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Abstract: The demand for wearable devices to simultaneously monitor heart rate (HR) and respiratory
rate (RR) values has grown due to the incidence increase in cardiovascular and respiratory diseases.
The use of inertial measurement unit (IMU) sensors, embedding both accelerometers and gyroscopes,
may ensure a non-intrusive and low-cost monitoring. While both accelerometers and gyroscopes
have been assessed independently for both HR and RR monitoring, there lacks a comprehensive
comparison between them when used simultaneously. In this study, we used both accelerometers
and gyroscopes embedded in a single IMU sensor for the simultaneous monitoring of HR and RR.
The following main findings emerged: (i) the accelerometer outperformed the gyroscope in terms
of accuracy in both HR and RR estimation; (ii) the window length used to estimate HR and RR
values influences the accuracy; and (iii) increasing the length over 25 s does not provide a relevant
improvement, but accuracy improves when the subject is seated or lying down, and deteriorates
in the standing posture. Our study provides a comprehensive comparison between two promising
systems, highlighting their potentiality for real-time cardiorespiratory monitoring. Furthermore, we
give new insights into the influence of window length and posture on the systems’ performance,
which can be useful to spread this approach in clinical settings.

Keywords: heart rate; respiratory rate; wearable systems; mechanical vibrations; magneto-inertial
measurement units

1. Introduction

Taking care of oneself and paying attention to one’s state of health are topics that
are registering a rising interest among the population. Indeed, over the past few years,
there has been an increasing willingness to continuously monitor health status with the
aim of reducing risk by means of early diagnosis, healthy lifestyle, and prevention. The
reason lies in the strong correlation between vital parameters and a variety of physiological,
psychological, and environmental stressors [1–3]. Monitoring vital parameters on an
ongoing basis, especially heart rate (HR) and respiratory rate (RR) values, can be useful in
several fields of applications, ranging from occupational to sports environment due to their
sensitivity to cognitive load, stress, and other factors [4,5].

Nowadays, the ECG is the most widely used technique for the diagnosis of heart-
related diseases; however, for years, research has been interested in alternative methods,
e.g., based on photoplethysmography (PPG) and ballistocardiography (BCG) [6,7]. Nev-
ertheless, RR is typically assessed by devices based on strain sensors and impedance
plethysmography [8], or alternatively from the modulation of an ECG waveform caused
by breathing [9]. Among all wearable devices, interest in IMU sensors has exploded in
recent years, mainly due to the miniaturization of electronic components, extended bat-
tery life, and improved data management. These features have made them an attractive
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choice for continuous non-invasive monitoring with low cost, low power consumption,
and privacy-friendly characteristics [10,11].

The output of IMU sensors embedding both an accelerometer (ACC) and a gyroscope
(GYR) may allow the simultaneous monitoring of both cardiac and respiratory mechanics,
also providing additional information to conventional techniques used to monitor these
vital parameters [6,12,13]. The cardiac activity can be assessed through the seismocardio-
gram (SCG) and the gyrocardiogram (GCG) signals by measuring local vibrations (in terms
of accelerations and angular velocities) in response to heart ejection [6]. The SCG is defined
as the study of body vibrations induced by the heartbeat and was popularized in the 1990s
by Salerno and Zanetti [14,15]. Only recently, it has been augmented by the GCG, which
locally measures the angular velocities produced at the precordial level by the cardiac
activity [13,16]. Respiratory activity can be extracted by breathing-induced movements of
the rib cage impressed in the sensors’ output. Thus, the acceleration and angular velocity
along one of the three axes will present both waveforms characteristic of cardiac vibrations
and breathing movements, as shown in Figure 1. HR and RR estimation from the ACC and
GYR integrated in IMU sensors has been already proposed in the literature with promising
results [12,13]. Although the ACC is the most popular, the literature suggests that up to
60% of cardiac vibrational energy is contained in the gyration signal [17], indicating that the
angular velocity signal has a higher noise rejection ratio than the acceleration signal [16,18].
For these reasons, the GYR output is widely used as an enhancement of the ACC signal.
In [19], a method to improve the fusion of an ACC and GYR sensor by using a Kalman
filter is suggested. In [20], authors propose real-time cardiac beat detection and heart rate
monitoring using a combination of ACC and GYR output signals to improve accuracy due
to fundamentally different noise rejection criteria. In [21], authors describe a home health
monitoring solution with cardiac beat-to-beat detection using ACC and GYR signal fusion.
Finally, in [22], an enhanced method to estimate HR values by combining the six-axis
ACC and GYR signals is used. It is worth noting that only a few studies investigated
the simultaneous measurement of HR and RR values, and they performed the estimation
using only the ACC sensor. In addition, these analyses were rarely carried out in different
postures of the subject [23,24].

