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Abstract: Classification performances for some classes of electrocardiographic (ECG) and electroen-
cephalographic (EEG) signals processed to dimensionality reduction with different degrees are
investigated. Results got with various classification methods are given and discussed. So far we
investigated three techniques for reducing dimensionality: Laplacian eigenmaps (LE), locality pre-
serving projections (LPP) and compressed sensing (CS). The first two methods are related to manifold
learning while the third addresses signal acquisition and reconstruction from random projections
under the supposition of signal sparsity. Our aim is to evaluate the benefits and drawbacks of various
methods and to find to what extent they can be considered remarkable. The assessment of the effect of
dimensionality decrease was made by considering the classification rates for the processed biosignals
in the new spaces. Besides, the classification accuracies of the initial input data were evaluated with
respect to the corresponding accuracies in the new spaces using different classifiers.

Keywords: dimensionality reduction; classifications; Laplacian eigenmaps; locality preserving pro-
jections; compressed sensing

1. Introduction

Manifold learning [1] is a method for reducing dimensionality using the fact that
essential information for many classes of high dimensional signals lies in much smaller
dimensional spaces/manifolds. This is as the process of generating the data happens to
have fewer degrees of independence thus permitting to the transformed data to belong to a
low-dimensional subspace. Thus, even though data can’t be represented in the initial space,
when embedded in two or three dimensions, they can be easily represented and show,
when possible some inherent structure. Therefore, to be able to visualize data dimension
has to be decreased to one, two or three [2].

One possibility to get dimensionality reduction as well as compression is by taking
projections of the data on a reduced number of random signals. However, using random
projections, it is expected that some significant structure of the data might be lost since the
signals are only approximately sparse and thus cannot be recovered with good accuracy [3].

Concerning geometry preserving, the techniques of manifold learning can be catego-
rized into two classes:

(a) Techniques that preserve the local arrangement: locally linear embedding (LLE),
Laplacian eigenmaps (LE), manifold charting (MC), Hessian locally linear embedding
(HLLE), and

(b) Techniques that conserve global structure: isometric mapping (ISOMAP), diffusion
map.
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Several linear methods in manifold learning are principal component analysis (PCA),
locality preserving projections (LPP) and multidimensional scaling (MDS), while among
nonlinear ones are Isomap, Hessian eigenmaps, Laplacian eigenmaps, local linear embed-
ding, and diffusion maps. From another point of view linear dimensionality reduction
algorithms such as PCA, independent component analysis (ICA), linear discriminant anal-
ysis (LDA), and many others exhibit certain aspects to define an “interesting” way of linear
data projection [4,5] at the price of possibly missing nonlinear structure of data. This is why
non-linear methods are often stronger. The three steps of such algorithms are generally the
following [6]:

• a nearest-neighbor search,
• defining of distances or affinities between elements,
• resolving a generalized eigenproblem to obtain the embedding of the initial space into

a lower dimensional one.

The two main ingredients for dimensionality reduction are feature selection and
feature extraction.

As mentioned above, we will discuss three methods for dimensionality reduction,
two “standard” ones and the third, CS, which is not necessarily specific but interesting and
useful as it will be shown.

In order to compare the methods we count on the fact that good dimensionality
reduction will permit classification rates (usually smaller but) close to the initial ones.

We made use for testing, electrocardiographic (ECG) and electroencephalographic
(EEG) signals downloaded from Internet databases and we compared the outcomes got
with LE, LPP and CS using several standard classifiers aiming at getting an image about
the compromise between dimensionality reduction and classification results.

In this paper we analyze the way the classifiers give good results for signals with
various rates of dimensionality reduction. Thus, we present relevant information regard-
ing the chosen method according to (a) the adopted rates of dimensionality reduction;
(b) requirements such as reduced complexity (up to 2 or 3 dimensions), and (c) need for
reconstruction. The advantages of each method are presented in the Section 4.

2. Materials and Methods
2.1. Laplacian Eigenmaps—LE

In the literature there are reported two similar techniques, in the sense that they consist
each of three stages, the first two being common. The difference between the two is in
the final stage, one of the algorithms keeping the local data arrangement, compared to
the other that finds the optimal directions to project the data in a small space, so as to
keep the data neighborhoods. These two techniques are Laplacian eigenmaps (LE) and
locality preserving projections (LPP). Besides, for training data, Kernel LPP has the same
significance as LE.

The basic assumption of the two methods is that data belong to a nonlinear subspace
or nearly to it and in this way aim at discovering a low-dimensional modeling by retaining
local characteristics. In LE the local properties are built on the keeping even distances
between close neighbors.

The initial step in the LE algorithm [7] is to construct an adjacency graph G so that
each data point xi is linked to its k nearest neighbors. In this way two things are important,
namely, the number of neighbors as well as the weights of the graph branches which
convey information about the distances between points.

The graph G will be constructed so that the weight wij is high if the points are close
and wij is small if the nodes are far away. These weights are computed for all pairs of
points xi and xj of the initial space; however, for points exterior the neighborhood k of a
certain xm, the weights will have null value. In addition to the simplest weight assignment
rule—one for neighboring points and null for outer points—a more exquisite rule is to use
the Gaussian kernel [7–9]. After the calculation of the weights, follows the stage in which
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the calculation of the small dimensional representations is performed and on the manifold
involves minimizing the cost function.

∅(Y) = ∑ij ‖ yi − yj ‖
2wij,

where great weights wij strongly penalize distant points, thus nearly items in the initial
space will be represented as near as possible in the new low-dimensional space.

Briefly, the LE algorithm [9] can be sketched in three main steps, namely:

(i.) Nearest-neighbor search and adjacency graph construction

Choose a number between K or a distance ε > 0 such that the vicinities of each data
point are established: for a k-neighborhood nodes i and j are linked by a branch if i is
through the k nearest neighbors of j or j is through the k nearest neighbors of i. On the
other hand, nodes i and j are linked by a branch if ‖ xi − xj ‖ 2 < ε, in which the Euclidean
norm appears.

