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Abstract: Most people with motor disabilities use a joystick to control an electric wheelchair. However,
those who suffer from multiple sclerosis or amyotrophic lateral sclerosis may require other methods to
control an electric wheelchair. This study implements an electroencephalography (EEG)-based brain–
computer interface (BCI) system and a steady-state visual evoked potential (SSVEP) to manipulate an
electric wheelchair. While operating the human–machine interface, three types of SSVEP scenarios
involving a real-time virtual stimulus are displayed on a monitor or mixed reality (MR) goggles to
produce the EEG signals. Canonical correlation analysis (CCA) is used to classify the EEG signals into
the corresponding class of command and the information transfer rate (ITR) is used to determine the
effect. The experimental results show that the proposed SSVEP stimulus generates the EEG signals
because of the high classification accuracy of CCA. This is used to control an electric wheelchair
along a specific path. Simultaneous localization and mapping (SLAM) is the mapping method that is
available in the robotic operating software (ROS) platform that is used for the wheelchair system for
this study.

Keywords: brain–computer interface (BCI); steady-state visual evoked potential (SSVEP); augmented
reality (AR); canonical correlation analysis (CCA); electric wheelchair; simultaneous localization and
mapping (SLAM)

1. Introduction

With the advancement of science and technology, electric wheelchairs are widely
used to help disabled people move to the destination they want to go. However, a person
who suffers from a neurodegenerative disease such as amyotrophic lateral sclerosis (ALS),
multiple sclerosis (MS) [1] (pp. 204–219), and so on may not be able to use an electric
wheelchair because they find it difficult to use a joystick as the control. Therefore, an
autonomous electric wheelchair with a navigation system [2,3] can be operated by these
individuals. An electrode cap acquires electroencephalography (EEG) signals from the
human brain and brain–computer interface (BCI) systems translate the EEG signals into
motion commands in real time [4,5].

BCI systems have been developed over several years, and can record many types
of neural signals non-invasively or invasively: these include EEG, functional magnetic
resonance imaging (fMRI), microelectrode arrays (MEAs), intracortical recording, elec-
trocorticography (ECoG) and so forth [6] (pp. 814–826). EEG and fMRI belong to the
non-invasive BCI systems, and intracortical recording and ECoG are the two invasive
modalities mainly used in BCI research [7] (p. 6285). This research focused on the non-
invasive EEG-based BCIs that have been realized using a variety of paradigms, including
steady-state visual evoked potential (SSVEP), P300, rapid serial visual presentation (RSVP),
movement-related potentials (MRPs), motor imagery [8–10], etc. These paradigms can be
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identified in two groups: endogenous and exogenous. The exogenous BCI paradigms need
to use an external scene to stimulate the brain cortex, such as flashing stimuli or auditory
beeps, to evoke discriminative patterns in the brain. SSVEP, P300 and RSVP all belong to
the exogenous BCI paradigms. The endogenous BCI paradigms, such as motor imagery
and MRPs, produce brainwave signatures spontaneously without external stimulation [11].
SSVEP is widely used in the speller system because it has a high ITR, good signal-to-noise
ratio (SNR) and allows users to select multiple targets. The P300 waveforms are the brain
patterns that are commonly used for EEG-based BCIs in traditional studies. These involve
rare, task-relevant events and are often recorded at a latency of approximately 300 ms after
stimuli are enacted [12]. However, the literature shows that SSVEP is more accurate than
P300. Although the ITR for a hybrid BCI combining P300 and SSVEP is higher than the ITR
for SSVEP, the total time that is required for the experiment on P300 is significantly more
than that for SSVEP [13] (p. 101, 884). This study uses SSVEP to present brain patterns.
SSVEP scenarios involve several white flickers flashing rapidly on a black background.
Repetitive visual stimuli can elicit them at frequencies from 1 to 100 Hz [14] (pp. 346–353).
The screen display is an interface that shows the SSVEP scenarios for the user during the
experiment [15] (pp. 614–627). This study uses three types of SSVEP scenarios; one controls
the motion of an electric wheelchair for five types of motion: forward, left, right, backward
and ending for an emergency, and a second uses room information for a destination, such as
a room number and name. The third scenario gathers information about a room and creates
a map to allow users to specify a destination more intuitively. If navigation is automatic, it
may be restricted due to environmental factors [16] (pp. 128–139). Systems can account for
environmental factors but converting the environmental map can require much time, so
this study uses automatic navigation and users can control the direction of a vehicle.