Hence, while both ACCs and GYRs have been used to estimate HR or RR values, to
the best of our knowledge, neither provide differences in terms of performance between
these two sensors in the simultaneous extraction of HR and RR values.

In this study, we provided a comparison between ACCs and GYRs used for the
simultaneous extraction of HR and RR values by using a frequency domain analysis. Since
the signals are sensitive to physical conditions and postures, the subjects were experimented
in three different postures (i.e., sitting, lying down, and standing). Given the variability
of the heart and respiratory rate ranges within each trial, the identification of HR and RR
values has been performed by considering a moving time window with a sliding step of
1 s. We carried out the analysis in moving windows of different lengths with the purpose
of investigating how this parameter influences the assessment of HR and RR values.

The main contributions of this study can be summarized as follows: (1) to provide a
comparison between the performances of ACCs and GYRs in the simultaneous extraction
of HR and RR values; (2) to investigate how the window length influences the estimation
of HR and RR values; and (3) to test the system in various measurement conditions
(i.e., the subjects’ posture) for a more practical application.
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Figure 1. (a) Schematic illustration of the positioning of the IMU sensor (embedding the ACC and the
GYR) on the subject’s chest from the frontal view. (b) Lateral view of the IMU sensor on the subject’s
chest. Note that the sensor is integral with the body of the subject. This ensures that acceleration
and angular velocity measurements correspond with good approximation to those experienced
by the chest in response to cardiac and respiratory activity. (c) Example of an acceleration (in
orange) and angular velocity (in green) signal filtered so that only the cardiac component is reported.
(d) Example of an acceleration (in orange) and angular velocity (in green) signal filtered so that only
the respiratory component is reported.

2. Materials and Methods
2.1. Cardiorespiratory Monitoring by IMU Sensors

The IMU sensors typically embed a tri-axis ACC and a tri-axis GYR and are generally
manufactured by microelectromechanical system (MEMS) technology.

If the IMU sensor is placed integral to the subject’s chest, it can measure the accelera-
tions and angular velocities of the chest itself induced by cardiac and respiratory activity
along three axes: the dorso–ventral axis (back-to-front), the superior–inferior axis (head-
to-foot), and the sinistro–dexter axis (left-to-right) [6,25]. The breathing activity generates
in the acceleration and angular velocity signals a slow-varying pattern that reflects the
expansion and contraction of the chest caused by the movement of air in the lungs and the
simultaneous movement of the upper chest. On the other hand, the heartbeat generates
compression waves spreading throughout the thorax that produce vibrations in the ster-
num. The recording of minute body accelerations and angular velocities induced by cardiac
activity at the precordial level can be collected as SCG and GCG signals, respectively. These
signals contain peaks that reflect physiological events in the heart, such as mitral valve
closure (MC) and aortic valve opening (AO) peaks, related to systolic activity, and aortic
valve closure (AC) and mitral valve opening (MO) peaks, related to diastolic motion (see
Figure 1). The AO peak is the most prominent and has been widely used in many studies
for HR estimation [12,26].

2.2. Study Design

Eleven healthy volunteers were enrolled in this study. To each volunteer, a single
IMU sensor (Xsens DOT, by Xsens), embedding a triaxial ACC (full scale ± 16 g) and
a triaxial GYR (full scale ± 2000◦/s), was fixed at the fifth-left intercostal space in the
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midclavicular line of the mitral valve [27]. The small size (36 × 30 × 11 mm) and mass
(11.2 g) of this device gave the sensor optimal adherence to the subject’s chest without
introducing discomfort to the user and ensuring a good coupling effect between the sensor
and the body. This ensures that the two systems (i.e., the body and the sensor) are integral.
Data were collected at 120 Hz and saved in the internal memory of the device.

