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Abstract: To assist patients with restricted mobility to control wheelchair freely, this paper presents an
eye-movement-controlled wheelchair prototype based on a flexible hydrogel biosensor and Wavelet
Transform-Support Vector Machine (WT-SVM) algorithm. Considering the poor deformability
and biocompatibility of rigid metal electrodes, we propose a flexible hydrogel biosensor made of
conductive HPC/PVA (Hydroxypropyl cellulose/Polyvinyl alcohol) hydrogel and flexible PDMS
(Polydimethylsiloxane) substrate. The proposed biosensor is affixed to the wheelchair user’s forehead
to collect electrooculogram (EOG) and strain signals, which are the basis to recognize eye movements.
The low Young’s modulus (286 KPa) and exceptional breathability (18 g m−2 h−1 of water vapor
transmission rate) of the biosensor ensures a conformal and unobtrusive adhesion between it and the
epidermis. To improve the recognition accuracy of eye movements (straight, upward, downward,
left, and right), the WT-SVM algorithm is introduced to classify EOG and strain signals according to
different features (amplitude, duration, interval). The average recognition accuracy reaches 96.3%,
thus the wheelchair can be manipulated precisely.

Keywords: flexible hydrogel biosensor; human-wheelchair interaction; eye movement detection;
signal classification algorithm

1. Introduction

Data from the World Health Organization (WHO) indicate that wheelchairs are indis-
pensable for 75 million people on a daily basis, which accounts for 1% of the world’s total
population [1]. Those who are highly handicapped (e.g., ALS patients) are incapable of
maneuvering their wheelchairs manually. Given this, it is significant to develop a novel
method to assist them to control the wheelchair.

The hand gesture control [2–5] and voice control [6–8] has been explored by several
scholars. However, the main challenge for hand gesture control is the laborious opera-
tion and misrecognition of gestures [9]. In addition, it is not applicable for people with
limited limb movement. As for voice control, the speech commands are susceptible to
ambient noise, which greatly reduces the practicality in noisy environments [10]. Multiple
studies have demonstrated the utilization of video-based eye-tracking systems [11–13].
These systems require specific illumination conditions and are expensive, so it is not vi-
able for large-scale applications [14]. Brain–computer interface (BCI) technology has been
employed in human–wheelchair interactions previously [15–18]. The acquisition of Elec-
troencephalogram (EEG) signals is usually realized by invasive electrodes, which brings
great difficulty to implementation and may impact the physical health of the user [19].

Eye movement is a conscious and subjective behavior, and its directions can be
identified by the analysis of electrooculogram (EOG). There are also some studies about eye
movement control in wheelchairs [20–26]. EOG is a kind of electrophysiological method,
which records the potential difference between the cornea and retina [27–29]. A wireless
human–wheelchair interface has been exhibited in [20], where the EOG signal is measured
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by a soft electrode. This electrode is prepared by depositing Au on a membrane and
transferring it into a specific pattern. Huang et al. placed three metal electrodes on the left
eyebrow, left mastoid, and right mastoid, respectively, to record vertical EOG signals [22].
In the above studies, the electrodes are rigid and have poor biocompatibility, which may
cause allergies or irritations during direct contact with skin.

Signal classification is the basis for identifying the diverse movement states of eyeballs.
Various algorithms have emerged in the past decade, including the Hidden Markov Model
(HMM) [30–33], transfer learning [34–37], and linear classifiers [38–41]. A hierarchical
HMM statistical algorithm [33] was utilized to classify ternary eye movements and the
classification result of fixations, saccades and smooth pursuits was evaluated as “good”.
However, this model cannot label multiple features simultaneously, which limits the
efficiency of classification. Abdollahpour et al. reported a transfer learning convolutional
neural network (TLCNN) and applied it in the classification of the EEG signal’s feature
set [34]. It trains a general classifier instead of an optimal one, so the accuracy of the
classification is relatively low.

