three different solvents at two heating time
intervals, including 6 and 9 h. Under controlled synthesis conditions, three different shapes,
including spherical, rods and cluster-like morphologies, were obtained at two different
time intervals. Brief detail about the synthesis of these morphologies is as follows.

2.1.1. Fabrication of ZnSe Nanorods

For the preparation of ZnSe nanorods, 1.6 mmol of zinc nitrate was mixed with 4 M
KOH in 30 mL (water/ethanol) and kept heating at 80 ◦C in a microwave oven for 20 min.
After that, 1.5 mmol of selenium tetrachloride in 20 mL hydrazine dihydrochloride was
added drop wise into the previous solution and this reaction was kept for 6 and 9 h at
120 ◦C in a microwave-assisted oven to obtain two types of ZnSe, which were labeled as
A6 and A9 respectively. The resultant precipitates of A6 and A9 were cooled down to room
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temperature and then centrifuged and washed with water and ethanol, respectively. The
obtained powder was next dried at vacuum in room temperature.

2.1.2. Fabrication of ZnSe µ-Spheres

Similarly, for the preparation of ZnSe µ-spheres, 1.6 mmol of zinc nitrate was mixed
with 4 M KOH in 30 mL (water/ethanol) and kept heating at 80 ◦C in a microwave oven
for 20 min. After that, 1.5 mmol of selenium tetrachloride in 20 mL ethylene glycol was
added drop wise into the previous solution and this reaction was kept for 6 and 9 h at
120 ◦C in a microwave-assisted oven. The materials kept for 6 and 9 h were labeled as B6
and B9, respectively. The resultant precipitate was cooled down at room temperature and
centrifuged and washed with water and ethanol and subjected to drying in a vacuum oven.

2.1.3. Fabrication of ZnSe Nanoclusters

Further, for the preparation of ZnSe nanoclusters, 1.6 mmol of zinc nitrate was mixed
with 4 M KOH in 30 mL (water/ethanol) and kept under microwave in an oven for 20 min
at 80 ◦C. In the next step, 1.5 mmol of selenium tetrachloride was prepared in 20 mL acetic
acid and was added drop wise into the previous solution and this reaction was kept for 6
and 9 h at 120 ◦C in a microwave-assisted oven. After that, the solution was placed into a
microwave oven for 6 and 9 h to obtain C6 and C9, respectively. The resultant precipitate
was cooled down at room temperature and then centrifuged and washed with water and
ethanol, respectively. The resultant precipitates were next dried in a vacuum oven.

2.2. ZnSe-Nanostructure-Based Fluorescence Quenching

Blank and fluorescence quenching measurements of organic fluorescence dye Rh-B
were carried out without and with the addition of ZnSe nanoquenchers, respectively. First,
a blank reagent fluorescence emission spectrum containing (160 ng/L) dye was measured.
Afterwards, 1 µL from each stock solution containing ZnSe nanostructures (A6, A9, B6, B9,
C6, C9) were added into Rh-B (16 µL) and a volume make up of 2000 µL was achieved using
PBS to get an end concentration of 450 µg/L for ZnSe nanostructures. Subsequently, the
mixture stayed for 10 min and then fluorescence quenching on the addition of all six ZnSe
nanostructures was determined using 554 nm as the excitation wavelength while emission
spectra were noted at 578 nm. The extent of fluorescence quenching was measured by
calculating the difference between the mission spectra of the Rh-B and the maximum of
emission induced by the ZnSe nanostructures. The maximum quenching was observed
by the ZnSe nanostructure type B6, and thus used in the next experiments to develop the
aptasensor for OTA detection. A 2000 µL reaction volume with an optimum concentration
of 450 µg/L ZnSe was used for the experiments to detect OTA.

2.3. ZnSe-Nanostructure-Based Fluorescent Aptasensor for OTA Detection

The optimized amino-modified OTA aptamer (50 nM) was incubated with 1 µL ZnSe
type B6 (450 µg/L) for 15 min. Afterwards, a total volume of 2000 µL of the solution
containing aptamer, ZnSe-B6 and dye Rh-B (160 ng/L) was made using PBS and further
incubated for 10 min. Subsequently, the solution was subjected to fluorescence response and
then ultimately varying concentrations of OTA (0.1–200 ng/L) were added. An optimized
incubation time, i.e., 30 min, was used to incubate the OTA containing solution and then
fluorescence measurements were taken at 554 nm for excitation and 578 nm for emission.
The control experiment was also run, without the addition of OTA.