The wearable chest multiparametric device Zephyr Bioharness ™ (Zephyr Technology
Corporation, Annapolis, MD, USA) was used as a reference system for recording both the
ECG waveform (at 250 Hz sampling rate) and the respiratory waveform (at 25 Hz sampling
rate) [28]. The Bioharness system is a U.S. FDA-approved physiological monitoring device
that consists of a chest strap and an electronic module. It acquires the ECG waveform
via dry electrodes and the user’s breathing pattern through an embedded proprietary
capacitive sensor. Based upon the principle of a strain gauge sensor (i.e., the resistance of a
conductor is increased when the area of the conductor is increased), thoracic expansion and
contraction cause size differentials that induce changes in capacitance because of resultant
changes in the impedance. The change in impedance is manifested as a change in the
waveform signal amplitude, represented as a sine wave with downward and upward
deflections, indicating chest expansion (increased impedance) and contraction (decreased
impedance), respectively.

Each volunteer was asked to carry out a protocol that sequentially included three
different at-rest postures: sitting for ~2 min, standing for ~2 min, and lying down for ~2 min,
as schematically reported in Figure 2. In each posture, the subject was asked to breathe quietly
and hold their breath at the end for 20 s. The study was conducted in accordance with the
Declaration of Helsinki and the study design was approved by the Ethical Committee of
University Campus Bio-Medico di Roma (code: 27.2(18).20 of 15 June 2020).
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Figure 2. (a) Positioning of the IMU sensor at the fifth-left intercostal space in the midclavicular line
of the mitral valve and of the wearable chest multiparametric device used as a reference system for
registering both the ECG waveform and the respiratory waveform. (b) Picture of one subject during
the protocol performed in the 3 at-rest postures, i.e., sitting, standing, and lying down.
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2.3. Signal Pre-Processing

As briefly described in Section 2.1, the raw acceleration and angular velocity signals
were modulated by both the cardiac and respiratory activity components. Therefore, the
data were collected and pre-processed separately for the two activities to emphasize the
features of each one.

2.3.1. Cardiac Activity

Raw data were collected along 3 axes (i.e., x, y, and z, respectively). Although there
was information content in each axis, we chose to select a single axis for each signal to
reduce the problem’s dimensionality. Specifically, the z axis and the y axis were selected
for the ACC and GYR output signals, respectively, in line with the literature that points to
them as the most promising for this type of analysis [6,21,29,30]. Afterward, the signal was
reconstructed by using the inverse continuous wavelet transform (icwt) between 10 Hz and
40 Hz in order to eliminate frequencies associated with slow-varying trends (e.g., respiratory
activity) and isolate only the high-frequency packets representative of cardiac activity. The
choice to use icwt was made because it allows for greater selectivity in the frequency band
of interest, compared with classical bandpass filters, allowing noise cancellation to be
performed without distortion of the raw signal [23,31–33]. Then, the root mean square
envelope with a sliding window of 40 samples was applied to the reconstructed signal to
emphasize each heartbeat.

Thus, the signal calculated described above has a different shape from the original
signal and takes on a shape, almost like a periodic wave. Finally, a 1st order Butterworth
band-pass filter between 0.7 Hz and 3 Hz was applied on the whole signal (i.e., 120 s of
acquisition for each subject and each posture). The choice of these cutoff frequencies (i.e.,
0.7 Hz and 3 Hz) was chosen according to the frequency components of vibrations induced
by the blood flow ejection into the vascular bed and allowed the presence of the potential
source of noise, such as motion artifacts, to be attenuated.

Concurrently, we applied a 1st order Butterworth bandpass filter between 0.7 Hz and
3 Hz on the recorded reference ECG waveform, to emphasize only the R wave of the QRS
complex. An example of the signal processing for the cardiac activity analysis is shown
in Figure 3.

2.3.2. Respiratory Activity

Only one axis was also selected from each sensor (i.e., the z axis for the ACC and
the y axis for the GYR) to monitor the respiratory activity [34]. For the RR assessment
using the ACC and the GYR, the reference respiratory signals were pre-filtered with a
Butterworth band-pass filter with cut-off frequencies of 0.1 Hz and 0.7 Hz to avoid the
slow signal variations unrelated to respiratory activity and to eliminate high frequencies
due to both noise and cardiac activity. A bandpass configuration was chosen, by fixing
the low cut-off frequency around 0.1 Hz, to avoid the slow signal variations unrelated
to respiratory movements and a high cut-off frequency around 0.7 Hz. In this way, the
changes generated by the respiratory movements recorded can be adequately isolated and
relayed to the subsequent elaboration stages. An example of signal processing for the
analysis of respiratory activity is shown in Figure 4.