Linear discriminant analysis (LDA) and threefold support vector machine (SVM)
approaches were used to classify six natural facial expressions and the designed framework
minimized the generation of false labels and increased the classification accuracy [38].
Nevertheless, the traditional SVM has problems of complex calculation and long running
times when dealing with the superimposed signals with linear inseparability [42–44].
Therefore, it cannot be implemented in the real-time classification of electrophysiological
signals independently.

In this paper, an eye-movement-controlled wheelchair prototype based on flexible
hydrogel biosensor is presented. The proposed biosensor owns high deformability and
excellent biocompatibility. Moreover, Kalman filtering and Wavelet Transform-Support
Vector Machine (WT-SVM) algorithms are applied in the processing and classification
of EOG and strain signals to distinguish various eye movement states. The algorithm’s
recognition rate of eye movement reaches 96.3%, which ensures the high-precision control
of the wheelchair.

2. Design and Method
2.1. Human–Wheelchair Interaction

To achieve eye movement control in wheelchairs, we have performed the following
three aspects of work: the fabrication of a flexible hydrogel biosensor, signal classification,
and the manipulation of a wheelchair. The biosensor is responsible for collecting the
wheelchair user’s EOG and strain signals. After being processed by the peripheral circuit,
signals will be input into the laptop (Surface Pro 7) in digital form. The application of the
classification algorithm enables different eye movement states to be identified. Eventually,
the laptop generates instructions to drive stepper motors, and then control the wheelchair.

Five eye movement states (up, down, left, right, and straight) correspond to the
different mobile modes of the wheelchair: ‘up’ to move forward, ‘down’ to move back, ‘left’
to turn left, ‘right’ to turn right, and ‘straight’ to stay still. The overall framework of the
study is presented in Figure 1.
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constant stirring. After 15 min, add 3 g PVA (Sigma-Aldrich Co., Saint Louis, MO, USA) 
to the mixed solution. Adjust the temperature to 85 °C and continue heating for two hours. 
Pour the mixed solution into a metal groove and let it cool down naturally. Transfer the 
cooled solution to the refrigerator at −20 °C and take it out after half an hour. When rising 
to room temperature, put it into the refrigerator again. Through three cycles, the 
HPC/PVA hydrogel membrane can be peeled off from the bottom of the metal groove. 

The smaller size of biosensor guarantees an unobtrusive experience, but it has limited 
accuracy and sensitivity. To obtain a preferred dimension of the PDMS substrate and 
hydrogel membrane, we designed an elastic cantilever device according to Equation (1): 𝐾 ൌ 𝐸𝑊𝑇ଷ6𝐿ଷ  (1)
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encapsulate the PDMS substrate and the HPC/PVA membrane with epoxy resin to 
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Figure 1. Eye-movement-controlled wheelchair prototype based on a flexible biosensor. (a) Struc-
ture of flexible biosensor. (b) Diverse movement states of eyeballs. (c) Pulse signal for driving
stepper motors.

2.2. Fabrication of A Flexible Biosensor

The flexible biosensor is comprised of three layers. The HPC/PVA (Hydroxypropyl cel-
lulose/Polyvinyl alcohol) layer is sandwiched between two PDMS (Polydimethylsiloxane)
layers. Due to its dielectric and biocompatible properties, the PDMS substrate is in direct
contact with epidermis to insulate electrical interference [45,46]. As a sensing layer, the
function of the HPC/PVA hydrogel membrane is to collect the electrophysiological signals.

The fabrication procedures of the PDMS substrate are as follows: mix PDMS aqueous
dispersion (Shanghai Macklin Biochemical Technology Co., Ltd., Shanghai, China) with a
coagulant at the ratio of 10:1 in the flask and stir evenly; set it aside until all the bubbles
disappear; coat the mixture onto a glass slide; transfer the glass slide on a heating plate
(IKA, C-MAG HP 4); and heat it at 75 ◦C. About half an hour later, a piece of PDMS film
can be detached from the glass slide.