(ii.) Weighted adjacency matrix (Choosing the weights)

The weights wij of the symmetric (n × n) vicinity matrix are computed as:

wij = w
(
xi − xj

)
=

 exp
{
− ‖xi−xij‖2

2σ2

}
, i f x ∈ Ni;

0, otherwise,

according to the graph G that is assumed to be connected.

(iii.) Eigenmaps

In this stage, the eigenvalues and eigenvectors are calculated for the general eigenvec-
tor problem,

Lf = λDf, (1)

where D = (dij) is an (n × n) diagonal matrix with

dii = ∑j∈Ni
wij,

and L = D −W is a Laplacian matrix which may be considered as an operator on functions
applied on the nodes of G.

Ultimately, the eigenvector f 0 suitable to the 0 eigenvalue is discarded. The next
m eigenvectors related to the next m eigenvalues in increasing gamut are utilized for
embedding in a m-dimensional Euclidean space:

xi → (f1(i), . . . , fm(i)), (2)

where f 0, . . . , fk−1 are the solutions of (1).

2.2. Locality Preserving Projections—LPP

The locality preserving projections (LPP) method is established on the similarly vari-
ation rule as for the LE method. It has alike locality conserving attributes: the training
data are utilized to learn a projection and the testing samples are embedded into the
low-dimensional space [10].

Therefore, the first two stages of the LPP algorithm are alike as those of the LE while
the final stage assumes calculating the eigenvectors and eigenvalues for the generalized
eigenvector problem:

XLXTa = λXDXTa, (3)

in which X is the training data matrix and L, D have the same meaning as before.
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Designating with a0, . . . , al−1 the column vectors related to the solutions of (2),
ordering increasingly λ0 < . . . < λl-1, the mapping is defined as:

Xi → yi = ATxI, A = (A0, A1, . . . , Al−1), (4)

in which yi is l-dimensional, and A is a (nxl) matrix.

2.3. Compressed Sensing—CS

Compressed sensing is an acquisition technique that requires fewer samples than the
Nyquist rate in the hypothesis of sparsity of signals [11]. Thus a signal x can be expressed
by the projections:

y = ∅ x, (5)

where x ∈ RN, y ∈ RM is the projection vector and ∅ ∈ RM, N is the compressed sensing
matrix whose entries are random i.i.d. (independent and identically distributed) signals. In
this paper we will use the low dimensional projection vector y for signal classifications [12]
and not for restoration signals.

2.4. Classifier Types

Since there are many methods of classification presented in the literature, it is difficult
to decide which algorithm is superior to the others. The choice of one or the other depends
on the type of application in which the classifier is incorporated but also on the specifics of
the type of data used in the application. For example, for the classes linear separable, if
the classes are linearly separable, the linear classifiers as logistic regression, Fisher’s linear
discriminant can surpass complex models as support vector machine (SVM) and artificial
neural networks (ANN) and vice versa [13–15].

For the classification of ECG and EEG segments in the original space and in decreased
dimensions, several classes of classifiers were used, namely: Decision Trees; Discriminant
Analysis; Naive Bayes; SVM; Nearest Neighbor; Ensembles. Most of these classes have
subclasses that have been used. In what follows several short descriptions of the main
classifiers are given.

2.4.1. Decision Trees

Given data of attributes annotated with classes, a decision tree provides a series of
rules that can be applied to classify new data. It utilizes an if-then command set which is re-
ciprocally exclusive and exhaustive for classification. The commands are read sequentially
utilizing the training data one at a time. Each time a rule is learned, the tuples incorporated
by the rules are eliminated. This process is sustained on the training set until fulfilling a
finish condition.

Advantages: Decision Tree is easy to comprehend and to view, the data does not
require much preparation and the method can manage both numerical and qualitative data.

Drawback: This method can yield trees that do not generalize well and can be unstable
i.e., small fluctuations in data could lead to the generation of a completely different tree.

2.4.2. Discriminant Analysis

This is a common primary classification method to test since it is quick, precise and
simple to comprehend. Discriminant analysis is appropriate for voluminous datasets.

This technique presumes that particular categories provides data to whom they are
assigned certain Gaussian distributions. In the training stage, the fitting function assesses
the variables of a Gaussian law for every class.

2.4.3. Naive Bayes

Bayes’ theorem is the source of this technique and it is based on the hypothesis of
independence between every couple of attributes. Naive Bayes decision making behaves
appropriately well in many real environments circumstances and applications, such as
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spam removal, document classification and person recognition. Naive Bayes is a simple
method to apply and favorable outcomes have been acquired in the vast majority of
situations. Additionally, it can be quickly used for voluminous datasets because it implies
a linear function in time rather than by very time consuming iterative algorithms as in the
case of a lot of other types of classifiers.

Advantages: Usually it needs a small number of training data to assess the necessary pa-
rameters. Naive Bayes decision making is very fast in contrast with more complex techniques.

Drawbacks: The big problem with this classifier is that it can manifest the so called
“the zero probability problem”. Thus, in the situation where the conditioned probability is
zero for a certain attribute, the classifier is not able to offer a correct decision. This problem
is usually solved by means of a Laplacian estimator.

2.4.4. Support Vector Machine—SVM

The support vector machine classifications consider the training data set as points
divided into classes by an interval which is, ideally, as large as possible. The new data
points are then embedded and estimated to belong to a certain class on one side or the
other of the gap between the initial points.

In this way a SVM finds the most appropriate hyperplane that divides data points
into two classes, in the sense that this hyperplane has the largest margin between the two
classes. In other words, the SVM finds the maximal thickness of the area that is parallel to
the hyperplane that has no inner data points [14].

Advantages: This classifier is efficient in high dimensional spaces and utilizes a subset
of training data in the decision function that makes its memory very efficient.

Drawback: The SVM method does not directly give probability approximations. They
are determined by applying usually an inefficient five-fold cross-validation.