2.3.3. Signal Windowing for HR and RR Extraction

After the signal pre-processing, we extracted the HR and RR values using a frequency
domain analysis. However, using the power spectral density (PSD) on the whole signal did
not allow us to have any information on the variations in HR and RR values over time, but
it provides only a mean value. Hence, after the pre-processing stage, the filtered signals
were segmented by using moving windows with a sliding step of 1 s. In each window, we
selected the dominant frequency of the signal, obtaining the HR and RR variations over
time with an update time of 1 s and accuracy (in terms of temporal variations detected)
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related to the length of the signal’s portion analyzed in each window, which is thus related
to the length of the window used.
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Figure 3. Signal processing for cardiac activity extraction for mechanical signals (i.e., accelerations, a
and angular velocities, ω) and reference signal (ECG). After acquiring the raw signals of the ACC
and the GYR, only one axis was selected to reduce the dimensionality of the problem (i.e., the z axis
for the ACC and the y axis for the GYR). The selected signals were reconstructed using the inverse
wavelet transform by selecting frequencies between 10 Hz and 40 Hz and normalized. Finally, the
normalized signal envelope was extracted to emphasize the heartbeats and filtered between 0.7 and
3 Hz. Concurrently, the raw ECG reference signal was filtered between 0.7 and 3 Hz.
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Figure 4. Signal processing for respiratory activity extraction for mechanical signals (i.e., accelerations,
a and angular velocities, ω) and reference respiratory waveform.

The same frequency extraction was performed by using six different sliding windows
with sizes ranging from 5 s to 55 s in steps of 10 s.

The frequency range was chosen from 5 s to 55 s to include extreme cases and to find
out the right trade-off between temporal resolutions of HR and RR values provided (related
to the window size) and system performance. In fact, when a 5 s window was used, the
selected signal did not include an entire respiratory act under physiological conditions (in
eupnea, the subject could breathe at a rate lower than 12 BrPM). In this case, the technique
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based on FFT cannot provide a reliable RR estimation. Conversely, the use of a 55 s window
implies averaging over a larger portion of the signal with a consequent minimization
of errors caused by noise. However, quick changes in the phenomenon were averaged
and masked.

Therefore, firstly, both mechanical and reference pre-filtered signals were segmented
with different window sizes. Secondly, the PSD was applied to the signal segments using the
Welch’s method with a window length equal to the length of the portion of the previously
segmented signal. The PSD was calculated by applying a 0% overlap and with zero padding.
The analysis in the spectral domain was carried out to estimate the values of HR and RR
both from the reference system and from the mechanical signals (i.e., the ACC and the
GYR). Therefore, the reference system was firstly used to obtain the ECG and respiratory
waveforms. Then, these signals were band-pass-filtered in order to attenuate frequencies
that were not related to cardiac and respiratory activities and to make signals more periodic
by emphasizing beats (in the case of the ECG) and the inspiratory peaks in the case of the
respiratory waveform. Finally, HR and RR values were extracted with a frequency domain
analysis in accordance with [35,36] where a similar analysis was used to extract HR and RR
reference values from the Bioharness. Thus, of each signal, the PSD whose maximum peak
corresponds to the frequency with the highest power in the signal was evaluated. The latter
was selected and multiplied by 60 s·min−1 in order to calculate the HR and RR expressed
in bpm and BrPM, respectively.

It is noteworthy that the PSD resolution depends on the number of samples in the
window itself. Specifically, the spectral resolution increased when longer time windows
were considered, with a concomitant reduction in real-time performances (longer time
windows require a longer wait for a result). This means that different window sizes would
have different resolutions and the results would be hardly comparable. For this reason, a
constant resolution of 0. 166 mHz (i.e., 0.01 bpm for the HR and 0.01 BrPM for the RR) was
set by setting the ratio between the sampling rate of the signal and the number of discrete
Fourier transform points to use in the PSD estimate. With this aim, the data related to both
cardiac activity and respiratory activity were zero-padded.