The conductive hydrogel membrane can be manufactured by the steps below. Add
5 mL DMSO (Dimethyl sulfoxide, Aladdin Co., Shanghai, China) and 0.5 g HPC (Aladdin
Co., Shanghai, China) to 20 mL DI water and heat the mixture in a water bath (70 ◦C) with
constant stirring. After 15 min, add 3 g PVA (Sigma-Aldrich Co., Saint Louis, MO, USA) to
the mixed solution. Adjust the temperature to 85 ◦C and continue heating for two hours.
Pour the mixed solution into a metal groove and let it cool down naturally. Transfer the
cooled solution to the refrigerator at −20 ◦C and take it out after half an hour. When rising
to room temperature, put it into the refrigerator again. Through three cycles, the HPC/PVA
hydrogel membrane can be peeled off from the bottom of the metal groove.

The smaller size of biosensor guarantees an unobtrusive experience, but it has limited
accuracy and sensitivity. To obtain a preferred dimension of the PDMS substrate and
hydrogel membrane, we designed an elastic cantilever device according to Equation (1):

K =
EWT3

6L3 (1)

where K is the elastic constant of the cantilever, E is the tensile modulus, and W, T, and L
represent the width, thickness, and length of the fabricated film, respectively.

Cut the hydrogel membrane (0.2 mm in thickness) into rectangular (10 × 10 mm2) and
I-shaped (10 × 20 mm2) shapes respectively. Then, attach the I-shaped membrane to the
left and right sides of the fabricated PDMS substrate (60 × 25 mm2, 0.3 mm in thickness),
and affix three pieces of rectangular membranes equally spaced to the middle of it. Finally,
encapsulate the PDMS substrate and the HPC/PVA membrane with epoxy resin to enhance
the adhesion [47].
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In order to determine whether the designed biosensor with the preferred dimensions
can adapt to the deformation of epidermis, we studied its load-deflection characteristic
(Equation (2)).

P =
π4ET3

6(1− ν2)L4 ∗ c (2)

Here, P is the pressure exerted on the biosensor, ν is the Poisson’s ratio, and c is the deflec-
tion. When the strain force caused by skin deformation is applied to the biosensor, the proper
value of deflection can ensure the biosensor’s structural integrity. Through finite element
analysis (FEA), we studied the strain distribution of this structure in compression (Figure 2a)
and tension (Figure 2b) states, respectively, to prove its highly deformable characteristic.
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2.3. Signal Acquisition and Classification

Due to the self-adhesive property and flexibility of the PDMS substrate, the hydrogel
biosensor can maintain conformal contact with the dimpled epidermis. In order to collect
the horizontal EOG signal and the strain signal generated from the epidermis deformation,
the sensor is affixed to the middle of the user’s forehead.

When the eyes move to the left, the right eyeball approaches the inner canthus and
transmits a positive potential (500–600 µV) to it, which shows an upward potential spike in
EOG waveform [48]. The eye movement to the right transmits a negative potential, and a
downward potential spike will appear in EOG waveform. When the eyes move upward
or downward, the epidermis of the forehead is compressed or stretched accordingly.
In the stretched state, the strain sensor is elongated and its resistance increases; when
being compressed, the resistance decreases. The employment of the strain sensor is to
complement EOG measurements. Consequently, eye movements can be identified by
analyzing the change of potential difference and resistance [49].

