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Abstract: Super-resolution optical imaging is a consistent research hotspot for promoting studies in
nanotechnology and biotechnology due to its capability of overcoming the diffraction limit, which
is an intrinsic obstacle in pursuing higher resolution for conventional microscopy techniques. In
the past few decades, a great number of techniques in this research domain have been theoretically
proposed and experimentally demonstrated. Graphene, a special two-dimensional material, has
become the most meritorious candidate and attracted incredible attention in high-resolution imaging
domain due to its distinctive properties. In this article, the working principle of graphene-assisted
imaging devices is summarized, and recent advances of super-resolution optical imaging based on
graphene are reviewed for both near-field and far-field applications.
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1. Introduction

Graphene is a two-dimensional material made up of sp2-hybridized carbon arranged
in a honeycomb crystal lattice with one-atom thickness [1]. Since single-layer graphene
flakes were experimentally isolated by Geim and Novoselov in 2004 [2], it has drawn
remarkable attention owing to its perfect structural [3], optical [4], electric [5], and ther-
mal [6,7] properties. In the past few years, the research on graphene has made significant
progress because many new effective synthesis methods of graphene in different types
have been explored and accomplished including micromechanical exfoliation [8], growth
on various substrates [9], deposition [10–12], and so on [13–15].

One of the most important properties of graphene is that the complex conductivity
can be dynamically tuned by external parameters [16–18] such as electric field, magnetic
field, and gate voltage [19,20], which makes graphene behave like thin metallic materials
that possess a negative permittivity at low frequencies [21]. In addition, the surface
plasmon polariton in graphene is different from conventional plasmons in both metals
and two-dimensional electron gases [22,23]. For instance, graphene plasmons show high
confinement and relatively low loss with more flexible features. All these unique features
have made graphene a promising candidate for a variety of crucial applications [24,25],
such as super-resolution imaging and optical biosensing [26–28].

After the first microscope was invented and named as well as applied to observe
cells successfully in the 17th century, microscopic techniques remain the most widespread
imaging method and always play an irreplaceable role in the research field of nanotech-
nology and biotechnology, especially in bioscience [29], owing to its numerous advan-
tages (e.g., noninvasive, reliable, suitable for various samples, and so on). However,
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the resolution of traditional fluorescence microscopy is fundamentally limited to λ⁄2NA
(λ is the wavelength of the incident light and NA is the numerical aperture). This in-
trinsic limit, also known as diffraction limit [29,30], has become the main obstacle to
high-resolution optical imaging. Thus far, a great number of novel methods for achieving
super-resolution imaging have been proposed and demonstrated experimentally in both
near field and far field, such as near-field scanning optical microscopy (NSOM) [31–33];
far-field superlens (FSL) [34–36], hyperlens [37–39], and metalens [40–43]; stimulated emis-
sion depletion microscopy (STED) [44–47]; stochastic optical reconstruction microscopy
(STORM) [48–52]; structured illumination microscopy (SIM) [53–55]; plasmonic structured
illumination microscopy derived from SIM [56–58], and so on [59,60]. It is worth mention-
ing that graphene-related materials exhibit different properties according to their lateral
size, number of layers and oxidation degree. For specific applications, graphene of different
lateral sizes shows different performance expressions even if they are similar in terms of
defects and number of layers. As the size increases, it becomes more difficult to disperse
and composite with graphene. These controllable properties will also affect the device
performance of graphene-assisted imaging components when graphene is integrated into
a super-resolution imaging system. However, remarkable improvements are achievable.
There are several super-resolution technologies which have been cooperated with graphene
such as NSOM, hyperlens, superlens, STORM, and SIM. This review presents a compre-
hensive summary of the research on super-resolution optical imaging based on graphene,
including both experimental and theoretical studies. The article first introduces the princi-
ple of super-resolution imaging with graphene and the following sections will focus on
different imaging methods with graphene found in the bibliography and categorized by
application regions (near field and far field).