After the signal segmentation and the PSD assessment, in each window, the HR and
RR values expressed in Hz were estimated by detecting the maximum frequency peak
within the cardiac and respiratory frequency band, respectively. After multiplying the
dominant frequency by a factor of 60, we computed the HR and RR values expressed in
bpm and BrPM, respectively. An example is shown in Figure 5. This approach allowed
us to obtain a trend of HR and RR values over time with an update time of 1 s for each
window size.

To assess the performance of the HR and RR extraction from SCG and GCG signals,
Bland–Altman analysis was performed. Bland–Altman analysis is one of the most popular
methods applied to investigate the agreement between the same measurement extracted
with a new measurement technique and an established one [37]. Specifically, it was used
to obtain the mean of difference (MOD) and the limit of agreement (LOA) values that are
typically reported in other studies and extremely useful when comparing our results with
the relevant scientific literature.

This analysis was carried out by considering the different at-rest postures separately
to assess the influence of posture on the results. Additionally, the different window sizes
were compared (see. Figure 6). Moreover, for a better comparison of performance between
windows, the mean absolute error (MAE) between the HR and RR values extracted from
the mechanical signals and the reference for each window was calculated (see Figure 7).
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Figure 5. (a,d) After signal preprocessing, HR and RR values were extracted from both mechanical
and reference signals using a frequency domain analysis in sliding windows. (b,e) In each window,
the PSD was computed using Welch’s method and the dominant frequency was selected. This analysis
was computed using six different window sizes. (c,f) An example for one subject of the HR and RR
values extracted in all the window sizes is also reported.
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Figure 6. Bland–Altman plot for HR estimation considering all postures from both a (in orange) and
ω (in green) signals against reference. The dotted line in the figure represents the MOD, while the
solid lines represent the LOA values. In each graph, the number of points is equal to the number of
subjects multiplied by 120 (i.e., the duration of the test) minus the length of the window. For example,
for the 5 s window, there will be 1256 points for a and 1256 points for ω.
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Figure 7. Bar graph of the mean absolute error (MAE) values calculated for both HR analysis (in the
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sitting, lying down, and standing) and for all the window lengths. For each analyzed combination, we
included the mean MAE value (in black) considering all subjects and the relative standard deviations
(reported as an error bar in red).
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3. Results
3.1. Cardiac Activity

Cardiac activity analysis involves the computation of HR values extracted with the
frequency domain analysis performed with sliding windows during both quiet breathing
and apnea phases. Figure 6 shows the Bland–Altman plot in sitting, lying down, and
standing postures, respectively. In Bland–Altman plots, the central dashed line shows the
MOD between values estimated with the proposed method and from ECG, while the upper
and lower horizontal lines indicate the 95% confidence intervals (LOA values).

After looking at the Bland–Altman plot, the worst results are obtained when a 5 s
window is used considering both SCG and GCG. The LOA values are always much larger
than in all other windows in the standing posture (12.5 bpm and 12.8 bpm compared to
3.5 bpm and 3.7 bpm obtained with a 55 s window size for SCG and GCG, respectively).
Furthermore, the results appear to be roughly comparable using the other five window
sizes (i.e., 15 s, 25 s, 35 s, 45 s, and 55 s).

MAE values allow a clear comparison between SCG (in orange) and GCG (in green) to
be performed, considering the different window sizes, as shown in Figure 7. The SCG signal
gives comparable results to the GCG signal, reaching a difference of 0.53 bpm from the SCG
in the seated posture at most. The trend in MAE values, as a function of window size, is
also noteworthy. In fact, one notices a sudden descent of MAE values in the transition from
5 s to 15 s in all postures of the subject. From 15 s onwards, on the other hand, the MAE
value remains approximately constant up to the 35 s window and then increases slightly,
deviating by a maximum of 0.34 bpm considering the windows from 15 s to 55 s.

3.2. Respiratory Activity

As for the cardiac analysis, the worst results in the RR estimation are obtained when a
5 s window is used considering both SCG and GCG, reaching LOA values of 13.8 BrPM
and 12.9 BrPM during the standing posture, compared to 4.7 BrPM and 4.4 BrPM using
a 55 s window size, respectively (see Figure 8). Furthermore, there is an ever-decreasing
trend in the results as the window size increases.
Biosensors 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

Figure 8. Bland–Altman plot for RR estimation considering all postures from both 𝑎 (in orange) 

and ω (in green) signals against reference. The dashed line in the figure represents the MOD while 

the solid lines represent the LOA values. In each graph, the number of points is equal to the number 

of subjects multiplied by 120 (i.e., the duration of the test) minus the length of the window. 