2.4. Interference and Real Sample Studies

The specificity of the developed OTA aptasensor was evaluated in the presence of the
possible interfering analytes, i.e., ochratoxin-B, aflatoxin M1 and aflatoxin B1. The same
concentration (100 ng/L) of each interfering species was employed to form an aptamer-
interfering species complex using the same parameters as those applied for OTA detection.
Further, a rice sample purchased from the local market of Lahore, Punjab and grinded in a
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kitchen grinder machine was used to confirm the practical acceptability of the fabricated
aptasensor. The rice extract was received following the already reported procedure [34].
Acetonitrile was used as an extracting solvent and one gram of grinded rice powder was
introduced into a 10 mL solvent, and stirred for 15 min. Afterwards, a 15 min centrifugation
of the mixture was carried out at 35,000 rpm, and then the received solid rice sample was
dried under an inert atmosphere. For real sample validation, the rice extract and PBS
(1:9 v/v), having a total volume of 1 mL, was firstly sonicated to get a well-mixed solution.
Subsequently, 1 µL of ZnSe-B6 (450 µg/L), and for 50 nM end concentration, 20 µL of amino-
modified OTA aptamer, were used for the fabrication of an aptasensor. Percentages of
quenching recoveries with OTA-spiked (5, 50 and 100) ng/L rice samples were determined,
which presented excellent linear behavior with the increase of OTA concentration.

3. Results and Discussion
3.1. Morphological and Structural Characterization of ZnSe Nanostructures

The surface morphologies of the synthesized ZnSe nanostructures were characterized
by scanning electrode microscopy (SEM). SEM results showed the formation of ZnSe
with different shapes and sizes. Briefly, Figure 1A and B shows the clear formation of
nanorod shaped ZnSe with an average width of 200–260 and 150–210 nm, respectively.
Similarly, Figure 1C and D clearly shows the successful formation of ZnSe µ-spheres with
an average size of 2200–2400 and 1100–1500 nm, respectively. Further, Figure 1E and F
shows the formation of ZnSe nanoclusters with an average size of 210–260 and 75–130 nm,
respectively.
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The phase purity, crystallographic structure and crystal formation of zinc selenide was
investigated via wide-angle XRD analysis within the range of 5–80◦ (Figure 2A).
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Figure 2. XRD Spectra representing formation of ZnSe nanostructures (A), and the crystallite size
and strain of synthesized ZnSe calculated by using the W–H plot (B–G).

The XRD spectrum reflects a series of diffraction characteristic peaks centered at 2θ
value of 26.99◦, 31.55◦, 44.55◦, 53.45◦, 65.78◦ and 72.48◦ corresponding to 111, 200, 220,
311, 400 and 331 crystal planes of face-centered cubic, respectively. These results clearly
match with the Joint Committee on Powder Diffraction Standard (JCPDS No. 88-2345), thus
confirming the formation of ZnSe.

Further, the average crystallite size and strain of synthesized ZnSe nanostructures
were also calculated by using Scherrer (Supplementary Equation (S1)) and Williamson–
Hall equations, respectively. The calculated average crystallite sizes of A6, A9, B6, B9, C6
and C9 were observed to be 16.69, 21.14, 16.48, 17.91, 30.05 and 23.91 nm, respectively
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(Figure 2B–G and Supplementary Table S1). The micro strain was also calculated by using
the Williamson–Hall equation. From the results, two types of micro strains were observed
in which positive slopes of 1.1 and 0.7 for A6 and C9 showed a tensile strain, whereas
negative slopes of −2.7, −0.5, −0.8 and −0.06 for A9, B6, B9 and C6 showed a compressive
strain, respectively [34].

The bending, stretching, rotational and vibrational modes in the synthesized ZnSe
nanoparticle were studied via Fourier transform infrared spectroscopy (FTIR). FTIR spectra
of synthesized ZnSe showed the characteristic peaks at 482, 561, 651, 671 and 970 cm−1

belonged to Zn-Se vibrations (Figure 3A). In addition, the characteristics peak at 3429 cm-1
and weak characteristics peak at 1595 cm−1 corresponded to O-H characteristic vibrations.
In the case of C2 and C3, there was another sharp peak at 3199 cm−1, which corresponded
to the N-H stretching vibration band. Additionally, a slight shift of the N-H stretching
vibration band toward the lower frequency could be attributed to the interaction of N2H4
with zinc ion and the regular periodic structure of the molecular precursor.
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Figure 3. FTIR spectra of ZnSe nanostructures (A), Raman spectra (B) and PL spectra (C) of synthe-
sized ZnSe nanostructures.