EEG signals are acquired using an electrode cap that is positioned on the user’s scalp.
These are interpreted using analytical methods or learning models, such as canonical
correlation analysis (CCA), multivariate synchronization index (MSI) [17], support vector
machine (SVM) [18], power spectral density analysis, k-nearest neighbors (k-NN) and linear
discriminant analysis (LDA) [19,20]. The CCA method without channel location selection
and parameter optimization analyzes the relationship between two samples of frequency
information from multiple-channel EEG signals. Studies show that the CCA analyzes
SSVEP signals and detects their frequencies better than other conventional recognition
techniques [21,22]. Therefore, this study passes EEG signals through a bandpass filter to
reduce interference and classification uses CCA to recognize SSVEP events.

The ITR is measured in bits per minute and is used to determine the communication
speed for a BCI [23] (p. 025015). This study calculates ITR and classification accuracy using
CCA to verify the online performance of the BCI system. Finally, the classification results
from the CCA are then translated into motion commands and communicated to a robotic
arm or an electric wheelchair. As an application of this paper, the classification results are
used to produce motion commands and navigational instructions in real time to convey an
electric wheelchair to a destination that is defined by the user [24].

Mapping is the most elemental application for an electric wheelchair with automatic
navigation. Before the automatic navigation system is activated, an environment map must
be established using sensors such as a camera, sonar or laser scanner that the wheelchair
system uses to localize. The most common mapping method is SLAM, which creates a map
while it localizes the robot’s location [25]. In this case, GMapping is an algorithm for SLAM
that is used for this study. The navigation system is configured in the ROS environment to
ensure safety and convenience.

Inspired by these researches, this research implements an EEG-based BCI system and
an SSVEP to manipulate an electric wheelchair. The purpose of this system is to make life
easier for people with reduced mobility. By using CCA as a tool for analyzing EEG signals,
they can be more accurately identified as corresponding categories. The main contributions
of this paper are as follows:
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1. For EEG signal analysis, two training-free algorithms, CCA and MSI, are applied in
this article. The experimental results show that the accuracy rate is higher than 80.9%,
so the proposed stimulus can be analyzed by various algorithms.

2. This article improves the display stimuli, using MR goggles as a display tool, with
significantly increased accuracy and improved space usage on the electric wheelchair.

The remainder of this paper is organized as follows. Section 2 presents the architecture
for this study. Section 3 describes the design of the BCI system, including the SSVEP
scenario and the method of analysis. Section 4 demonstrates the proposed BCI-based
electric wheelchair control system. Section 5 details the experiment and the results are
presented in Section 6.

2. Architecture

The EEG signals were collected from subjects who wore an EEG electrode cap and
gazed at the stimulus of the scenario on a monitor or used mixed reality goggles. The three
scenarios used correspond to different functions of the wheelchair system. The first scenario
describes the direction of the wheelchair: there are four arrow-shaped patterns covered by
four flickers, representing four directions and one square image with the word end covered
by the remaining flicker. The second scenario uses five rectangles with information about
the destination room. These are covered by the five different frequencies of flickers. The
third uses an environment map with five rooms and five different frequencies of flickers
overlapping each room image.

Before the EEG data is acquired, the environment map must be constructed by the
wheelchair system. Scenario 3, which presents the appearance of the map, is then shown on
the screen or mixed reality goggles to allow users to navigate to the designated locations.
The user chooses a destination and a CCA-based classifier classifies the EEG signals into
frequency classes to generate five confidence scores. The confidence scores represent
the probability of the corresponding frequency of the EEG signal. The highest score
indicates that this EEG signal is most related to this frequency and the electric wheelchair
is moved according to the corresponding commands translated using the result of CCA. In
other words, if the confidence score that corresponds to one of the frequency categories is
significantly higher than the other scores, the destination coordinates that correspond to this
frequency category are transmitted to the electric wheelchair to allow it to autonomously
navigate to a location that is specified by the user. The program ends when the device
reaches a destination. If all of the confidence scores are lower than the threshold, Scenario 2
replaces Scenario 3.

Scenario 2 uses the same five flickers as Scenario 3 and the EEG signal that corresponds
to each flicker also produces five confidence scores after processing by the CCA classifier. If
all of the confidence scores are less than a threshold, TR, Scenario 2 is replaced by Scenario 1
to allow the user to control the wheelchair by looking in the direction of travel.

Five confidence scores are also generated for Scenario 1. Similarly, if all of these scores
are less than a threshold, TD, Scenario 3 is used for navigation. If one of the confidence
scores is significantly higher than the others, the wheelchair moves in the direction that
corresponds to this frequency. If the frequency category with the highest confidence score
corresponds to 13 Hz with the word “end” the program ends. It also means that the user
moves the electric wheelchair to the designated position and does not need to move. All in
all, Scenario 2 and Scenario 3 allow automatic navigation and Scenario 1 allows users to
manipulate the wheelchair. The architecture of the online system for this study is shown
in Figure 1.
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Figure 1. The architecture for this study. Subjects select one of the three scenarios for automatic
interactive control. EEG signals are acquired by participants using one of the scenarios. When the
data are collected, a CCA classifier detects the target. Analyzed EEG signals are then translated to
commands to control the electric wheelchair.