2.4.5. Nearest Neighbor

The neighbors based classification is a type of slow training as it does not attempt to
build a universal internal pattern, but simply stores cases of the training data. Classification
is estimated from a simple majority vote of the k nearest neighbors of each point. Upper
bound of the error rate approaches twice that of the ideal Bayes classifier.

Benefits: This method is easy to apply, powerful for noisy training sets, and efficient if
the training set is huge.

Drawback: The main problem is the necessity to calculate k and the computation effort
is great as it needs to compute the distance of each input point to all the training data.

2.4.6. Ensembles of Classifiers

The ensemble classifier combines a collection of classifiers that might perform superior
classification performance compared to every single classifier. The principal rule behind
the ensemble model is that a collection of poor learners join together to build a powerful
learner. Qualities depend on the choice of the algorithm. Some techniques to perform
ensemble decision trees are bagging and boosting.

Bagging (Bootstrap Aggregation) is applied when the object is to decrease the variance
of a decision tree. The main idea is to create different data subsets from the training sample
chosen randomly with replacement. Now, each group of subset data is utilized to train their
decision trees. As a consequence, we end up with an ensemble of distinct models. Average
of all the predictions from different trees are applied which is a more strong solution than a
singular decision tree.

Boosting ensemble is another method to build a combination of classifiers. In this
method, learners are determined sequentially with early learners applying uncomplicated
models to the data and then evaluating data for errors. Hence, it fits consecutive trees
(random sample) and, at all step, the object is to solve for net error from the previous tree.
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Another type of ensemble of classifiers is the ensemble of nearest neighbor classifiers
where each individual of the ensemble uses a random feature subset only and the decisions
of these multiple classifiers are amalgamated for the ultimate decision.

Starting from the boosted trees ensemble, boosting being the most popular deci-
sion tree ensemble, Random under-sampling boosting (RUSBoost) has been introduced.
Random under-sampling boosting (RUSBoost) is exceptionally successful at classifying
irregular data. That means some classes with the training data have many more members
than others. The method uses N, the number of members in the class with the fewest
members in the training data, as the basic structure for sampling. In this way, by taking
only N data points, classes with more members are under-sampled. If we have K classes,
during the training stage, RUSBoost uses a smaller set of the data with N data points
from each of those K classes. Then the method achieves the re-weighting and building the
ensemble in Adaptive Boosting for Multiclass Classification [15].

3. Experimental Results and Discussions
3.1. ECG Signals

To analyze the feasibilities of dimension reduction utilizing LE, LPP and CS methods,
we used for testing methods 44 ECG records from the MIT-BIH Arrhythmia database,
including Holter data (so from wearable acquisition devices), collected at a sampling
frequency of 360 Hz and on precision by 11 bits/sample [16]. Taking into account the
annotations in the database, 7 pathological classes and the normal beating class were
identified. The pathological classes included in this study are atrial premature beat (A), left
bundle branch block beat (L), right bundle branch block beat (R), premature ventricular
contraction (V), fusion of ventricular and normal beat (F), paced beat (/), fusion of paced
and normal beat (f) and a class of normal beats (N).

For segmentation ECG signals we applied the segmentation method presented in
a previous paper, namely, segmentation with centered R wave [17]. Our segmentation
method begins with the precise determination of the R-wave, which has the maximum
amplitude of ECG. Thus, the ECG signals are split in heartbeats cycles. An ECG cycle starts
in the midst of a certain RR interval and finishes in the midst of the following RR interval.
The R wave is placed in the center of the ECG cycle by resampling the signals on both parts
of R. Thus cycles with the centered R waveform have been computed. Thereby, all ECG
cycles are defined by 301 samples with the R wave being situated on the 150-th sample.
Figure 1 shows an example of segmentation of the ECG signals belonging to each of the
eight pattern categories.
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The database constructed is a data collection including 5608 ECG patterns, with
701 patterns for each of the eight considered types (seven pathological groups and a
normal one).
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A comparison of ECG behavior in the initial and reduced spaces implies first the
classification of the ECG signals with the centered R-wave in the original space. The work
was done in MATLAB® medium (MathWorks, Natick, MA, USA) and we used the next
classifiers, each with different versions for tuning their key settings: Decision Trees (with
fine, medium and coarse type classifier), Linear Discriminant and Quadratic Discrimi-
nant, Naive and Kernel Naive Bayes, Support Vector Machine (Linear, Quadratic, Cubic
and Gaussian), k-nearest neighbors (fine, medium, coarse, Cosine, Cubic and Weighted
KNN), besides different kinds of the ensemble of classifiers (Boosted and Bagged trees,
discriminant and KNN Subspace and RUSBoosted Trees).

Figure 2 and Table 1 (its first column) show the classification accuracies for ECG
signals with R-wave centered, in the initial space (raw data only). One can observe that
good outcomes (over 90% classification accuracies) with SVM classifiers (Cubic, Quadratic
and Medium Gaussian SVM), Fine KNN, and Ensemble Subspace KNN are got.
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Figure 2. Classification rate in the original ECG space (centered 301 samples segments).

Table 1. Classification accuracies with CS, LE, LPP algorithms for 2, 3 and 25 dimensions respectively.

ECG Original
Centered Compressed Sensed (CS) Laplacian Eigenmaps (LE) Locality Preserving

Projections (LPP)

ECG
Original CS 2 CS 3 CS 25 LE 2 LE 3 LE 25 LPP 2 LPP 3 LPP 25

Fine Trees 83.44 49.41 55.34 79.81 76.25 77.32 86.73 54.00 66.65 81.15
Medium Trees 71.32 45.35 48.00 69.23 71.53 68.85 79.62 52.34 60.43 67.91
Coarse Trees 42.83 32.21 34.41 40.32 45.64 45.64 50.67 40.85 41.54 49.75

Linear Discriminant 76.32 24.23 33.72 73.94 34.77 38.81 77.44 30.42 35.41 73.64
Quadratic Discriminant 70.00 34.00 47.53 89.77 47.34 54.54 84.22 44.41 56.24 91.51