Furthermore, Raman (Figure 3B) and PL (Figure 3C) spectroscopy were also used to
analyze the synthesized ZnSe nanostructures. Raman results showed the presence of TO
(210 cm−1) and LO (255 cm−1) phonon frequencies for bulk ZnSe [35]. The transverse optic
(TO) and longitudinal optic (LO) phonon modes of the crystalline ZnSe were responsible
for the two Raman peaks with centers at 205 and 248 cm−1, respectively. Results further
showed that the synthesized ZnSe structures were of excellent crystalline quality and pure
phase, as seen by the crisp and symmetrical Raman peaks. However, the TO and LO phonon
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frequencies for ZnSe nanostructures were centered at 199 and 242 cm−1, respectively, and
both yielded a wide Raman peak as a result of the structures’ high surface-to-volume ratio.

PL spectra of ZnSe nanostructures revealed a strong and wide emission band spanning
500–800 nm. The near-band-edge (NBE) emission of ZnSe is often responsible for the faint
blue emission peak. Surface emissions and potential metal vacancies have been linked to
the emission band between 520 and 780 nm in the case of A6, A9, B2 and B9. According to
Geng et al. [36], certain donor–acceptor pairings connected to Zn vacancy and interstitial
states, or linked to dislocation stacking faults and nonstoichiometric defects, are the reason
behind the high emission at about 520 nm. Whereas, according to Zhang et al. [37],
recombination of a donor–acceptor pair involving Zn vacancies and Zn interstitial was
the cause of the emission. Thus, we believe that the high emission must be related to the
interstitial Zn defect and nonstoichiometric defects since the products increased under
Zn-rich conditions in the case of C6 and C9. Brunauer−Emmett−Teller (BET) has been used
to characterize the surface area and porous texture of ZnSe. BET results showed specific
surface areas of ZnSe of 0.004, 0.048, 0.016, 0.020, 0.016 and 0.014 m2/g, corresponding
to A6, A9, B6, B9, C6 and C9, respectively. The zeta potential of ZnSe nanostructures
were also calculated to estimate the surface charge. All the ZnSe nanostructures exhibited
higher values of negative zeta potential (Table 1). The negative zeta potential value for the
synthesized ZnSe may be attributed to the dense electron of O around ZnSe. It can be seen
in Table 1 that ZnSe-B6 (µ-sphere) had the highest negative zeta potential value, which
makes ZnSe-B6 highly dispersive and stable.

Table 1. Zeta potential values of ZnSe nanostructures before and after the addition of Rhd-B.

Sr. No. Zeta (mV) ZnSe NP Zeta (mV) ZnSe NP+ Rhd-B

B6 −437 −229
B9 −95.2 −319
C6 −320 −284
C9 −409 −333
A6 −332 −366
A9 −379 −297

3.2. Morphological-Based Fluorescence Quenching of the ZnSe Nanostructures

Figure 4A shows the summary of fluorescence quenching behavior of ZnSe nanos-
tructures (A6–C9) based on negative surface charge, size and morphology. The highest
negative value of zeta potential exhibited by ZnSe-B6 (µ-sphere) showed a maximum
%FL quenching signal because of extensive surface interaction with cationic dye Rh-B.
Figure 4B shows comparative % fluorescence quenching behavior of all six ZnSe (A6–C9)
nanostructures. Rh-B concentrations in the range of 10–250 ng/L were also optimized
(Supplementary Materials, Figure S1) for the development of a ZnSe-nanostructure-based
aptasensor. We further evaluated the effect of ZnSe-B6 concentration (Figure 5A) and
found small difference of concentrations values greater than 450 µg/L, and thus opted
for the development of an aptasensor. Next, sonication conditions and the incubation
time were also employed to adjust the fluorescence measurements (Figure 5B,C). A 10 min
sonication time and a 10 min incubation time were selected as optimized values for the
next experiments.