3. Brain–Computer Interface System
3.1. SSVEP Scenario Configuration and Design

To acquire the EEG datasets from the human brain, three different SSVEP scenarios
are viewed by the user. The five flickers have specific frequencies (7, 8, 9, 11 and 13 Hz) that
overlap on the figures and are configured at the four corners and the middle of the black
background. There are two command modes to move the electric wheelchair: automatic
mode or using human interface devices, such as a joystick or a keyboard.

For this study, Scenario 1 uses five color images to replace the joystick. There are four
different orientation arrows and an end choice. Scenario 2 presents the information for each
room, which the user can choose to directly move to the room. Scenario 3 uses a map that
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is constructed by the guidance system for the electric wheelchair. The flickers are separated
to avoid interference when participants watch one of the targets. Scenarios 2 and 3 allow
the electric wheelchair to move automatically. The configurations for these three scenarios
are shown in Figure 2.
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Figure 2. The three scenario configurations for this study: (a) Scenario 1 with four directions on the
corners and an end choice in the middle of the black background, (b) Scenario 2 with five pieces of
information of each room and (c) Scenario 3, where the map is constructed by the electric wheelchair.

3.2. Canonical Correlation Analysis for EEG Signals

Among many recognition methods, SVM and CCA differ in that CCA does not divide
data into trial and test data. The CCA method implements correlation maximization
between the multichannel EEG signals. However, the 60 Hz AC noise in the environment is
contained in the datasets that are collected by the EEG electrode cap. A four-order bandpass
infinite impulse response filter eliminates interference and retains frequencies from 3 to
40 Hz. The filtered datasets are analyzed using CCA, which identifies and measures the
associations between two sets of variables [26]. The relationship between each EEG signal
that is collected by stimulating the visual cortex of the brain and the frequencies for the
five classes, which are 7, 8, 9, 11 and 13 Hz, are compared with their harmonic frequency to
calculate the classification accuracy. There are five classification rates for each EEG signal
and the result with the highest accuracy determines the class of the dataset.

Assume two matrixes X ∈ Rn×p and Y ∈ Rm×p and define its cross-covariance matrix
as ∑XY = cov(X, Y) which is m-by-n matrix. Find the vector a ∈ Rn and b ∈ Rm by
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canonical correlation analysis to maximize the correlation ρ = corr(U,V) between random
variables U = aTX and V = bTY. Therefore, the ρ can be derived as

ρ = corr(U, V)

= cov(U,V)
σUσV

= aT ∑XY b√
aT∑XX a

√
bT∑YY b

(1)

Then solve a and b in order to obtain the maximum solution for c; the conditions for
optimizing this problem are defined as Equation (2)

Maximize aT ∑XY b
Subject to aT∑XX a = 1, bT∑YY b = 1

(2)

According to the Lagrange multiplier method, Equation (3) is obtained

L = aT ∑XY b− λ

2
(aT ∑XX a− 1) − θ

2
(bT ∑YY b− 1) (3)

Take the partial differential calculation of L with a and b, respectively, and let the two
Equations be 0, as shown in Equations (4) and (5)

∂L
∂a

= ∑XY b− λ
(
∑XX a

)
= 0 (4)

∂L
∂b

= ∑YX a− θ
(
∑YY b

)
= 0 (5)

Multiply the left side of Equation (6) by aT and the left side of Equation (7) by bT, and
then arrange it according to the constraints of Equation (2) to obtain Equation (8)

aT ∑XY b− λ
(

aT ∑XX a
)
= 0 (6)

bT∑YX a− θ
(

bT ∑YY b
)
= 0 (7)

⇒ λ = θ = aT ∑XY b (8)

According to the conditions of Equations (2) and (8), it is known that the desired λ

is the maximum value, and Equations (6) and (7) are simplified and sorted into
Equations (9) and (10)

∑XX
−1 ∑XY b = λa (9)

∑YY
−1∑YX a = λb (10)

Put (10) into (9) to obtain (11); you can find the eigenvalue λ2 and the eigenvector a,
and put (9) into (10) to obtain the eigenvector b

∑XX
−1 ∑XY ∑YY

−1∑
YX

a = λ2a (11)

∑YY
−1∑YX ∑XX

−1∑XY b = λ2b (12)

When λ is the maximum value, a and b at this time are called canonical variates, and λ

is the maximum correlation coefficient between U and V, which is shown in Equation (13)

ρ = corr(U, V) = λ (13)
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3.3. Multivariate Synchronization Index

MSI is an algorithm that can be directly analyzed without the training that CCA needs.
This measure is to estimate the synchronization between the actual mixed signals and the
reference signals as a potential index for recognizing the stimulus frequency [17,27]. We use
the same filtering method as CCA to process the EEG signals before using MSI for analysis.