Naive Bayes 47.63 33.43 38.93 52.22 37.64 38.34 74.36 42.51 49.37 77.21
Kernel Naive Bayes 62.53 45.94 48.8 71.85 70.34 69.95 81.74 52.54 62.26 82.64

Linear SVM 87.34 29.52 38.9 85.14 49.08 61.37 85.62 37.52 47.72 85.92
Quadratic SVM 95.11 44.54 54.3 94.54 43.95 59.92 90.54 44.52 64.64 94.24

Cubic SVM 95.24 42.72 53.00 94.50 26.10 33.00 91.20 27.10 47.92 94.24
Fine Gaussian SVM 87.47 51.80 62.90 87.91 75.36 78.75 90.69 54.40 70.10 61.14

Medium Gaussian SVM 92.91 49.84 58.74 93.00 67.92 69.88 87.12 53.44 67.84 94.14
Coarse Gaussian SVM 79.47 32.85 43.65 80.97 54.36 55.41 80.92 44.45 57.82 83.82

Fine KNN 93.42 39.14 55.14 93.71 79.92 83.36 89.84 45.11 63.90 93.74
Medium KNN 90.27 48.72 60.82 90.82 80.76 83.92 89.65 52.42 68.00 91.32
Coarse KNN 77.62 50.47 57.71 77.44 74.00 75.35 80.12 53.63 65.74 78.34
Cosine KNN 90.54 29.64 47.15 90.74 61.25 81.42 89.55 32.80 54.62 92.76
Cubic KNN 90.22 48.81 60.81 90.81 80.88 83.95 89.72 52.38 68.34 90.77

Weighted KNN 91.47 43.60 59.44 92.34 81.52 84.82 90.32 48.51 67.42 92.35
Ensemble Boosted Trees 78.34 45.97 49.45 76.81 72.65 70.19 82.49 53.55 61.36 77.67
Ensemble Bagged Trees 91.81 43.94 59.45 90.4 80.00 83.91 90.91 48.86 68.31 91.84

Ensemble Subspace Discriminant 76.24 24.31 29.14 70.3 35 38.95 76.93 30.22 34.32 73.05
Ensemble Subspace KNN 94.71 23.34 44.00 94.04 51.24 80.82 89.98 24.14 56.10 95.34

Ensemble RUS Boosted Trees 71.54 45.34 47.94 69.31 71.54 68.84 79.64 52.84 60.67 67.97
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The decision borders obtained with the KNN classifier are much more complex than
for all Decision Trees, so getting an excellent classification for Fine KNN. The bad outcomes
got with Bayes as opposed to KNN may have the following explanation: the fundamental
distinction between KNN and Naive Bayes methods is that KNN is a discriminative
classifier, and the Naive Bayes is a generative classifier. The Fine KNN classifier behaves
better because it has the characteristic to be optimized locally. The great results achieved
with Fine KNN were expected to be so. With an ensemble subspace KNN even better
outcomes may be acquired.

In our approach the best accuracy is achieved with Cubic SVM, i.e., 95.2%. This
parameter is valuable because the 8 classes studied are not easily distinguishable, and they
are even intertwining.

In Table 1 and Figure 3 there are the classification outcomes: (a) in the original
space with 301 samples; (b) results for ECG signals with dimensionality reduction by
LE, LPP and CS methods for 2, 3 and 25 dimensions, respectively. We computed the
classification accuracies for 2- and 3-dimensional cases because the signals with these
dimensionalities can be easily illustrated graphically, which is very helpful and significant
for comprehension the data spatial grouping. The graphic representation is very useful
when we have many classes to handle and know nothing concerning their volumetric
disposing. We also calculated the classification rate for dimensionality decrease to 25-space
as we considered that a reduction from 301 to 25 dimensions is plausible both from the
point of view of dimensionality reduction as well as in terms of classification accuracy.
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Figure 3. Classification results with CS, LE, LPP methods for 2, 3 and 25 dimensions, respectively.

Figure 4 and Table 2 show the results for various spatial dimensions for the Com-
pressed Sensing (CS) method. It is observed that utilising Coarse Decision Tree very bad
outcomes are got in the original space as well as in all other reduced spaces. Outcomes
similar to those of the original space are achieved beginning with more than 10 dimensions
in the projected space. Additionally, it can be observed the best outcomes hold with the
SVM classifier. Depending on the degree of the dimensionality decrease they can be with
cubic SVM or with fine Gaussian SVM. These classifiers achieve excellent classification
rates, near to the medium Gaussian SVM. As a finding, for the dimensionality decrease
with CS method, the SVM algorithm is best suited for that.
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Table 2. Classification results with CS method for dimensionality reduction.

ECG Original
Centered CS 2 CS 3 CS 4 CS 5 CS 7 CS 9 CS 10 CS 15 CS 20 CS 25

Fine Tree 83.4 49.4 55.3 58.1 68.6 72.3 71.5 72.4 75.7 77.3 79.8
Medium Tree 71.3 45.3 48.0 49.3 54 52.8 51.6 52.3 52.7 60.6 69.2
Coarse Tree 42.8 32.2 34.4 34.2 36.5 35.2 36.2 36.7 35.9 38.0 40.3

Linear Discriminant 76.3 24.2 33.7 35.2 41.4 47.3 55.3 60.0 69.2 71.6 73.9
Quadratic Discriminant 70.0 34.0 47.5 50.3 63.2 74.1 77.8 82.0 87.6 89.1 89.7

Naive Bayes 47.6 33.4 38.9 40.8 47.2 48.6 47.8 49.1 50.3 50.9 52.2
Kernel Naive Bayes 62.5 45.9 48.8 51.7 62.4 66.1 68.0 68.1 70.5 70.5 71.8

Linear SVM 87.3 29.5 38.9 41.6 54.2 63.2 71.3 75.9 82.8 84.4 85.1
Quadratic SVM 95.1 44.5 54.3 61.7 74.7 85.2 88.9 90.8 93.3 94.2 94.5