2. Working Principle of a Super-Resolution Imaging System with Graphene

Achieving super-resolution imaging means to overcome the diffraction limit origi-
nated from the exponential decay of the evanescent waves which carry the high spatial
frequency information of the objects. In essence, overcoming the fundamental limit means
magnifying the evanescent waves directly or converting evanescent waves to propagating
ones and further providing magnification. Graphene can significantly enhance evanescent
fields due to the fact that its conductivity can be tuned in the infrared and terahertz (THz)
regions [61,62].

Among all these amazing properties of graphene, the one that is most worthy of
mention is that the surface conductivity of graphene can be tuned via external param-
eters [19,63]. The surface conductivity of graphene can be calculated by the Kubo for-
mula [64–66]:

σg =
ie2kBT

π}2(w + i/τ)

(
µc

kBT
+ 2 ln

(
e−

µc
kBT + 1

))
+

ie2

4π} ln
[

2µc − }(w + i/τ)

2µc + }(w + i/τ)

]
(1)

where e = −1.6× 10−19C is the electron charge, kB = 1.3806505× 10−23 J/K is Boltzmann
constant, and } = 1.05× 10−34 J·s is the reduced Planck constant. The surface conductivity
of graphene depends on Kelvin temperature T, the radian frequency w, the momentum
relaxation time τ, and the chemical potential µc. The chemical potential µc depends on
the carrier density and can be controlled by gate voltage, electric field, magnetic field, and
doping [67,68]. The effective optical permittivity of graphene can be written as:

εg = 1 +
iσgη0

k0∆
(2)

where η0 ≈ 377 Ω is the impedance of air and ∆ is the thickness of graphene. It should
be noted that the permittivity of graphene depends on the surface conductivity. At low
frequencies such as infrared and THz range, graphene behaves like a thin metal layer
with negative permittivity because the imaginary part of conductivity can be tuned to be
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positive via an external parameter. Due to its capability of enhancing the evanescent field,
graphene has become a promising candidate for imaging applications [69–71].

Moreover, since surface plasmons (SPs) have been experimentally demonstrated in
graphene [28], graphene plasmons (the coupled state between photons and collective Dirac
electrons in graphene) have found extensive practical applications [72,73]. Compared to the
SPs excited on metallic surfaces, the field of SPs supported by graphene possesses signifi-
cant advantages. Graphene plasmons are more tightly confined on the surface of graphene
with an effective index capable of reaching 70 in the far-infrared region, compared to the
index value of 1.03 for SPs on metal surfaces [4]. Besides, the damping loss of graphene
plasmons is relatively low and the propagation distance could reach dozens of wavelengths
of SPs [74]. It is also important that the SPs excited on graphene can be simply manipulated
by external parameters [75–77]. The abovementioned advantages of graphene plasmons
have made graphene a momentous candidate for a variety of practical applications [78–80],
especially in the super-resolution imaging field [81–83]. Most recently, real-space imaging
of acoustic plasmons in large-area graphene was experimentally demonstrated, enabling a
new platform for strong light–matter interaction [84]. In addition, more graphene quantum
dot based materials have been widely used for sensing and bio-imaging applications [85].

3. Super-Resolution Imaging Cooperated with Graphene
3.1. Graphene-Assisted Super-Resolution Imaging in Near Field

For near-field applications, graphene has been integrated with NSOM, superlens,
and wire medium, and therefore can provide magnification of the evanescent waves for
achieving super-resolution imaging [86–88] via tunable conductivity and the coupling of
graphene plasmons [89–91]. Monolayer graphene was demonstrated to offer a sevenfold
enhancement of evanescent information and successfully resolve buried structures at a
500 nm depth with λ⁄11-resolution via graphene-enhanced NSOM in 2014 [70]. A sharp
probe, the key component of NSOM imaging systems, was used to pick up the evanescent
signals, but it was incapable of imaging buried structures. However, when a monolayer
graphene was coated on the top of a polymethyl methacrylate (PMMA) sample, the
evanescent information could be enhanced and detected by the probe due to the surface
plasmon polaritons of graphene with ultrasmall plasmon wavelengths as shown in Figure 1.
In this case, the resolution of this imaging system is mainly determined by the wavelength
of graphene plasmon rather than the free-space wavelength. With the assist of a graphene
layer, a buried hole can be resolved clearly compared to the bare PMMA sample. Moreover,
the configuration is more convenient and feasible than the superlens–NSOM combination,
which needs a perfect superlens for practical applications.
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with a bare PMMA layer, graphene–PMMA combination, and PMMA–graphene combination, re-