Assume an N by M matrix X ∈ RN×M representing the filtered EEG signal. The MSI
must also create a sample signal from the stimulus frequencies used in an SSVEP-based
BCI system, similarly to CCA, and we assume a 2Nh by M matrix Y to represent it, where
N is the number of channels used in the experiment, M is the number of sampling points of
the EEG signal and Nh is the resonant frequency multiplier taken in the experiment. To
find the synchronization index between the two sets of signals, the calculation is derived
as follows

First the correlation matrix between X and Y must be calculated

c =

[
c11 c12
c21 c22

]
(14)

where
c11 =

1
M

XXT (15)

c22 =
1
M

YYT (16)

c12 = c21T =
1
M

XYT (17)

Because this correlation matrix includes a cross-correlation matrix and an autocor-
relation matrix, where the autocorrelation matrix will affect the synchronization calcula-
tion, we convert the autocorrelation matrix into a linear form for calculation to eliminate
the influence

C11 = c11
−1
2 (18)

C22 = c22
−1
2 (19)

U =

[
C11 0

0 C22

]
(20)

R = UCUT =

[
IN×N C11c12C22

C22c21C11 INh×Nh

]
(21)

Let the matrix R obtained from Equation (21) have the number of K eigenvalues, where
K = N + Nh. Then, the calculation to normalize all the eigenvalues λ1 . . . λK is as follows

E =
λi

∑K
i=1 λi

(22)

Finally, calculate the max of synchronization index S as shown in Equation (23)

S = 1 + ∑K
i=1 Eilog(Ei)

log(K)
(23)

3.4. Information Transfer Rate of EEG Signals

A standard measure for communication systems is the bit rate, which is the amount of
information that is communicated per unit. The bit rate depends on speed and accuracy [28]
(pp. 94–109). In order to determine whether the data are converted into a stimulus to
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increase accuracy, this study calculates the ITR for each flicker for different frequencies is
shown in Figure 3. The ITR is calculated as

B(bits/trial) = log2n + plog2p + (1− p)log2
1− p
n− 1

(24)

Q(trials/min) =
S
t
× 60

1
(25)

ITR(bits/min) = B(bits/trial)×Q(trials/min) (26)

where n is the number of targets (for this study, there are five classes in each scenario), p is
the average value for the classification accuracy for five classes in each scenario, S is the
number of trails and t is the average time for one selection, which includes the stimulation
time and rest time before the following stimulus appears: the unit is seconds. For the
experiment, the stimulation time and the rest time before the following stimulus is three
seconds per trial is shown in Figure 4.
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4. Electric Wheelchair Control

This study uses a human–machine interaction that uses brain signals to manipulate
an electric wheelchair without a joystick. Therefore, the stimulus that replaces the joystick
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is described in the previous section. When the CCA reconstructs the brain signals into
a corresponding control command, an interpreter translates the command into machine
language ROS scripts to control the electric wheelchair.

4.1. Hardware and Software

The electric wheelchair for this study is shown in Figure 5. It is controlled using
a laptop from ASUS in Taiwan with an Intel Core i7-6700HQ CPU, 8GB RAM and an
NVIDIA GeForce GTX 960M GPU with 512 Tensor Cores. To reach a specified destination
avoiding obstacles, an Intel® RealSense D435i RGB-D camera from Intel Corporation, Santa
Clara, California, United States and a SICK TIM551 2D-LiDAR from SICK, Waldkirch,
Germany are used to determine the geography of the environment, as shown in Figure 6.
Furthermore, the operating system is installed and configured in an ROS environment on
Ubuntu 18.04 from Canonical company in UK on the PC.
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4.2. Navigation

The concept of the autonomous navigation system is based on the mapping process
using SLAM, which includes visual SLAM (V-SLAM) and Li-DAR-SLAM. For this study,
the GMapping algorithm depicts the environment on a map using 2D-LiDAR before the
electric wheelchair is driven to a specified destination. The current location of the electric
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wheelchair must be determined on the map. The current coordinate point is sent to SLAM
to generate the navigational information by subscribing and publishing. Finally, the control
command, which is the classification results from the EEG signals, is transmitted to the
navigation system to complete the corresponding task.