4. Discussion and Conclusions 

The aim of this paper is twofold: (i) to provide a comparison in terms of performance 

between the ACC and the GYR in the simultaneous extraction of HR and RR values; (ii) 

to investigate how the window lengths and subjects’ posture influence the extraction of 

HR and RR values from ACC and GYR signals. 

Tests were carried out on eleven subjects, assuming different at-rest postures to 

mimic common daily-life conditions. The extraction of HR and RR values was performed 

by computing a frequency domain analysis in sling windows. In an effort to understand 

if and how the portion of the signal used for the analysis influences the performances of 

the algorithm, we investigated six different sizes. Although the literature has reported a 

few studies which performed frequency domain analysis in sliding windows, a compari-

son between the performances using different sizes has yet to be proposed. This analysis 

allows us to find the best trade-off between the window length that is related to the ability 

to track the HR and RR values over time, and the performances in cardiac and respiratory 

frequency extraction. 

In the extraction of the HR, a comparison between the window sizes shows that there 

is a sudden decreasing trend in MAE values when windows from 5 s to 25 s are used for 

both ACC and GYR output signals. Afterwards, this trend does not undergo major 

changes from windows 25 s to 55 s in which always remains below 1 bpm and fulfils the 

requirement given in ANSI/AAMI EC13: 2002 [38] for both the SCG and the GCG.  

Regarding a 25 s window length, the MOD and LOA values of the data are fairly 

better than those obtained in [20] where combined ACC and GYR measurements are 

Figure 8. Bland–Altman plot for RR estimation considering all postures from both a (in orange) and
ω (in green) signals against reference. The dashed line in the figure represents the MOD while the
solid lines represent the LOA values. In each graph, the number of points is equal to the number of
subjects multiplied by 120 (i.e., the duration of the test) minus the length of the window.
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MAE values (see Figure 7) show that the GCG signal gives results slightly better than
the SCG signal. This result is more evident during the standing posture where the MAE
values calculated by GCG are always below those calculated by SCG by at least 1.1 BrPM.
Regarding the trend in MAE values, as a function of window size, a decreasing trend can
be observed.

4. Discussion and Conclusions

The aim of this paper is twofold: (i) to provide a comparison in terms of performance
between the ACC and the GYR in the simultaneous extraction of HR and RR values; (ii) to
investigate how the window lengths and subjects’ posture influence the extraction of HR
and RR values from ACC and GYR signals.

Tests were carried out on eleven subjects, assuming different at-rest postures to mimic
common daily-life conditions. The extraction of HR and RR values was performed by
computing a frequency domain analysis in sling windows. In an effort to understand if
and how the portion of the signal used for the analysis influences the performances of the
algorithm, we investigated six different sizes. Although the literature has reported a few
studies which performed frequency domain analysis in sliding windows, a comparison
between the performances using different sizes has yet to be proposed. This analysis allows
us to find the best trade-off between the window length that is related to the ability to
track the HR and RR values over time, and the performances in cardiac and respiratory
frequency extraction.

In the extraction of the HR, a comparison between the window sizes shows that there
is a sudden decreasing trend in MAE values when windows from 5 s to 25 s are used
for both ACC and GYR output signals. Afterwards, this trend does not undergo major
changes from windows 25 s to 55 s in which always remains below 1 bpm and fulfils the
requirement given in ANSI/AAMI EC13: 2002 [38] for both the SCG and the GCG.

Regarding a 25 s window length, the MOD and LOA values of the data are fairly better
than those obtained in [20] where combined ACC and GYR measurements are performed on
lying-down subjects. Although the HR extraction method is not exactly the same (MOD ± LOA
values = 0.30 ± 5.36 bpm for the ACC and GYR combination reported in [20] against
MOD±LOA values =−0.07± 4.12 bpm for theACCandMOD±LOAvalues = −0.32 ± 4.67 bpm
for the GYR considering our study), in both cases, lying-down posture was considered.

Furthermore, in [23], authors proposed a dedicated algorithm to estimate heart rate
and respiratory rate from an accelerometer by using the CEBS database of PhysioNet and
additional experiments for the respiratory rate extraction. The results (in terms of MOD
and LOA values) reported in this study with supine subjects are slightly better than those
reported in our study regarding the supine position and a window of 25 s.