Cubic SVM 95.2 42.7 53.0 62.2 75.9 86.6 90.1 91.7 93.4 94.7 94.5
Fine Gaussian SVM 87.4 51.8 62.9 69.5 82.0 86.4 87.8 88.5 88.0 87.6 87.9

Medium Gaussian SVM 92.9 49.8 58.7 65.4 78.0 85.4 87.3 88.6 91.2 92.0 93.0
Coarse Gaussian SVM 79.4 32.8 43.6 45.2 62.1 67.2 69.5 71.8 77.5 79.5 80.9

Fine KNN 93.4 39.1 55.1 64.4 80.7 87.6 89.4 91.0 92.4 93.5 93.7
Medium KNN 90.2 48.7 60.8 67.5 80.6 86.5 87.8 88.4 89.6 90.3 90.8
Coarse KNN 77.6 50.4 57.7 61.5 69.2 73.8 74.9 75.5 76.3 76.6 77.4
Cosine KNN 90.5 29.6 47.1 58.2 73.8 83.2 85.9 86.7 88.3 89.7 90.7
Cubic KNN 90.2 48.8 60.8 67.7 80.3 86.4 87.7 88.5 89.8 90.5 90.8

Weighted KNN 91.4 43.6 59.4 68.2 81.9 88.1 89.3 90.1 91.5 92.1 92.3
Ensemble Boosted Trees 78.3 45.9 49.4 52.2 61.8 66.1 67.5 70.6 69.5 73.8 76.8
Ensemble Bagged Trees 91.8 43.9 59.4 65.6 80.3 85.2 87.1 88.2 89.7 90.2 90.4

Ensemble Subspace Discriminant 76.2 24.3 29.1 31.5 40.0 43.9 45.6 47.0 61.1 64.4 70.3
Ensemble Subspace KNN 94.7 23.3 44.0 49.5 74.2 86.0 89.0 90.3 92.4 93.6 94.0

Ensemble RUSBoosted Trees 71.5 45.3 47.9 49.4 53.9 53.8 52.0 52.5 52.8 60.6 69.3

In the original 301-dimensional space the classification accuracy is 95.2%. In the case
of decreasing to 10 and 25 dimensions, an accuracy of 91.7% and 93.4% were obtained,
respectively. An interesting aspect that can be remarked in Table 2 (underlined numbers) is
that for dimensionality reduction to 20 or 25 slightly improved results compared to those
in the initial space have been obtained with some classifiers. A possible explanation is that
through dimensionality reduction the classification problem complexity diminishes and
thus the classification rate increases.

Figure 5 and Table 3 show the results obtained with LE, both for the initial and reduced
ECG signals. In the original space the best outcomes are attained with cubic SVM classifier.
On the contrary, in the case of very small dimensions (between 2 and 5) of the projected
space with the LE algorithm very weak outcomes are achieved. For very small manifolds,
the best outcomes are accomplished with the Weighted KNN classifier. This statement can
be justified by maintaining the vicinities at the local level. Likewise, excellent outcomes for
very small spaces are obtained by using the Fine Gaussian SVM classifier. Thus, for these
small spaces, the classification of the test data is strongly dependant on the quality of the
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classifier. In other words, the classifier has to be able to draw very precise decision limits
for very close data. It is the case of the Fine Gaussian SVM kernel range, that is establish to
(1/4) sqrt(no. of features).
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Figure 5. Classification results with LE method for dimensionality reduction.

Table 3. Classification results with LE method for dimensionality reduction.

ECG Original
Centred LE 2 LE 3 LE 4 LE 5 LE 7 LE 9 LE 10 LE 15 LE 20 LE 25

Fine Tree 83.4 76.2 77.3 80.4 80.4 82.9 83.7 82.8 85.8 86.5 86.7
Medium Tree 71.3 71.5 68.8 72.7 72.4 74.9 75 75.1 78.9 80.1 79.6
Coarse Tree 42.8 45.6 45.6 52.5 52.5 50.9 51.2 51.3 51.8 51.6 50.6

Linear Discriminant 76.3 34.7 38.8 34.7 40.3 57.8 61.1 60.3 72.1 76.2 77.4
Quadratic Discriminant 70 47.3 54.5 58.3 60.1 69 72.2 73 78.1 82.1 84.2

Naive Bayes 47.6 37.6 38.3 39.8 39.5 57 57.1 60.9 71.4 73.7 74.3
Kernel Naive Bayes 62.5 70.3 69.9 70.8 71.5 74.9 73.6 74 77.3 79.5 81.7

Linear SVM 87.3 49 61.3 67.3 70.2 75.3 76.9 77.5 79.1 83.7 85.6
Quadratic SVM 95.1 43.9 59.9 76.2 79 86.1 87.6 87.3 87.7 89 90.5

Cubic SVM 95.2 26.1 33 52.5 64.2 87.9 90.1 89.7 89.6 90.4 91.2
Fine Gaussian SVM 87.4 75.3 78.7 81.1 82 85.2 85.9 86.5 88.6 90.4 90.6

Medium Gaussian SVM 92.9 67.9 69.8 73.4 75.4 78.3 78.6 79.5 82.8 86.6 87.1
Coarse Gaussian SVM 79.4 54.3 55.4 61.2 66.2 69.2 72.1 72.5 76.6 80.1 80.9

Fine KNN 93.4 79.9 83.3 85.7 86.2 86.2 87.2 87.1 88.1 88.9 89.8
Medium KNN 90.2 80.7 83.9 85 85.5 86.8 87 86.3 87.4 88.9 89.6
Coarse KNN 77.6 74 75.3 75.3 77.1 79 78.6 78.5 78.3 80.6 80.1
Cosine KNN 90.5 61.2 81.4 83.8 85.9 86.9 86.7 86.9 87.6 88.9 89.5
Cubic KNN 90.2 80.8 83.9 84.7 85.5 86.8 86.8 86.1 87.4 89 89.7