The picture depicting the direction in which the wheelchair moves in Scenario 1 has
five flickers that correspond to end, forward, backward, left and right turn. When the CCA
classifier recognizes the class of the EEG signal corresponding to the flicker, the flicker that
the subject observes is identified. For example, in Scenario 1, the flicker with a frequency of
7 Hz corresponds to the backward direction. When the CCA classifier recognizes the EEG
data, the wheelchair receives a command to move backward.

The automatic navigation system is initiated if the second mode is used. The flicker
with a frequency of 7 Hz corresponds to room “801A” in Scenario 2. After that, the
wheelchair receives the navigation instruction, which is the location coordinates of room
“801A”, and the map of field experimentation is used to allow the electric wheelchair to
move to room “801A”.

Mode 3 triggers the automatic navigation system that allows the wheelchair to move
autonomously. If the user does not understand the site map or the relative location of the
room, Mode 3 generates an intuitive scenario for users. The participant looks at the screen
for Scenario 3, which shows the environment map. The flicker with a frequency of 7 Hz
also corresponds to room “801A” in Scenario 3, and the acquired EEG data are transmitted
to the CCA classifier to verify the frequency.

5. Experiments
5.1. Experimental Setup

To ensure the accuracy of CCA classification in real-time system for every user, an
experiment analyzed the acquired EEG signals for twelve subjects. During the data-
acquisition phase, each subject performed 20 trials using each scenario that was displayed
on the monitor and MR goggles. The total length of each recorded data sequence was 3 s.

This study acquired EEG signals using an OpenBCI Cyton board with OpenBCI
software from Brooklyn, New York, USA and collected the EEG signals from a 21-channel
EEG cap that has a sampling rate of 250 Hz. The scenarios were displayed on a monitor
and MR goggles. An ASUS XG279Q, which is a high-level stimulating monitor with a
144 Hz refresh rate, and a Microsoft HoloLens 2 with a 60 Hz refresh rate were used to
create stimuli for the BCI experiment. A red square overlapping on the flicker was used to
specify the picture at which the participant looks.

The subject focused on the marked object and followed the instructions that were
displayed on the screen or MR goggles to collect the data for frequencies of 7, 8, 9, 11 and
13 Hz. During the experiment using a screen, the participants sat 30 cm away from the
screen and observed the flickers. The configuration for the experiment using a screen is
shown in Figure 7. For the experiment that used MR goggles, participants wore an electrode
cap kit and then put on the MR goggles. The configuration for the experiment using MR
goggles is shown in Figure 8. Twelve subjects, ten males and two females, participated
in the experiment. Their ages were in the range 39 ± 17. Each subject read and signed
an informed consent form that was approved by the Study Ethics Committee for Human
Study Protections (21MMHIS241e). When the data were acquired, they were fed into a
CCA classifier to determine the classification accuracy.
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When the CCA classification rate was verified, the electric wheelchair was operated
online. When controlling the electric wheelchair using the real-time system, the subject is
absorbed in the interface or MR goggles and has five options that correspond to respective
flickers. This EEG signal measures the associations with the classified dataset. The outcome
is translated into a command to control the movement of the wheelchair or a target location
and is transmitted via TCP/IP.

5.2. SSVEP Experimental Results

This study collected the EEG signals from a 21-channel EEG cap that has a sampling
rate of 250 Hz. A laptop configured with an Intel i7-10750H CPU, 16GB RAM and RTX
1660Ti 6GB GPU was used to acquire the EEG signals from the amplifier. The configuration
of the channels on the EEG cap is shown in Figure 9. The three channels O1, O2 and Pz, in
the occipital region, which is the yellow region in Figure 9, were used as the CCA classifier’s
input signal to reconstruct the SSVEP-based stimulus.
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Three scenarios describe the direction (Scenario 1), room information (Scenario 2),
and environmental map (Scenario 3), which were analyzed using the CCA and MSI clas-
sifier. One experiment used a screen to present the scenarios and the other used MR
goggles to display the flickers. The results of the first experiment using a screen and the
classification method CCA, collected from twelve participants, are shown in Tables 1–3,
respectively. The results of another experiment using MSI as an analysis tool are shown in
Tables 4–6, respectively.