Figure 1. Graphene-assisted imaging. (a) Schematic drawing of the graphene–PMMA hybrid system
with a 1.5 µm diameter buried hole for near field imaging. (b) Near-field amplitude images collected
with a bare PMMA layer, graphene–PMMA combination, and PMMA–graphene combination, respec-
tively. In both graphene-assisted hybrid systems, the subwavelength hole can be clearly resolved.
All images are 4 µm × 4 µm. Reprinted with permission from [70]. Copyright 2014 American
Chemical Society.
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In 2015, Forouzmand and co-workers proposed two kinds of novel graphene-loaded
wire medium (WM) slab structures that were suitable for dual-band or tunable broadband
super-resolution imaging in near field [81,82]. Figure 2a schematically illustrates the pro-
posed devices of WM slab loaded graphene nanopatch metasurfaces (GNMs). The principle
of the aforementioned structures relies on the enhancement of the evanescent waves due to
the coupling of the SPs between the lower and upper graphene as well as the remarkable
waveguiding of the evanescent waves of the WM slab [87]. In addition, the performance of
the structures was analyzed in the presence of a magnetic line source (Figure 2b). The reso-
lution was quantified by using the half power beam width (HPBW) [85] and the Rayleigh
criterion. Super-resolution imaging effects may enable more extensive applications with
practical potential and possess the capability of resolving closely spaced light sources, as in-
dicated in Figure 2c using the Rayleigh criterion. The working mechanism of this superlens
relies on graphene plasmon resonances and can significantly amplify the evanescent waves
that include the high spatial frequency information and restore them at the image plane.
Graphene plasmons excited at both lower and upper GNMs can be coupled and further
used to help amplify the evanescent waves. As expected, the hybridization-enhanced
bilayer design could achieve higher resolution because of stronger interactions than the
monolayer graphene design. Note that the number of layers will affect the imaging perfor-
mance since multilayer designs can involve the interactions between neighboring layers
and therefore impact optical properties compared with the monolayer layout.
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Another graphene-assisted subwavelength imaging device was reported in 2017 [71]
which relied on the Fabry–Perot resonance of graphene edge plasmon waves [88,89] for
breaking the diffraction limit in the THz frequency range. The superlens was constituted
by a single sheet of graphene and a metallic grating voltage gate. Figure 3a shows the
perspective of the proposed superlens and Figure 3b demonstrates the equivalent model
for a certain frequency. The most noteworthy advantage of this superlens is that it can be
easily manipulated in a wide range from 4.3 THz to 9 THz by adjusting the gate voltage.
In addition, one can readily obtain subwavelength targets magnified images by replacing
the grating gate with a radial shape. The best resolution achieved was 400 nm as shown in
Figure 3c (top-view) and Figure 3d (cross section), leading to great potential applications in
THz near field imaging systems. In addition, one should note that the impact of lateral size
on device performance is significant since graphene edge plasmons are highly dimension
dependent. For instance, by reducing the size of the graphene structures, one can readily
manipulate the working frequency of graphene plasmons from longer wavelengths to the
visible and near-infrared range.
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Figure 3. Voltage-gate-assisted hybrid superlens. (a) Schematic layout of the proposed device. (b) The
equivalent model for a certain wavelength. (c) Top-view and (d) cross-sectional view of the electric
field distribution when the two sources are 400 nm spaced. Note that the frequency is 5 THz with
λ/150 resolution. Reprinted with permission from [71]. Copyright 2017 Springer Nature.