3.3. Fabrication of the ZnSe-Based Aptasensor

To fabricate the ZnSe-nanostructure-based aptasensor, exploiting their quenching
properties, the quenching response of selected ZnSe-B6 on fluorescence emission spectra of
Rh-B dye in the presence of an OTA aptamer was evaluated with and without OTA target,
as shown in Scheme 1.
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As shown in Figure 6a, the pure dye solution (160 ng/L) presented a strong fluores-
cence maximum at 578 nm. On adding a ZnSe-B6 nanoquencher, an appreciable decrease in
fluorescence response was found (Figure 6b), which is primarily can be attributed to Förster
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resonance energy transfer (FRET), based on the strong binding interaction between cationic
Rh-B dye and the highly negatively charged surface of ZnSe-B6 [32,33]. To develop the
ZnSe-B6-based aptasensor, already optimized concentration, sonication time and incuba-
tion time values for the ZnSe-B6 were used. ZnSe-B6 (450 µg/L) and 50 nM amino-modified
aptamer was chosen for the ZnSe-B6–aptamer complex formation. ZnSe-B6 exhibited very
high negative surface charge while the amino-modified OTA aptamer contained a positive
charge due to the attached amino group, which favored their surface interactions. The
solution mixture was subjected to incubation for 15 min to enhance the surface interaction
between ZnSe–aptamer conjugations.
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Figure 6. Fluorescence emission spectra of Rh-B (160 ng/L) (a); quenched fluorescence emission with
ZnSe-B6 nanoquencher of 450 µg/L (b); fluorescence recovery with OTA aptamer (50 nM) stabilized
with (450 µg/L) ZnSe-B6 (c); fluorescence quenching recovery with OTA (d).

Subsequently, when Rh-B dye was introduced to the ZnSe-B6–aptamer conjugation, a
fluorescence recovery response was achieved (Figure 6c). Upon introduction of the OTA,
conjugation between the aptamer and OTA formed, which weakened the link between
the aptamer and ZnSe-B6. The OTA and aptamer’s stronger binding interaction resulted
in the release of ZnSe-B6 particles from the ZnSe-B6–aptamer complex, which quenched
the fluorescence of the Rh-B dye, and thus fluorescence quenching recovered (Figure 6c).
There was a direct proportional relation between the fluorescence quenching percent and
the concentration of OTA in the assay.

3.4. Optimization

After demonstration of the quenching properties of the ZnSe-B6 to develop the OTA
aptasensor, the next experiments were carried out to fix the experimental conditions,
including aptamer concentration, aptamer incubation time, pH and incubation time of
OTA, to evaluate their influence on the aptasensor efficiency. Figure 7A demonstrates
the influence of different concentrations of OTA aptamer (5–60 nM), which demonstrated
an incremental fluorescence intensity with increases in the amount of aptamer. Based on
this observation, a 50 nM concentration was selected to fabricate the aptasensor, as this
concentration was appropriate to devise the aptasensor based on quenching and recovery
signals. Figure 7B showed that with increases in incubation time (0–30 min), an increase
in the fluorescence emission also took place. An aptamer incubation time of 15 min was
selected for the development of the aptasensor. The effect of incubation time of OTA
(0–30 min) on fluorescence quenching recovery and performance of the aptasensor was
further assessed. Figure 8A shows that maximum fluorescence quenching (% FL quenched)
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after OTA target conjugation with the aptamer complex took place after 30 min incubation.
The fluorescence quenching on introduction of OTA at varying pH levels (pH 3–9) was also
evaluated and the quenching response has been given in Figure 8B. An impressive %FL
quenching response of ~70% was observed at 7 pH.
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3.5. Analytical Performance of the Developed Aptasensor

To confirm the practical applicability of the fabricated ZnSe-nanostructure-based
aptasensor, the calibration curve based on % of recovered FL quenching with OTA concen-
trations ranging from 0.1–200 ng/L was evaluated. It can be seen in Figure 9. The %FL
quenching signal increased in a directly proportional manner with higher concentration
values of OTA due to the strong binding coordination of the amino-modified OTA aptamer
with OTA to form an OTA aptamer–OTA reaction complex. Figure 9B shows that there is a
good linear relationship, which can be confirmed with a linear equation (y = 2.4x + 9.99,
R2 = 0.983) between recovered %FL quenching and OTA concentration. A very low limit
of detection (LOD) of 0.07 ng/L was achieved. The low LOD is an indication of the high
specificity and selectivity of the ZnSe nanostructure-based aptasensing system.
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for excitation and 578 nm for emission (B).