Table 1. The confusion matrix for the SSVEP recognition results using CCA classifier for the direction
test in the first experiment (Scenario 1).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 228 4 3 1 4 95

8 Hz 12 218 3 4 3 90.8

9 Hz 10 5 217 7 1 90.4

11 Hz 3 4 6 226 1 94.2

13 Hz 13 9 9 10 199 83

Precision (%) 85.7 90.8 91.2 91.1 95.7

Table 2. The confusion matrix for the SSVEP recognition results using CCA classifier for the room
information test in the first experiment (Scenario 2).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 227 3 7 2 1 94.6

8 Hz 8 221 6 3 3 92.1

9 Hz 3 7 221 6 3 92.1

11 Hz 11 8 6 212 3 88.3

13 Hz 20 12 11 12 185 77.1

Precision (%) 89.8 98 97 98 100
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Table 3. The confusion matrix for the SSVEP recognition results using CCA classifier for the map test
in the first experiment (Scenario 3).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 209 12 6 11 2 87.1

8 Hz 22 198 4 10 6 82.5

9 Hz 13 9 209 6 3 87.1

11 Hz 15 19 6 197 3 82.1

13 Hz 17 16 11 12 184 76.7

Precision (%) 75.7 78 88.6 83.5 92.9

Table 4. The confusion matrix for the SSVEP recognition results using MSI classifier for the direction
test in the first experiment (Scenario 1).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 227 6 3 1 3 94.5

8 Hz 22 204 9 4 4 85

9 Hz 11 9 215 5 1 89.6

11 Hz 12 7 7 213 2 88.8

13 Hz 27 17 17 8 175 72.9

Precision (%) 75.9 84 85.7 92.2 94.6

Table 5. The confusion matrix for the SSVEP recognition results using MSI classifier for the room
information test in the first experiment (Scenario 2).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 226 2 5 5 2 94.2

8 Hz 8 219 7 3 3 91.3

9 Hz 7 9 218 4 2 90.8

11 Hz 22 20 6 191 1 79.6

13 Hz 31 17 14 10 168 70

Precision (%) 76.9 84.9 87.2 89.7 95.5

Table 6. The confusion matrix for the SSVEP recognition results using MSI classifier for the map test
in the first experiment (Scenario 3).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 221 6 5 5 3 92.1

8 Hz 21 203 6 6 4 84.6

9 Hz 23 11 197 7 2 82.1

11 Hz 28 17 5 186 4 77.5

13 Hz 30 20 13 13 164 68.3

Precision (%) 68.4 79 87.2 85.7 92.7
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Scenario 1 was designed as a similar function as a joystick, used to control the direction
of an electric wheelchair and the accuracies (ACCs) of CCA for four orientations, backward,
forward, left and right and an end option, at frequencies of 7 Hz, 8 Hz, 9 Hz, 11 Hz and
13 Hz were 95%, 90.8%, 90.4%, 94.2% and 83%, respectively. The average ACC for all
frequencies was 90.7%.

For the experiment involving automatic control five pictures of the room tag with the
rooms’ names and identification numbers were used. For Scenario 2, the same frequencies
were used, and the classification ACCs of CCA were 94.6%, 92.1%, 92.1%, 88.3% and 77.1%,
respectively. The average ACC for all frequencies was 88.8%.

Scenario 3 used a map of the entire experimental field so the subject selected the
location of the rooms directly. The ACCs of CCA were 87.1%, 82.5%, 87.1%, 82.1% and
76.7%, respectively. The average ACC for all frequencies was 83.1%.

For the experiment that used a screen to present the scene, Scenario 3 used a map
and the user saw the location of the destination initially, but the ACC was obviously low.
Therefore, Scenario 2 was used to confirm the user’s choice and increase the accuracy of
the BCI system.

Similar to Scenario 1 using the CCA classifier, the results from using the MSI analysis
tool were 94.5%, 85%, 89.6%, 88.8% and 72.9%, respectively. The average ACC for all
frequencies was 86.2%. For Scenario 2, using the same frequency and MSI for analysis,
the classification ACCs were 94.2%, 91.3%, 90.8%, 79.6% and 70%, respectively. The
average ACC for all frequencies was 86.3%. Then the classification rates in Scenario 3 were
92.1%, 84.6%, 82.1%, 77.5% and 68.3%, respectively. The average ACC for all frequencies
was 80.9%.

The results for the experiment that used MR goggles and CCA for analysis, collected
from the same twelve participants, are shown in Tables 7–9 respectively. The experimental
results using MSI as the analysis method are shown in Tables 10–12. Scenarios 1, 2 and 3
were the same as those for the experiment using the screen. Using MR goggles, Scenario 1,
which controlled the direction of the electric wheelchair, had respective accuracies (ACCs)
for the four orientations, backward, forward, left and right, and an end option at frequencies
of 7 Hz, 8 Hz, 9 Hz, 11 Hz and 13 Hz were 95.8%, 97.9%, 100%, 98.8% and 97.5%. The
average ACC for all frequencies was 98%. Scenario 2 used the same frequencies and the
classification ACCs were 94.6%, 96.3%, 98.8%, 98.3% and 95.8%, respectively. The average
ACC for all frequencies was 96.8%. Scenario 3 used a map of the entire experimental field
and the ACCs were 99.6%, 98.8%, 100%, 98.3% and 97.5%, respectively. The average ACC
for all frequencies was 98.8%.