A fast-paced graphene-based near-field optical microscopy (GNOM) for overcoming
the diffraction limit was proposed by Inampudi and coworkers who utilized the electronic
scanning property of graphene gratings (different from the mechanical scanning of a sharp
tip in NSOM) [72]. Figure 4 schematically shows the proposed GNOM. Based on the fact
that the graphene’s surface conductivity is reconfigurable, grating scattered light can be
collected and then processed by the rigorous coupled-wave analysis. In this work, the
authors demonstrated the highest resolution of λ⁄16 (λ = 10 µm) theoretically. In addition,
numerical optimization based on the genetic algorithm was also demonstrated to design
an optimum set of diffraction grating and minimize the artifacts in the image, which was
an extremely challenging task [90].

In 2018, Liu and co-workers introduced a graphene sheet as an ultrathin nonlinear
negative reflection lens for achieving super-resolution imaging based on four wave mixing
(FWM) process in the terahertz regime [73] thanks to the fact that graphene possesses strong
nonlinear electromagnetic response. This is totally different from traditional materials
which reduce the field strength necessary for the nonlinear process, such as FWM [89].
Figure 5a schematically demonstrates the working principles. It has been theoretically
predicted and experimentally validated that the FWM wave can be focused on a point in
the image plane via modulating the incident angle. Figure 5b shows the electric field of the
signal waves without the graphene lens (dotted line). As a comparison, FWM waves are
plotted using the solid line, and one can see that the full width at half-maximum obtained
is 3.28 µm (λ⁄5), which indicates great potential applications in THz microscopy.



Biosensors 2021, 11, 307 6 of 15
Biosensors 2021, 11, x FOR PEER REVIEW 6 of 15 
 

 
Figure 4. Working mechanism of GNOM. The width of the graphene strips placed side-by-side (in 
the x-y plane) is represented by d and Λ is the periodicity. Reprinted with permission from [72]. 
Copyright 2017 The Optical Society. 

In 2018, Liu and co-workers introduced a graphene sheet as an ultrathin nonlinear 
negative reflection lens for achieving super-resolution imaging based on four wave mix-
ing (FWM) process in the terahertz regime [73] thanks to the fact that graphene possesses 
strong nonlinear electromagnetic response. This is totally different from traditional mate-
rials which reduce the field strength necessary for the nonlinear process, such as FWM 
[89]. Figure 5a schematically demonstrates the working principles. It has been theoreti-
cally predicted and experimentally validated that the FWM wave can be focused on a 
point in the image plane via modulating the incident angle. Figure 5b shows the electric 
field of the signal waves without the graphene lens (dotted line). As a comparison, FWM 
waves are plotted using the solid line, and one can see that the full width at half-maximum 
obtained is 3.28 μm (λ⁄5), which indicates great potential applications in THz microscopy. 

 
Figure 5. (a) Schematic drawing of the negative reflection lens based on FWM process. (b) Electric 
field for the signal and FWM waves at the imaging plane. Reprinted with permission from [73]. 
Copyright 2018 The Optical Society. 

3.2. Graphene-Assisted Super-Resolution Imaging in Far Field 
In far field, graphene has normally been integrated with a hyperlens. Surface plas-

mons can help convert the evanescent waves to the propagating ones and therefore pro-
vide magnification for achieving super-resolution imaging via the tunable conductivity 
and the coupling of graphene plasmons. In 2013, Zhang and coworkers designed two 
kinds of different hyperlenses [69] composed by alternating graphene/dielectric layered 
structures for achieving super-resolution optical imaging in the mid-infrared range. They 

Figure 4. Working mechanism of GNOM. The width of the graphene strips placed side-by-side (in
the x-y plane) is represented by d and Λ is the periodicity. Reprinted with permission from [72].
Copyright 2017 The Optical Society.

Biosensors 2021, 11, x FOR PEER REVIEW 6 of 15 
 

 
Figure 4. Working mechanism of GNOM. The width of the graphene strips placed side-by-side (in 
the x-y plane) is represented by d and Λ is the periodicity. Reprinted with permission from [72]. 
Copyright 2017 The Optical Society. 