Weighted KNN 91.4 81.5 84.8 86.6 86.9 87.4 88.1 87.8 89.1 89.9 90.3
Ensemble Boosted Trees 78.3 72.6 70.1 75.5 76 78.3 79.2 79.9 81.4 82.2 82.4
Ensemble Bagged Trees 91.8 80 83.9 86.2 86.6 88.2 88.6 88.7 89.9 90.9 90.9

Ensemble Subspace Discriminant 76.2 35 38.9 34.7 40.2 59.2 61.9 60.5 72.2 75.9 76.9
Ensemble Subspace KNN 94.7 51.2 80.8 83.2 86.1 86.9 87.6 87.8 88.7 89.6 89.9

Ensemble RUSBoosted Trees 71.5 71.5 68.8 72.7 72.4 74.9 75 75.1 79 80.1 79.6

However, the Laplacian Eigenmaps technique for very small spaces, such as 2 and
3 dimensions, leads to very good classification results (81.5% and 84.5% classification
accuracy, respectively) with Weighted KNN classifier. It is to remember here that the
current classification problem is a difficult one, as there are 8 categories of ECG signals.
We may state that a classification rate with only almost 10% under the original space
versus a decrease in size from 301 to 2 is a remarkable result. The exceptional benefit
of shrinking to 2 or 3 dimensions is the input data may be easily visualized graphically,
allowing certain comprehension of the spatial arrangement. For a dimensionality reduction
over 10, it can be observed that for some classifiers (results underlined in Table 3) higher
classification accuracy than in the initial space has been obtained reminding of a kind of
feature selection algorithm.
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Figure 6 and Table 4 show the results of dimensionality reduction when using the
LPP algorithm. As seen, the results are very similar to those achieved with the Lapla-
cian Eigenmaps technique besides for very low dimensions (of 2, 3, and 4), when the
classification measures achieved are much inferior (54%, 70.1%, and 77.3%, respectively).
In the case of dimensions superior to 5, the classification measures are similar to those
attained with the Laplacian Eigenmaps technique. For dimensions upper 20, classification
measures very near to those in the original space are reached. As an example, for 20- and
25-dimensional spaces classification accuracies of above 95% are achieved by means of the
Ensemble Subspace KNN classifier.
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Table 4. Classification results with LPP method for dimensionality reduction.

ECG Original
Centered LPP 2 LPP 3 LPP 4 LPP 5 LPP 7 LPP 9 LPP

10
LPP
15

LPP
20

LPP
25

Fine Tree 83.4 54 66.6 73 75.6 77.2 77.8 77.5 81.5 81.3 81.1
Medium Tree 71.3 52.3 60.4 65.9 66.5 66.8 66.9 67 68 68.1 67.9
Coarse Tree 42.8 40.8 41.5 46.7 46.6 46.9 49.7 49.9 49.7 49.7 49.7

Linear Discriminant 76.3 30.4 35.4 35.5 37.8 47.5 63.2 65.3 71.2 72.6 73.6
Quadratic Discriminant 70 44.4 56.2 65.1 67.6 76.2 82.3 83.4 89.1 90.5 91.5

Naive Bayes 47.6 42.5 49.3 58.3 58.1 63.5 71.5 72.5 76.5 77.5 77.2
Kernel Naive Bayes 62.5 52.5 62.2 65.6 70.6 73.6 77 77.7 81.3 82.6 82.6

Linear SVM 87.3 37.5 47.7 53.6 58.9 70.4 76.9 78.1 83.5 84.8 85.9
Quadratic SVM 95.1 44.5 64.6 73.5 77.6 86.4 90.2 90.9 93.7 94.1 94.2

Cubic SVM 95.2 27.1 47.9 74.3 81.2 88.1 91.2 91.8 94.3 94.5 94.2
Fine Gaussian SVM 87.4 54.4 70.1 77.3 81.2 84.8 84.4 82.9 75.8 65.2 61.1

Medium Gaussian SVM 92.9 53.4 67.8 75.4 79.2 86.7 90.2 90.4 93.5 93.8 94.1
Coarse Gaussian SVM 79.4 44.4 57.8 65.8 68.9 73.4 77.4 78 82.1 83 83.8

Fine KNN 93.4 45.1 63.9 73.9 80 87.3 91.4 91.5 93.3 93.8 93.7
Medium KNN 90.2 52.4 68 77 80.8 87 89.9 89.9 91.9 92.1 91.3
Coarse KNN 77.6 53.6 65.7 70.6 72.2 77.3 80 80.3 81 79.3 78.3
Cosine KNN 90.5 32.8 54.6 70.7 76.4 84.1 88.4 88.9 92.2 92.7 92.7
Cubic KNN 90.2 52.3 68.3 76.8 80.6 86.8 89.2 89.3 91.6 91.1 90.7

Weighted KNN 91.4 48.5 67.4 77.3 82.3 87.9 91 91.1 93 92.9 92.3
Ensemble Boosted Trees 78.3 53.5 61.3 68.1 70 72 75.8 76.5 77.6 77.3 77.6
Ensemble Bagged Trees 91.8 48.8 68.3 77.2 81.9 87.3 89.1 89.9 91.2 90.8 91.8

Ensemble Subspace Discriminant 76.2 30.2 34.3 37 37.7 46.3 62 63.2 70.3 70.9 73
Ensemble Subspace KNN 94.7 24.1 56.1 62.6 76.3 86.4 91.2 91.6 94.5 95.4 95.3

Ensemble RUSBoosted Trees 71.5 52.8 60.6 66 66.5 66.8 66.8 67.1 68 68.1 67.9

It has been observed again (underlined numbers in Table 4) that for dimensionality
reduction over 10, in some cases improved results have been obtained.

In Figure 7 ECG signals with reduced dimensionality to 3D obtained with the 3 tech-
niques are presented (each color corresponds to a different class) [18]; the great advantage
of the possibility of data graphical visualization is obvious.
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It can be observed that LE leads to a better data clustering/spatial separation than the
other two methods for which, even though data are clustered, overlapping occurs. This is
the reason why, when choosing dimensionality reduction to 3D, the classification ratio is
better for LE compared to LPP and CS.