Table 7. The confusion matrix for the SSVEP recognition results using CCA classifier for the direction
test in the second experiment (Scenario 1).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 230 1 2 4 3 95.8

8 Hz 4 235 1 0 0 97.9

9 Hz 0 0 240 0 0 100

11 Hz 1 1 1 237 0 98.8

13 Hz 1 0 3 2 234 97.5

Precision (%) 97.5 99.2 97.2 91.13 95.67
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Table 8. The confusion matrix for the SSVEP recognition results using CCA classifier for the room
information test in the second experiment (Scenario 2).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 227 2 2 5 4 94.6

8 Hz 3 231 2 3 1 96.3

9 Hz 3 0 237 0 0 98.8

11 Hz 1 1 1 236 1 98.3

13 Hz 2 2 2 4 230 95.8

Precision (%) 96.2 97.9 97.1 95.2 97.5

Table 9. The confusion matrix for the SSVEP recognition results using CCA classifier for the map test
in the second experiment (Scenario 3).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 239 0 0 1 0 99.6

8 Hz 2 237 0 1 0 98.8

9 Hz 0 0 240 0 0 100

11 Hz 1 2 1 236 0 98.3

13 Hz 1 0 4 1 234 97.5

Precision (%) 98.4 99.2 98 98.7 100

Table 10. The confusion matrix for the SSVEP recognition results using MSI classifier for the direction
test in the second experiment (Scenario 1).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 234 2 1 2 1 97.5

8 Hz 3 237 0 0 0 98.8

9 Hz 0 0 240 0 0 100

11 Hz 2 2 3 233 0 97.1

13 Hz 4 3 2 2 229 95.4

Precision (%) 96.3 97.1 97.6 98.3 99.6

Table 11. The confusion matrix for the SSVEP recognition results using MSI classifier for the room
information test in the second experiment (Scenario 2).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 231 3 2 2 2 96.3

8 Hz 7 225 4 2 2 93.8

9 Hz 3 0 237 0 0 98.8

11 Hz 6 2 3 228 1 95

13 Hz 4 7 5 3 221 92.1

Precision (%) 92 94.9 94.4 97 97.8
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Table 12. The confusion matrix for the SSVEP recognition results using MSI classifier for the map test
in the second experiment (Scenario 3).

True Class
Predicted Class

ACC (%)
7 Hz 8 Hz 9 Hz 11 Hz 13 Hz

7 Hz 238 0 0 1 1 99.2

8 Hz 1 237 0 2 0 98.8

9 Hz 2 1 237 0 0 98.8

11 Hz 5 2 1 232 0 96.7

13 Hz 9 8 8 3 212 88.3

Precision (%) 93.3 95.6 96.3 97.5 99.5

In the experiment using MR goggles as a display, the results of analyzing the EEG
signal with MSI for Scenario 1 were 97.5%, 98.8%, 100%, 97.1% and 95.4%. The average ACC
for all frequencies was 97.8%. Scenario 2 used the same frequencies and the classification
ACCs were 96.3%, 93.8%, 98.8%, 95% and 92.1%, respectively. The average ACC for all
frequencies was 95.2%. Scenario 3 used a map of the entire experimental field and the
ACCs were 99.2%, 98.8%, 98.8%, 96.7% and 88.3%, respectively. The average ACC for all
frequencies was 95%.

During an online CCA experiment, each category of the different frequencies generates
a confidence score. The CCA classifier generates classification results using these confidence
scores so the proposed recognition algorithm determines the highest score to classify this
EEG signal to the corresponding frequency. However, if the user does not pay attention to
the flickers on the screen or wants to change the mode, the confidence scores are low. A
threshold based on these twelve subjects is proposed. For Scenario 1, the threshold, TD, is
0.215 and for Scenarios 2 and 3, the thresholds, TR and TM, have a value of 0.22. Table 13
shows the specified thresholds for this study for the BCI system to enter the next mode.

Table 13. The thresholds that we designed for the BCI system.

TD TR TM

Confidence Score 0.215 0.22 0.22

These experimental results show that the CCA classifier accurately classifies the EEG
signals into corresponding classes. Using MR goggles to present flickering stimuli is more
accurate and convenient than using a screen to present the scenario. A higher classification
rate allows the electric wheelchair to move more stably and safely and the BCI system is
easier to use.

5.3. ITR Experimental Results

After analyzing the accuracy of the classification results from the CCA classifier was
determined, the ITR then determined whether the scenarios for this study were suitable for
stimulating the brain.