In 2018, Liu and co-workers introduced a graphene sheet as an ultrathin nonlinear 
negative reflection lens for achieving super-resolution imaging based on four wave mix-
ing (FWM) process in the terahertz regime [73] thanks to the fact that graphene possesses 
strong nonlinear electromagnetic response. This is totally different from traditional mate-
rials which reduce the field strength necessary for the nonlinear process, such as FWM 
[89]. Figure 5a schematically demonstrates the working principles. It has been theoreti-
cally predicted and experimentally validated that the FWM wave can be focused on a 
point in the image plane via modulating the incident angle. Figure 5b shows the electric 
field of the signal waves without the graphene lens (dotted line). As a comparison, FWM 
waves are plotted using the solid line, and one can see that the full width at half-maximum 
obtained is 3.28 μm (λ⁄5), which indicates great potential applications in THz microscopy. 

 
Figure 5. (a) Schematic drawing of the negative reflection lens based on FWM process. (b) Electric 
field for the signal and FWM waves at the imaging plane. Reprinted with permission from [73]. 
Copyright 2018 The Optical Society. 

3.2. Graphene-Assisted Super-Resolution Imaging in Far Field 
In far field, graphene has normally been integrated with a hyperlens. Surface plas-

mons can help convert the evanescent waves to the propagating ones and therefore pro-
vide magnification for achieving super-resolution imaging via the tunable conductivity 
and the coupling of graphene plasmons. In 2013, Zhang and coworkers designed two 
kinds of different hyperlenses [69] composed by alternating graphene/dielectric layered 
structures for achieving super-resolution optical imaging in the mid-infrared range. They 

Figure 5. (a) Schematic drawing of the negative reflection lens based on FWM process. (b) Electric
field for the signal and FWM waves at the imaging plane. Reprinted with permission from [73].
Copyright 2018 The Optical Society.

3.2. Graphene-Assisted Super-Resolution Imaging in Far Field

In far field, graphene has normally been integrated with a hyperlens. Surface plasmons
can help convert the evanescent waves to the propagating ones and therefore provide
magnification for achieving super-resolution imaging via the tunable conductivity and the
coupling of graphene plasmons. In 2013, Zhang and coworkers designed two kinds of
different hyperlenses [69] composed by alternating graphene/dielectric layered structures
for achieving super-resolution optical imaging in the mid-infrared range. They were
triangle-shaped and cylindrical hyperlenses, respectively. Figure 6 schematically shows
the cross-section view of the proposed novel layered structures.

The working mechanism is identical for these two kinds of hyperlenses, which relies
on the fact that the hyperbolic dispersion curve can amplify and support the propagation
of the evanescent waves straightly along the normal direction of the layered structures
and form two imaging spots at the output plane under the condition of Re

(
ε‖

)
> 0,

Re(ε⊥) < 0, and Re
(

ε‖

)
→0 (ε‖ , ε⊥ are the permittivity of the structure along tangential

and radial directions, respectively). The distances between two imaging spots are d⁄cosθ
and d(r + t))⁄r for the triangle-shaped and cylindrical hyperlenses, respectively. In addition,
it is worth noting that the layered structures can achieve propagation of the evanescent
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waves for a fixed wavelength by manipulating µc, as shown in Figure 7, enabling extensive
potential applications in broadband super-resolution imaging.
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µc = 0.0965 eV, ε|| = 0.1419 + 0.2933 i, ε⊥ = −159.8 + 378.6 i; (b) λ = 10.2 µm, µc = 0.085 eV,
ε|| = 0.1058 + 0.3709 i, ε⊥ = −74.07 + 341.7 i; (c) λ = 11.2 µm, µc = 0.075 eV, ε|| = 0.4481 + 0.4678 i,
ε⊥ = −122.9 + 152.8 i; (d) λ = 12.2 µm, µc = 0.067 eV, ε|| = 0.761 + 0.5831 i, ε⊥ = −90.05 + 86.94 i.
Reprinted with permission from [69]. Copyright 2013 The Optical Society.