The flow chart of signal acquisition and classification is shown in Figure 3a. Consider-
ing that the electrophysiological signal is weak and contains much interference [50], we
designed a circuit composed of an instrumentation amplifier (Figure 3b), a notch filter, a
low-pass filter, and an A/D conversion module to process it. The instrumentation amplifier
is utilized to amplify the signal without reducing the SNR (signal-to-noise ratio) [51]. Since
the frequency of power supply is 50 Hz, the notch filter (48–52 Hz stop band) is applied
to remove the power frequency interference. The main frequency of the EOG signal is
concentrated below 10 Hz, so a low-pass filter is set to filter out the high frequency noise.
Before being input into the laptop, the analog signal will be converted into a digital signal
through an A/D conversion module.
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To further improve the SNR of the signal data, a Kalman filtering algorithm is ap-
plied, and the principle of it is illustrated below. The predicted value of the signal
(Equation (3)) is determined by the true value of the previous time point. The covari-
ance matrix (Equation (4)) represents the difference between the predicted value and the
real value. In order to reduce the error, it is necessary to obtain the value of the Kalman
gain (Equation (5)) and continuously correct it during iteration. After obtaining the error
covariance matrix and the Kalman gain, the true value of the signal (Equation (6)) can be
calculated. The error covariance matrix (Equation (7)) between the estimated value and the
true value will be used in the next iteration to obtain a better effect of signal filtering.

X̂k = AX̂k−1 + BUk−1 (3)

∑ K = A ∑(K− 1)AT + Q (4)

K′ = ∑ KCT
(

C ∑ KCT + R
)−1

(5)

X̂′k = Xk + k′
(
Zk − CX̂k

)
(6)

∑ K′ = ∑ K− k′C ∑ K (7)

After implementing the Kalman filtering algorithm, the WT-SVM algorithm is intro-
duced to achieve signal classification based on the signal features (amplitude, duration,
interval). The filtered signal can be regarded as a superposition of the strain signal and
the EOG signal. Due to the distinct characteristics of the two kinds of signals, setting a
coefficient threshold of wavelet decomposition can separate them [52,53]. In the process of
wavelet decomposition, signals are decomposed into low-frequency and high-frequency
parts, and in the next decomposition, the low-frequency part is decomposed into a higher-
order low-frequency part and a high-frequency part [54]. The N-order low-frequency
signal and the (N + 1)-order low-frequency signal are combined to form the wavelet basis
function, and the signals are then reconstructed.

The reconstructed signal data are divided into two data sets: training data set and test
data set. There are five typical eye movement states (up, down, left, right, and straight),
corresponding to five types of signals. Since the SVM is a two-class classifier, we adopt the
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“one-against-one” strategy and design ten classifiers to train the signal data. Considering
the linear inseparability between the signals, the SVM classifiers use the Gaussian kernel
function (Equation (8)) to map the five types of signals to a high-dimensional space to
distinguish them.

The characteristic value of a signal is f
(
ζi, ζ′i

)
, and its corresponding weight value is

φi. The SVM classifier can find the appropriate value of φi and limit the weighted values
of different signals’ eigenvalues (Equation (9)) in a specific interval, and the above four
kinds of signals (up, down, left, and right) can then be distinguished. If the weighted
value falls on the boundary of the interval exactly, this means that the eye gaze direction is
just straight.

Gaussian kernel function f
(
x, x′

)
= exp(−‖ x− x′ ‖2

2σ2 ), where x = ζi (8)

V =
n

∑
i=1

f
(
ζi, ζ′i

)
φi


upward, V ∈ (0, 1)

downward, V ∈ (−1, 0)
le f t, V ∈ (1, 2)

right, V ∈ (−2,−1)

(9)

3. Experimental Results Analysis
3.1. Performance of Flexible Hydrogel Biosensor

We have conducted a series of experiments to study the performance of the biosen-
sor to verify the feasibility of its application in continuous electrophysiological signal
monitoring. The mechanical performance of the biosensor is reflected in its structural
flexibility, so we studied the relationship between the tensile force exerted on biosensor
and its deformation degree. During the experiment, we used metal clips to clamp the two
ends of the membrane. One end was fixed and aligned to a certain scale of a steel ruler,
and the other end was connected to a tension gauge (NK-10, Hongkong Aigu Instrument
Co., Ltd., Hongkong, China) (Figure 4a). The exceptional mechanical property of the
biosensor enables it to follow the deformation of the epidermis without structural damage
(Figure 4b).