Regarding RR, the trend is always downward with a steeper slope in the step from
5 s to 15 s and less in subsequent steps, settling the MAE values always below 3 BrPM.
Furthermore, the analysis showed that there are no major differences between the ACC
and the GYR in the HR extraction, while slightly better results are obtained when the GYR
is used for RR extraction compared to the ACC, especially during the standing posture.

Overall, the errors obtained in HR and RR extraction are comparable in terms of MOD
and LOA values to studies that focus on only one of the two parameters. For example, [22]
proposes the extraction of HR values by using a frequency domain approach from the
combination of ACC and GYR output signals with the subject in static positions (i.e., sitting
and standing) and an IMU sensor attached to clothes at the chest level. In the standing
posture, an MOD of −2.02 with 95% LOA in −21.45 to 17.41 (using the z axis of the ACC)
is shown, as well as an MOD of −0.07 with 95% LOA in −6.14 to 6.00 (using a combination
of the ACC and the GYR). The mean errors during the sitting posture were −8.30 with
95% LOA in −25.35 to 8.75 (using the z axis of the ACC) and −3.82 with 95% LOA in
−18.70 to 11.07 (using a combination of the ACC and the GYR). These are quite a bit higher
than those presented in our study by considering the same postures (both sitting and
standing postures) and all the lengths of the windows. In addition, [34] proposes a system
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embedding two IMU sensors only for RR extraction. However, the use of multiple sensors
increases the complexity of both the algorithm and the system. Finally, the achieved results
are even comparable to those obtained with other much more cumbersome techniques that
can measure both cardiac and respiratory activity [36].

Although there are a few studies comparing the ACC and the GYR, in terms of
waveforms, spectra, amplitude intervals, cardiac cycle length and area, and the extraction
of HRV indices [13,39], there are few investigations on how the two techniques (i.e., the
ACC and the GYR) simultaneously extract HR and RR values considering different postures.
Moreover, when frequency domain analysis is performed on the whole signal, only one
average HR or RR value is obtained. In order to obtain information regarding the variation
in the two vital parameters over time, a segmentation of the signal with moving windows
is necessary. By using 1 s as a sliding step, as the size of the window increases, and thus
the size of the signal on which the PSD is measured, the ability of the system to follow the
changes in HR and RR values over time decreases, especially when these changes are rapid.
Hence, the data in two adjacent windows and the HR and RR values are highly correlated,
especially when larger windows are used. This phenomenon can be seen from the graphs
shown on the right of Figure 5. In fact, it is evident that more pronounced oscillations
between the i-th window and the i + 1-th window (represented in the figure by two adjacent
dots) occur when smaller lengths of windows are used. Conversely, when higher lengths
of windows are used, the oscillations decrease. For these reasons, significant efforts have
been devoted to providing guidelines (in terms of window size and user posture) for the
simultaneous and reliable estimation of HR and RR values through ACC and GYR output
signals. This will push the adoption of the IMU-based wearable systems during daily life
activities using a low-cost, minimally invasive device.

A major limitation of this study is the sample size used for analysis and the brevity of
the tests conducted, which does not allow an excellent generalization of results. In addition,
the HR and RR values were calculated only with the subject at rest. This condition is optimal
to avoid motion artifacts affecting the signal; however, a possible future development could
be to evaluate the goodness of the developed algorithm for HR and RR estimation, also
with moving subjects, thus extending the applicability of the proposed technique for a
wider range of applications and scenarios. Moreover, as can be seen in Figure 7, there is
variability between subjects, especially in particular cases such as in the case of subject
2 during the standing test when respiratory activity is extracted. These changes can be
attributed to typical inter-subject variations, including, gender, age, sensor adherence to
the chest, and postural positions, as the literature on these types of signals suggests [13,25].

In conclusion, this study demonstrates that both the ACC and the GYR embedded in
a single IMU sensor can estimate HR and RR values. Better results were obtained using
the ACC output when compared to the GYR. Moreover, we provide guidelines for signal
analysis when a frequency domain approach is used, highlighting the system potentiality
of real-time cardiorespiratory monitoring. However, this analysis can provide different
results considering trials on a sample, showing both a lower or higher variability of HR
and RR values.
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