In 2016, Yang and coworkers proposed a graphene nanocavity on metasurface struc-
ture (GNMS) [83] to excite graphene surface plasmons at mid-infrared waveband and
achieved super-resolution optical imaging by integrating the GNMS device with plasmonic
structured illumination microscopy (PSIM). Figure 8a shows the schematic of GNMS and
one can see that two layers of graphene are involved to form a cavity filled with water.
Figure 8b illustrates the cross section of GNMS.
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To further study the property of the GNMS device, the function of the grating and
the effect of the structural parameters on the graphene plasmonic interference pattern
were discussed. According to the results, one can learn that the period of the graphene
plasmonic interference pattern is 52 nm when the wavelength of the incident light is 7 µm.
When the GNMS device is integrated with PSIM, an imaging resolution of 26 nm can
be achieved because of the graphene plasmons with deep sub-wavelength. Figure 9a–c
shows the simulation results of the electric distribution of graphene plasmonic interference
patterns. Figure 9d presents the performance of GNMS quantified by using the full width
at half maximum (FWHM) of the point spread function (PSF). Since mid-infrared is safe
for biological cells, this work may pave a new way for optical super-resolution imaging at
mid-infrared waveband for biological research.
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Figure 9. Imaging performance of the nanocavity-enhanced metasurface device. (a) Side view of
electric field mapping. (b) Top view mapping. (c) Intensity plot of the white dashed line shown in
(a). (d) Normalized intensity of normal epifluorescence microscopy (red) and GNMS-assisted PSIM
(green). Reprinted with permission from [83]. Copyright 2016 Springer Nature.

Moreover, the same group proposed another elegant design to realize wide-field
optical imaging based on a hybrid graphene on metasurface structure (GMS) model [86].
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Figure 10a is the schematic view of GMS, including a monolayer graphene deposited
on a SiO2/Ag/SiO2 multilayer design. From Figure 10b, one can see more clearly the
cross-sectional view of a unite cell of the GMS.
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Figure 10. The schematic diagram of the GMS design. (a) The perspective view with coordinates and
(b) the cross-sectional layout. Vbias is the control voltage. The thickness of the flat SiO2 substrate
is d1 = 200 nm. A thin Ag film with d2 = 50 nm thickness is covered by a 10 nm thick SiO2 film. A
nanoslit with w = 30 nm width in x direction and an infinite length in y direction is filled with SiO2 in
the Ag film. The unite cell has a same periodicity of P = 350 nm in both x and y direction. Reprinted
with permission from [86]. Copyright 2017 The Optical Society.

In this work, it is crucial to utilize the most significant feature of graphene plasmons,
which is the ultra-high wave vector, to combine the model of GMS with the PSIM method
and further achieve super-resolution imaging. The authors employed the finite-difference
time-domain (FDTD) method to model and simulate the GMS structure and found that
the standing wave of surface plasmons (SW-SPs) with an 11 nm period can be achieved
on graphene. Furthermore, when the GMS structure was applied in the PSIM method,
they found that an imaging resolution of 6 nm could be obtained for a 980 nm illumination
wavelength which was improved 39.6-fold in comparison with the conventional microscopy
technique with resolution of 283 nm. Additionally, the resolving capability of GMS–PSIM
system was acquired by imaging two point objects separated by 6 nm. The simulation
results are shown in Figure 11.