Biosensors 2021, 11, x FOR PEER REVIEW 6 of 14 
 

The reconstructed signal data are divided into two data sets: training data set and 
test data set. There are five typical eye movement states (up, down, left, right, and 
straight), corresponding to five types of signals. Since the SVM is a two-class classifier, we 
adopt the “one-against-one” strategy and design ten classifiers to train the signal data. 
Considering the linear inseparability between the signals, the SVM classifiers use the 
Gaussian kernel function (Equation (8)) to map the five types of signals to a high-
dimensional space to distinguish them. 

The characteristic value of a signal is 𝑓ሺζ𝑖, ζ𝑖′ሻ, and its corresponding weight value is 𝜙௜. The SVM classifier can find the appropriate value of 𝜙௜ and limit the weighted values 
of different signals’ eigenvalues (Equation (9)) in a specific interval, and the above four 
kinds of signals (up, down, left, and right) can then be distinguished. If the weighted value 
falls on the boundary of the interval exactly, this means that the eye gaze direction is just 
straight. 

Gaussian kernel function 𝑓ሺ𝑥, 𝑥′ሻ ൌ expሺെ ∥௫ି௫ᇱ∥మଶఙమ ሻ,  
where 𝑥 ൌ ζ𝑖 (8)

𝑉 ൌ ෍ 𝑓ሺζ௜, ζ௜′ሻ௡
௜ୀଵ 𝜙௜ ൞ 𝑢𝑝𝑤𝑎𝑟𝑑, 𝑉 ∈ ሺ0,1ሻ𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑, 𝑉 ∈ ሺെ1,0ሻ𝑙𝑒𝑓𝑡, 𝑉 ∈ ሺ1,2ሻ 𝑟𝑖𝑔ℎ𝑡, 𝑉 ∈ ሺെ2, െ1ሻ  (9)

3. Experimental Results Analysis 
3.1. Performance of Flexible Hydrogel Biosensor 

We have conducted a series of experiments to study the performance of the biosensor 
to verify the feasibility of its application in continuous electrophysiological signal 
monitoring. The mechanical performance of the biosensor is reflected in its structural 
flexibility, so we studied the relationship between the tensile force exerted on biosensor 
and its deformation degree. During the experiment, we used metal clips to clamp the two 
ends of the membrane. One end was fixed and aligned to a certain scale of a steel ruler, 
and the other end was connected to a tension gauge (NK-10, Hongkong Aigu Instrument 
Co., Ltd., Hongkong, China) (Figure 4a). The exceptional mechanical property of the 
biosensor enables it to follow the deformation of the epidermis without structural damage 
(Figure 4b). 

 
Figure 4. Performance test of the flexible hydrogel biosensor. (a) Tensile test. (b) Biosensor–
epidermis adhesion. 

In further experiments, the measurement of Young’s modulus was realized on a 
stretcher (DHY-2, Minsks Testing Equipment Co., Ltd., Xian, China). The biosensor was 
clamped to the platform of the stretcher and tensile force was exerted on it through clips. 
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epidermis adhesion.

In further experiments, the measurement of Young’s modulus was realized on a
stretcher (DHY-2, Minsks Testing Equipment Co., Ltd., Xi’an, China). The biosensor was
clamped to the platform of the stretcher and tensile force was exerted on it through clips.
After reading the value of force, the Young’s modulus of biosensor was obtained according
to Equation (10).

As to the measurement of the electrical behavior of biosensor, the method of voltam-
metry is introduced to determine the resistance and the conductivity [50]. We fixed both
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ends of the biosensor and applied a voltage to it through a power supply (UTP1306S,
Unitech Technology Co., Ltd., Dongguan, China). Then, we stretched the biosensor to
different lengths and recorded the corresponding current and voltage values. By measuring
the width and thickness of the biosensor, the value of conductivity could be calculated by
Equation (11).

E = F ∗ L/(A ∗ ∆L) (10)

ρ = Ut ∗ S/(It ∗ L) (11)

To ensure the comfortable wearing of the biosensor, we have carried out research
into its breathability. Three glass bottles were filled with same amount of water: one
opened naturally, one was covered with a biosensor at the mouth of the bottle, and the
other was covered with a traditional dry electrode. The evaporation of water through the
biosensor resembles the evaporation process of sweat. After several hours, the breathability
of biosensor was evaluated by calculating the water loss.