The complex composition of samples is a big challenge for the development of ap-
tasensors; thus, selectivity is the most important factor towards the practical application
of aptasensors [34]. Selectivity of the ZnSe-nanostructure-based fluorescent aptasensor
towards OTA was assessed using OTA interfering species such as ochratoxin-B (OTB),
aflatoxin-M1 and aflatoxin-B1 (AFB1). Firstly, %FL quenching recovery was evaluated
in the presence of 200 ng/L OTA. Afterwards, the relative %FL quenching recovery was
evaluated in the presence of some common OTA interfering species, each at a concentration
of 200 ng/L, under the same experimental parameters as those followed for OTA. Figure 10
shows a comparative % recovered FL quenching response of interfering compounds, which
suggests that all interfering mycotoxins exhibited very little %FL quenching recovery as
compared to OTA, which is a clear indication that there is negligible interaction between
the OTA aptamer and the interfering analytes. The relative perecntages of recovered FL
quenching were ~83% for OTA, ~6.51% for OTB, ~7.38 for AFM1 and ~6.59% for AFB1. The
results demonstrate high selectivity of the developed aptasensor, which is due to the high
specificity interaction and binding of the OTA with the aptamer [38,39].
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The analytical accuracy, practical applicability, reliability and reproducibility of the
ZnSe-nanostructure-based fluorescent aptasensor was validated by detecting OTA in rice
extracts. Three varying concentrations of OTA, i.e., 5, 50 and 100 ng/L were spiked to
rice samples purchased from a local market. The recovery of spiked OTA was determined
using the developed aptasensor. As shown in Table 2, the recovery and reproducibility
were acceptable in all cases. The FL quenching recovery % response of OTA in buffer was
in strong agreement with OTA spiked samples. The relative standard deviation (R.S.D %)
of these recovery experiments were 0.56%, 0.22% and 0.218% for n = 3, which demonstrates
good stability, reproducibility and practical applicability of the developed aptasensor.
Comparison of some recent nanostructure-based fluorescent sensors for OTA detection is
presented in Supplementary Table S2.

Table 2. Determination of OTA spiked in rice extract (n = 3).

Sr. No. OTA Added
(ng/L)

OTA Found
(ng/L) R.S.D % R.E % R %

1. 5 5.04 0.5634 0.8 100.8
2. 50 50.16 0.2259 0.32 100.32
3. 100 100.31 0.2188 0.31 100.31

R.S.D % = relative standard deviation percentage; R.E % = relative error percentage; R% = recovery percentage.

4. Conclusions

In the present work, precursor and synthesis reaction time dependent multifunc-
tional ZnSe nanostructures, with a highly negative surface charge and different sizes
and morphologies were successfully synthesized. We further exploited ZnSe µ-sphere
nanoquenchers for the development of a fluorescent aptasensor for the detection of ochra-
toxin A. Fluorescence results confirmed that ZnSe µ-spheres had maximum quenching
efficiency as compared to other types of synthesized ZnSe nanostructures, because of their
highly negative surface charge and large size. Highly dispersive, stable and negatively
charged ZnSe µ-spheres exhibited strong interaction with cationic Rh-B dye. Similarly,
amino-modified OTA aptamer also strongly interacted with ZnSe µ-spheres. Exploiting
these interactions, a ZnSe-µ-sphere-based fluorescent aptasensor was successfully fabri-
cated for the detection of ochratoxin A. The proposed OTA aptasensor demonstrated a
low detection limit of 0.07 ng/L with an excellent wide linear range of 0.1 to 200 ng/L.
Moreover, we also evaluated the practical applicability of the developed aptasensor by
checking its response towards common interfering mycotoxins and found negligible re-
sponse. Similarly, real sample analysis was also performed using spiked rice samples,
which showed satisfactory recovery percentages. Overall, the current study has paved
a way for ZnSe-nanostructure-based fluorescent sensors for the detection of different
biomolecular targets.
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www.mdpi.com/article/10.3390/bios12100844/s1, “Instruments and reagents” section, Figure S1:
Optimization of Rh-B dye concentration (10–250 ng/L) for the development of ZnSe nanostructures
based aptasensor, Table S1: The crystalline size of nanoparticles calculated using Scherrer and strain
by applying Williamson-Hall plot, Table S2: Comparison of some recent nanostructured based
fluorescent sensors for OTA detection. References [35,39–46] are cited in Supplementary Materials.
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