For each experiment, one selection took three seconds: stimulation took two seconds
and there was a rest for one second. Five targets were used for each scenario, with
frequencies of 7 Hz, 8 Hz, 9 Hz, 11 Hz and 13 Hz. This study used two types of experiments
and three scenarios to determine the accuracy. A screen and MR goggles were used to
present the scene.

Table 14 shows the average values for the ACC and the ITR for the proposed three
scenarios for the first experiment. The respective ITR values for Scenarios 1, 2 and 3 were
33.79, 31.84 and 26.57 bits per minute, which present the degree of data converting to
stimulate, as shown in Table 14. Table 15 shows the mean values for ACC and ITR for the
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three scenarios for the second experiment. The ITR values were 42.81 bits per minute for
Scenario 1, 41.07 bits per minute for Scenario 2 and 44.08 bits per minute for Scenario 3.
The ITR distribution graphs for these two experiments are shown in Figures 10 and 11.

Table 14. The average accuracy for the direction test (Scenario 1), the room information test
(Scenario 2) and the map test (Scenario 3) using a screen with CCA classifier.

Scenario Average ACC (%) ITR (bits/min)

1 90.7 33.79
2 88.8 31.84
3 83.1 26.57

Table 15. The average accuracy for the three scenarios using MR goggles with CCA classifier.

Scenario Average ACC (%) ITR (bits/min)

1 98 42.81
2 96.8 41.07
3 98.8 44.08
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6. Discussion

According to the experimental results, they can be mainly divided into two parts:
(1) This paper mainly uses CCA as a tool for analyzing EEG, and compares it with other
SSVEP-based studies such as MSI are shown in Table 16. (2) There were changes in the
monitors that display the stimuli and comparisons of their advantages and disadvantages.

Table 16. Comparison of all experiments.

Scenario
Classifier/Monitor

CCA/Screen CCA/MR
Goggles MSI/Screen MSI/MR

Goggles

1 90.7% 98% 86.2% 97.8%
2 88.8% 96.8% 86.3% 95.2%
3 83.1% 98.8% 80.9% 95%

The experimental results show that CCA has a higher accuracy in both experiment 1
and experiment 2. It means that the BCI system proposed in this article is feasible and
accurate, and has a certain degree of reliability in controlling electric wheelchairs. The other
results show that MR goggles give a significantly better accuracy than the screen. The MR
goggles are mounted on the subject’s head so the stimulus remains in the line of sight, even
if the subject moves their head. The MR goggles also wrap around the eyes so the visual
area is not easily disturbed. The position of the MR goggles’ host computer coincides with
the visual area of the brain wave cap. The host computer is pressed onto the electrodes so
the electrode is not easily displaced when the subject moves their head.

However, the subjects of the current experiment are all healthy people, and the ex-
perimental field is not in the hospital, which has limitations on the development of the
entire system. However, we cooperated with Mackay Memorial Hospital in Taipei, and we
will continue to keep in touch and plan further experiments and recruit more contextual
subjects in the future.

7. Conclusions

This study proposes an electric wheelchair that is controlled using EEG signals that are
acquired using an SSVEP-based BCI system. Firstly, three channels that are related to the
visual cortex in a 21-channel EEG electrode cap are used to collect the EEG signals from the
operator. The subjects focus on the monitor, which displays the three proposed scenarios.

For Scenario 1, the operator directly controls the electric wheelchair’s direction of
motion. Hence, four orientations and a termination choice are displayed for this scenario.
Scenarios 2 and 3 are designed to involve automatic control. Scenario 2 shows the in-
formation for five rooms. Furthermore, Scenario 3 migrates map information with the
environment to Scenario 2.

When the EEG signals are collected, this study analyzes the data using a CCA classifier.
The ITR is calculated to evaluate the classification results from the CCA to the stimu-
lus. Finally, the processed EEG signals are then translated into commands to the electric
wheelchair to complete the tasks.

The average ACCs for the three scene classifications for the first experiment are 90.67%,
88.82% and 83.08%, respectively. For the experiment using MR goggles to present stimuli,
the average ACCs for the three scene classifications are 98%, 96.8% and 98.8%, respectively.

These results show that MR goggles are more effective than a screen to present a scene
stimulus. A screen is large and occupies most of the space on the wheelchair, but MR
goggles allow the subject to observe, require little space and are not easily disturbed by the
outside world. The CCA classification rate is also better for MR goggles.

The accurate results show that the proposed system classifies the EEG signal into the
correct category. Furthermore, the electric wheelchair is accurately and safely guided and
the BCI system for this study allows the user to reach a specified location easily.
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