The relationship between the tensile force and the degree of deformation is presented
in Figure 5a. The deformation of the biosensor changes slowly as tensile force increases at
the beginning. When the tensile force increases to a certain value, the biosensor deforms
significantly due to the change of internal structure. Furthermore, at a lower temperature,
deformation caused by the same tensile force is smaller. In the environment of 30 ◦C, under
the tensile force of 0.07 N, the deformation degree was approximately 20%, which is close to
the maximum deformation of human skin without tearing [55]. We observed the surface of
the biosensor with a microscope (LIOO, S600T) and found no obvious structural fractures.
Experimental measurements found that the Young’s modulus of the biosensor is 286 kPa,
which can fully adapt to the deformation of skin.
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As to the electrical properties, Figure 5b displays the conductivity of the biosensor
at different stretch rates. The elongation of the biosensor leads to the increment of its
resistance and the reduction of its conductivity. When the stretch rate is in the range of
0–20%, the conductivity decreases more remarkably. High temperature intensifies the
movement of ions inside the hydrogel membrane, which explains why, in the environment
of 20 ◦C and 30 ◦C, the conductivity is significantly greater than that in 10 ◦C.

The conformal contact between the biosensor and the epidermis leads to a reduction in
contact resistance. We measured the skin contact resistance of the proposed biosensor and
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the Ag/AgCl electrode separately (26 ◦C, 60% humidity). Two electrodes were attached to
the forehead epidermis, and after connecting to the same AC signal source, they are led out
to the input of an instrumentation amplifier. The amplitude of the AC signal was 100 µA
and the frequency was fixed at 100 Hz. Thus, the skin contact resistance can be obtained
according to the voltage difference. The skin contact resistance of the flexible biosensor is
39.6 KΩ, which is smaller than that of the Ag/AgCl electrode (43.2 KΩ).

In the breathability experiment, the flexible biosensor showed a water vapor trans-
mission rate (WVTR) of 18 g m−2 h−1 (Figure 5c), which is close to that of epidermis
(20 g m−2 h−1). This indicates that the biosensor has great breathability and will not cause
discomfort when laminating on the epidermis. Additionally, the biosensor delivers a high
sensitivity of 7.8 mV·N−1 and a fast response time of 103 ms (Figure 5d).

The ductility of the sensor is the key to maintaining conformal contact with the skin
during long-term monitoring. We compared the performance of the flexible biosensor and
sensors that made from other materials in Table 1, which illustrates that why we choose
HPC/PVA to fabricate the flexible biosensor.

Table 1. A summary of sensor’s characterization. CNT—carbon nanotube; PEDOT:PSS—poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate).

Materials Stretchable Sensitivity Young’s Modulus Ref.

CNTs/PDMS 5.1 mV·N−1 445 KPa [56]

PEDOT:PSS 0.4 µV·N−1 2 × 106 KPa [57]

Graphene 83.9 µV·N−1 9 × 108 KPa [58]

HPC/PVA 7.8 mV·N−1 286 KPa Our work

3.2. Eye Movements Identification

The waveforms of EOG and strain signals corresponding to various eye movements
are depicted in Figure 6. To determine the recognition accuracy of the WT-SVM algorithm
for eye movements, we collected 600 sets of eye movement signals from 30 volunteers with
normal vision.
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We recorded the actual states and the states identified by algorithms and constructed a
5×5 determinant. The value of each term in the determinant is the count that a particular
state is recognized as another state (for example, the value of first row and first column of
the determinant (a11) is the count that the actual straight state is recognized as the right
state). The correct recognition rate of each state (straight, upward, downward, left, and right)
and the comprehensive accuracy can be calculated by Equations (12) and (13), respectively.