In addition to the tunable surface conductivity and graphene plasmons, graphene
has been introduced to the applications of electron microscopy to achieve super-resolution
imaging of wet cells by utilizing the impermeable and conductive properties. More im-
portant bioimaging applications can be enabled using graphene-based nanomaterials
(e.g., graphene quantum dots) and their derivatives [92–94]. Wojcik and coworkers utilized
graphene which was synthesized by chemical vapor deposition (CVD) as an imperme-
able and conductive membrane to enable electron microscopy of wet and untreated cells,
enabling direct electron microscopy of wet cells via simple sample preparation without
demanding special devices and equipment as well as the comparable contrast and reso-
lution with a conventional scanning electron microscope [95]. To summarize the above
discussion on progress in super-resolution imaging with graphene-based nanostructures in
infrared and THz frequencies for both near field and far field, Table 1 lists more detailed
information for a more comprehensive and systemic comparison. Note that most of the
experimentally demonstrated applications so far have been limited to infrared and THz
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frequencies and it is extremely challenging to further extend the working ranges due to the
intrinsic properties of graphene plasmons. However, more flexible and tunable devices
are desired to meet the increasing demands of practical applications. In addition, more
efforts should be made to further reduce the fabrication cost of such devices to enable
massive production.
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Figure 11. (a) The reconstructed image of a point object in the x direction. (b) The image of the
point object in the conventional fluorescence microscopy system. (c) FWHF comparison between
(a) (red line) and (b) (blue line). (d) Illustration resolving capability of GMS–PSIM system of two
point objects separated with different distances of 2, 4, 6, 10, and 20 nm. Reprinted with permission
from [86]. Copyright 2017 The Optical Society.

Table 1. Summary of super-resolution imaging systems integrated with graphene.

Year Device Type Near/Far Field Waveband Resolution Physical Mechanism Refs.

2013 Hyperlens Far field Mid-infrared λ/10 Tunable conductivity [69]
2014 SNOM Near field Infrared λ/11 Graphene plasmonic [70]
2015 Superlens Near field 60 THz λ/50 Graphene plasmonic [80]

2015 Wire medium Near field 22.8 THz
25.9 THz

λ/10
0.14λ Graphene plasmonic [81]

2015 Wire medium Near field THz λ/10 Graphene plasmonic [82]
2016 GNMS Far field Mid infrared 26 nm Graphene plasmonic [83]
2017 Superlens Near field 4.3~9 THz 400 nm Tunable conductivity [71]
2017 GNOM Near field 30 THz λ/16 Tunable conductivity [72]
2017 GMS Far field Infrared 6 nm Graphene plasmonic [86]
2018 FWM Near field THz λ/5 Tunable conductivity [73]

4. Alternative Imaging Devices Integrated with Graphene Oxide

Graphene oxide (GO) has also found extensive applications in integrated photon-
ics [96,97] and therapy [98–101]. Moreover, it can be used to cooperate with quenched
stochastic optical reconstruction microscopy (qSTORM) to achieve the super-resolution
imaging effect of self-assembled peptide fibrils and Escherichia coli. In 2018, Li et al.
experimentally demonstrated that GO coating with qSTORM could increase the imag-
ing resolution and contrast [102] when imaging the peptides and bacteria via the strong
quenching effect. Due to the same hexagonal lattice and similar electronic properties for
both graphene and GO, the quenching effect is advisable with GO. In the experiments
the authors designed, the stacked films were employed to perform qSTORM with GO
coating as illustrated in Figure 12a. In this design, the GO coating played a significant
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role in removing background noise and improving the signal-to-noise ratio. Figure 12b
shows the reconstructed STORM image of peptide fibers. In the imaging performance
of the self-assembled peptide fibrils, the contrast changed from 13 (±47%) to 133 (±40%)
with GO and the resolution of the image with GO and without GO was 19 nm and 23 nm,
respectively, using the Fourier Ring Correlation method [103,104] with qSTORM. In the
imaging performance of Escherichia coli, the contrast changed from 24 (±27%) to 3317
(±37%) with GO. The resolution of imaging peptide fibrils and Escherichia coli was 11 nm
and 24 nm with 5 nm GO coating by using the feature of interest (FOI) metric, leading to a
dramatic improvement. Note that the oxidation grade of GO can affect the imaging quality
since the carbon-oxygen ratio can simply modulate the photoluminescence quenching
capabilities and therefore further control the device performance.