3.2. EEG Signals

For testing the dimensionality reduction methods, the EEG signals collected by Hoff-
mann and collaborators in their laboratory were used; a small database is free on the
internet at [19]. This database includes EEG signals collected on the configuration with
32 channels, arranged in 942 vectors to be classified, lasting 1 sec. each [20,21]. The classifi-
cation task is to detect the P300 waveform from a single EEG trial which has been used to
build a P300 based spelling device for Brain-Computer Interface—BCI. We used configura-
tions with 23, 8 and 4 channels for original EEGs for preprocessing and classifications tasks.
The paradigm with P300 spelling device [22] that has been used is as follows.

One of the first examples for BCI is the algorithm proposed by Farwell and Donchin [22]
that relies on the unconscious decision-making processes expressed via P300 in order to
lead a computer. Another example, described in [23], refers to a real-time training of voted
perceptron for classification of EEG data, also for a BCI application.

Now returning to the experiments proposed in [22], a (6 × 6) matrix containing (as in
Figure 8) the letters of the alphabet and the numbers 1–9 were shown to the subjects on a
computer display. The horizontal and vertical lines of the table were run at random for
100 ms with a 100 ms pause between sparkles i.e., after 12 sparkles every horizontal and
vertical line was glowing once. Two datasets were acquired from every subject. During the
first meeting subjects were requested to write the French words “lac”, “nuage”, “montagne”,



Biosensors 2021, 11, 161 13 of 20

and “soleil”, while for the second recording the subjects had to write the words “fromage”,
“chocolat”, “pain”, and “vin” [21].
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Figure 8. Classical P300 spelling paradigm described by Farwell–Donchin (1988).

As reported in [20] the EEG signals were registered from channels FP1, FP2, AF3, AF4,
F7, F3, FZ, F4, F8, FC1, FC5, FC6, FC2, T7, C3, CZ, C4, T8, CP1, CP5, CP6, CP2, P7, P3, PZ,
P4, P8, PO3, PO4, O1, OZ, O2 with a Biosemi Active 2 system (NEUROSPEC AG, Stans,
Switzerland) at 2048 Hz. The signals were then referred to the average of channels O1,
OZ, O2, low pass filtered (0 . . . 9) Hz with a 7th order Butterworth filter, and re-sampled
with 128 Hz. The channels used as reference and channels T7, T8 were not used for EEG
processing as they did not bring significant information for the P300s waveform detection.
A more detailed explanation of the experimental work, i.e., EEG acquisition, preprocessing
and artifact rejection is presented in [21].

In Figure 9 the electrodes configurations with 4, 8 and 23 channels are shown.
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Figure 10 shows the classification results for different channel configurations cases.
It is observed that in general for the 8-channel version the best classification results of
the original EEG signals are obtained. In general, good results are obtained for linear,
quadratic and cubic SVM, but the best results are obtained with medium Gaussian SVM in
the 8-channel configuration.

Because, in general, the configuration with 8 electrodes offers the best results, in the
following we will present the results of this configuration for dimensionality reduction
through the three analyzed methods. It should be mentioned that the initial EEG signals
are segmented according to the stimulus applied to segments of 128 samples, i.e., we will
consider that the space of the initial EEG signals is 128-dimensional.
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Figure 10. Classification results with original EEG signals for configurations with 4, 8 and 23 channels.

Figure 11 and Table 5 show the results for the dimensionality reduction with CS
algorithm. It is found that there are classifiers with which better results are obtained in
a space reduced to 15 dimensions compared to the initial space. This is the case of the
discriminant linear classifier for which in the original space the classification rate is 77.2%
and in a space reduced to 15 dimensions it classifies with a rate of 84.6%. Additionally,
Quadratic Discriminant and Logistic Regression offers improved results for all spaces
compared to the initial space. Additionally, in the case of Discriminant Subspace Ensembles
the results in the reduced spaces are generally superior to the initial space. These results
for which in spaces of reduced dimensionality improved results are obtained, compared to
the initial spaces, are an example that the initial signals are in reality in a space of a much
smaller dimensionality. It is much easier to classify data with a small dimension compared
to the same data that is represented in a false large space.
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Figure 11. Results for the dimensionality reduction with CS algorithm for configurations with 8 channels.
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Table 5. Classification results with CS method for configurations with 8 channels.

ECG Orig. EEG 8 Channels CS

8 Channels CS 3 CS 5 CS 10 CS 15

Fine Tree 73.8 55.1 61.4 64.8 69.5
Medium Tree 75.5 59.8 60.8 68.4 73.1
Coarse Tree 75.8 59.6 59.4 65.7 70.5

Linear Discriminant 77.2 68.3 74 79.9 84.6
Quadratic Discriminant 63.4 66.5 68 72.6 71.2

Logistic Regression 50.5 67.8 73.2 80.6 83.7
Naive Bayes 81.7 66.3 68.5 72.4 75.8

Kernel Naive Bayes 79.8 64.1 68.5 72 74.9
Linear SVM 84.1 68.3 73.4 80.9 84

Quadratic SVM 84.4 69 72.4 81.1 85.1
Cubic SVM 83.7 64.4 70.8 80.6 83.8

Fine Gaussian SVM 50.5 50.7 50.5 50.5 50.5
Medium Gaussian SVM 85.4 69.3 73.6 80.8 83.9
Coarse Gaussian SVM 82.1 68.7 72.1 76.9 79.6

Fine KNN 69.2 56.4 59.9 63.8 65.2
Medium KNN 77.8 61.8 65.4 69 74.7
Coarse KNN 78.7 66.8 69.9 73.9 78
Cosine KNN 78.5 63.3 67.4 70 74.1
Cubic KNN 75.9 60.8 66.3 69.9 74.3

Weighted KNN 77.9 62.6 66.8 69.4 74.2
Ensemble Boosted Trees 82.3 64.5 68.9 74.9 80
Ensemble Bagged Trees 77.5 65.6 67.7 70 72.8