Sn = a(6−n)n/
5

∑
i=1

ain (n = 1, 2 . . . 5) (12)

accuracy = 0.2 ∗
5

∑
n=1

Sn (13)

The classification and recognition result of signal data collected by Ag/AgCl electrode
and flexible hydrogel biosensor are presented in Figure 7.
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As can be seen in Figure 8, in the first epoch, the accuracy of the WT-SVM algorithm
reached 93.6%. Compared with TLCNN and the traditional SVM method, it is fully trained
and achieves a stable accuracy in less epochs. Therefore, the results of the WT-SVM
algorithm in eye movement recognition are reproducible.
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3.3. In-Site Experiment

We built a bend (Figure 9a) on an open field to examine the practicability of this eye-
movement-controlled wheelchair prototype. Ten volunteers participated in this test and
they were told how to control the wheelchair through eye movements. After an average of
half an hour, they could already manipulate the wheelchair to their wills.

Biosensors 2021, 11, x FOR PEER REVIEW 11 of 14 
 

 
Figure 9. In-site experiment of eye movement-controlled wheelchair prototype. (a) Route map of 
the bend. (b) Diverse eye movement states and corresponding wheelchair movement modes. 

4. Conclusions 
This work provides a new idea for realizing the eye-movement-control of 

wheelchairs through the combined analyses of EOG and strain signals. Owing to its 
structural flexibility, the hydrogel biosensor can be well-adhered to the dimpled 
epidermis, which allows it to collect electrophysiological signals accurately. Compared to 
the rigid Ag/AgCl electrode, the flexible biosensor is more biocompatible and less likely 
to cause skin irritations. To process and classify the signal data, Kalman filtering and WT-
SVM algorithms are introduced. This soft bioelectronic system demonstrates a 96.3% 
accuracy for eye movement recognition, which is higher than the traditional rigid system 
(91.9%). The proposed eye movement control method possesses broad application 
scenarios like industrial control and AR/VR field. 

Author Contributions: Conceptualization, X.W. and F.D.; methodology, X.W. and Y.X.; writing—
original draft preparation, Y.X. and F.D.; investigation, Y.C.; data curation, H.Z. and Y.C.; writing—
review and editing, Y.X., X.W. and Y.C.; project administration, H.Z. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (grant 
number: 52005182), Science and Technology Research Project of Jiangxi Provincial Department of 
Education (grant number: 180308). 

Institutional Review Board Statement: Ethical review and approval were waived for this study, 
because the experiment does not involve any invasive behaviors and will not have any impacts on 
participant’s physical or mental health. 

Figure 9. In-site experiment of eye movement-controlled wheelchair prototype. (a) Route map of the
bend. (b) Diverse eye movement states and corresponding wheelchair movement modes.

To pass the bend without collision, firstly, the selected volunteer needs to look upward
to drive the wheelchair forward. When reaching the turning point, gazing at left or right
will control the turning of wheelchair. Lastly, the tester should look downward at the exit to
slow down the wheelchair gradually until it stops (Figure 9b). Ultimately, nine volunteers
successfully maneuvered the wheelchair through the bend, which shows a certain degree
of usability of the bioelectric system.

4. Conclusions

This work provides a new idea for realizing the eye-movement-control of wheelchairs
through the combined analyses of EOG and strain signals. Owing to its structural flexibility,
the hydrogel biosensor can be well-adhered to the dimpled epidermis, which allows it to
collect electrophysiological signals accurately. Compared to the rigid Ag/AgCl electrode,
the flexible biosensor is more biocompatible and less likely to cause skin irritations. To
process and classify the signal data, Kalman filtering and WT-SVM algorithms are intro-
duced. This soft bioelectronic system demonstrates a 96.3% accuracy for eye movement
recognition, which is higher than the traditional rigid system (91.9%). The proposed eye
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movement control method possesses broad application scenarios like industrial control
and AR/VR field.
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review and editing, Y.X., X.W. and Y.C.; project administration, H.Z. All authors have read and agreed
to the published version of the manuscript.
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