Biosensors 2021, 11, x FOR PEER REVIEW 11 of 15 
 

2017 GNOM Near field 30 THz 𝜆 16⁄  Tunable conductivity [72] 
2017 GMS Far field Infrared 6 nm Graphene plasmonic [86] 
2018 FWM Near field THz 𝜆 5⁄  Tunable conductivity [73]  

4. Alternative Imaging Devices Integrated with Graphene Oxide 
Graphene oxide (GO) has also found extensive applications in integrated photonics 

[96,97] and therapy [98–101]. Moreover, it can be used to cooperate with quenched sto-
chastic optical reconstruction microscopy (qSTORM) to achieve the super-resolution im-
aging effect of self-assembled peptide fibrils and Escherichia coli. In 2018, Li et al. experi-
mentally demonstrated that GO coating with qSTORM could increase the imaging reso-
lution and contrast [102] when imaging the peptides and bacteria via the strong quenching 
effect. Due to the same hexagonal lattice and similar electronic properties for both gra-
phene and GO, the quenching effect is advisable with GO. In the experiments the authors 
designed, the stacked films were employed to perform qSTORM with GO coating as illus-
trated in Figure 12a. In this design, the GO coating played a significant role in removing 
background noise and improving the signal-to-noise ratio. Figure 12b shows the recon-
structed STORM image of peptide fibers. In the imaging performance of the self-assem-
bled peptide fibrils, the contrast changed from 13 (±47%) to 133 (±40%) with GO and the 
resolution of the image with GO and without GO was 19 nm and 23 nm, respectively, 
using the Fourier Ring Correlation method [103,104] with qSTORM. In the imaging per-
formance of Escherichia coli, the contrast changed from 24 (±27%) to 3317 (±37%) with GO. 
The resolution of imaging peptide fibrils and Escherichia coli was 11 nm and 24 nm with 
5 nm GO coating by using the feature of interest (FOI) metric, leading to a dramatic im-
provement. Note that the oxidation grade of GO can affect the imaging quality since the 
carbon-oxygen ratio can simply modulate the photoluminescence quenching capabilities 
and therefore further control the device performance. 

 
Figure 12. (a) The schematic of the stacked films to perform qSTORM with GO coating. Note that 
the Cy3b fluorophores belong to the Cyanine family. (b) Reconstructed STORM image of peptide 
fibers. Reprinted with permission from [102]. Copyright 2018 Springer Nature. 

5. Conclusions and Outlook 
To conclude the review, the working principles, implementations, and performances 

of the super-resolution imaging integrated with graphene/GO have been comprehen-
sively summarized. Due to the most useful property that the surface conductivity of gra-
phene can be rapidly tuned by external parameters, graphene is capable of enhancing the 
evanescent waves. The present review strongly suggests that graphene has great ad-
vantages in super-resolution imaging in the infrared and THz regions both in near field 
and far field. However, the use of the graphene for super-resolution imaging is still at a 
very early stage, which means that we still need a lot of time and efforts to explore its full 
potential experimentally. In our opinion, thinner, faster, and more reliable imaging de-
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5. Conclusions and Outlook

To conclude the review, the working principles, implementations, and performances
of the super-resolution imaging integrated with graphene/GO have been comprehensively
summarized. Due to the most useful property that the surface conductivity of graphene can
be rapidly tuned by external parameters, graphene is capable of enhancing the evanescent
waves. The present review strongly suggests that graphene has great advantages in super-
resolution imaging in the infrared and THz regions both in near field and far field. However,
the use of the graphene for super-resolution imaging is still at a very early stage, which
means that we still need a lot of time and efforts to explore its full potential experimentally.
In our opinion, thinner, faster, and more reliable imaging devices using graphene-assisted
components are highly desired for various practical applications and therefore, more efforts
should be made to develop related devices. More flexible components are also needed
to meet the increasing future demands. Moreover, thorough investigations on structural
parameters are necessary for studying their impact and working mechanisms. Given the
progress in both the theory and fabrication of the graphene-assisted materials, there is no
doubt that more methods and devices on super-resolution imaging with graphene will be
developed to meet the increasing demanding of more practical application requirements in
the near future.
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