Ensemble Subspace Discriminant 71.8 68.3 73.4 81 85
Ensemble Subspace KNN 71.1 62.3 64 69.1 69.7

Ensemble RUSBoosted Trees 77 59.1 64.1 69 74.4

Figure 12 shows the results obtained with the LE algorithm to reduce the dimensional-
ity of the space for EEG signals in the 8-channel configuration. It can be seen in Table 6
that in the case of the CS algorithm, the Linear and Quadratic Discriminant and Logistic
Regression classifiers offer improved classification rates. Additionally, Discriminant Sub-
space Ensembles and KNN Subspace Ensembles classify better in reduced spaces with LE
algorithm. The major difference from the CS method is that for very small spaces of dimen-
sionality 3 and 5 the results are much better for the LE method compared to CS method.
Hence the utility of the LE algorithm for data representation in 2 and 3 dimensional spaces
for better visualization and understanding of spatial and geometric data arrangement.

Figure 13 shows the results obtained with the LPP algorithm to reduce the dimen-
sionality of space for EEG signals in the 8-channel configuration. It is observed in Table 7
that the best results are obtained with all the classifiers for the initial space. These poor
results are obtained both when applying LPP on each channel and then concatenating the
signals with small spaces, or concatenating the initial EEG signals for the 8 channels and
then applying the LPP method for dimensionality reduction.

In Figure 14 EEG signals with dimensionality reduced to 3D with all three techniques
are represented. Signals containing the P300 wave have been plotted in blue and the others
in red. It can be observed that for CS and LPP the two classes overlap, thus explaining the
modest classification results for the 3D case. When using LE we get a better clustering of
the two classes on the left laying non-P300 waves marked in red and on the right the P300
ones marked in blue. This is why LE leads to better results for 3D compared to LPP and CS.
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Table 6. Classification results with LE algorithm for configurations with 8 channels.

ECG Originals EEG 8 Channels LE

8 Channels LE 3 LE 5 LE 10 LE 15

Fine Tree 73.8 71.1 72 70.3 69.6
Medium Tree 75.5 75.1 75.3 71.8 72.3
Coarse Tree 75.8 75.1 74.3 74.1 75.2

Linear Discriminant 77.2 79.1 81.6 83.2 81.1
Quadratic Discriminant 63.4 77.8 76.9 77.9 77.2

Logistic Regression 50.5 78.7 81.4 81.6 78.8
Naive Bayes 81.7 76.5 76.6 77 77.1

Kernel Naive Bayes 79.8 75.5 77.1 76.1 76.3
Linear SVM 84.1 79.2 80.8 82.8 80.8

Quadratic SVM 84.4 78.2 79.1 81.7 81.1
Cubic SVM 83.7 72.9 77.7 79.5 80.4

Fine Gaussian SVM 50.5 50.7 50.5 50.5 50.5
Medium Gaussian SVM 85.4 79.2 80.3 81.1 81
Coarse Gaussian SVM 82.1 79.2 80 81.4 79

Fine KNN 69.2 66.1 69.1 67.6 68.2
Medium KNN 77.8 73.1 74.4 75.6 76.1
Coarse KNN 78.7 77.7 77.8 79.1 78.8
Cosine KNN 78.5 74.4 74.8 75.5 76.4
Cubic KNN 75.9 72.7 73.5 74.5 73.8

Weighted KNN 77.9 73.5 74.3 76.5 76.8
Ensemble Boosted Trees 82.3 77.7 78.3 78.3 78
Ensemble Bagged Trees 77.5 76.8 74.4 72.9 76

Ensemble Subspace Discriminant 71.8 79 80 82.5 81.7
Ensemble Subspace KNN 71.1 73 75.2 74.8 73

Ensemble RUSBoosted Trees 77 75.4 74.9 72.6 73.6
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Table 7. Classification results with LPP algorithm for configurations with 8 channels.

EEG Orig. EEG 8 Channels

8 Channels LPP 3 LPP 5 LPP 10 LPP 15

Fine Tree 73.8 53.2 50.8 50.7 49.8
Medium Tree 75.5 53.8 49.8 51.2 52.2
Coarse Tree 75.8 50.4 48.6 50.3 55.6

Linear Discriminant 77.2 56.3 51.9 54.9 56.6
Quadratic Discriminant 63.4 55 50.7 53.1 52.1

Logistic Regression 50.5 56.3 52 54.8 57.5
Naïve Bayes 81.7 53.2 54.2 51.3 57

Kernel Naïve Bayes 79.8 53.8 51.2 50.2 55.6
Linear SVM 84.1 55.7 49.5 54 59.4

Quadratic SVM 84.4 56.2 52.5 52.7 58.8
Cubic SVM 83.7 52 54 52.1 54.9

Fine Gaussian SVM 50.5 51.8 50.5 53.5 54.5
Medium Gaussian SVM 85.4 52.5 50 51 55.1
Coarce Gaussian SVM 82.1 52.9 49.2 52.9 58.8

Fine KNN 69.2 49.8 48.9 52.1 53.1
Medium KNN 77.8 51.3 50.3 49.7 54.2
Coarse KNN 78.7 51.7 48.9 50.8 53.7
Cosine KNN 78.5 49.6 48.5 52.7 56.4
Cubic KNN 75.9 49.4 49.7 50.6 52.7

Weighted KNN 77.9 51.3 49.9 51.8 57.3
Ensemble Boosted Trees 82.3 51 48.3 51.7 54.9
Ensemble Bagged Trees 77.5 51.3 47.9 50.8 52.8

Ensemble Subspace Discriminant 71.8 55 51 53.5 58.4
Ensemble Subspace KNN 71.1 53 48.5 51.3 53.2

Ensemble RUSBoosted Trees 77 54 48.8 51.9 52.1
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4. Conclusions

The aim of the paper was to offer a general view of the way the classifiers give good
results for signals with various rates of dimensionality reduction.

Regarding ECG signals we stress the fact that they were preprocessed by aligning the
R-wave. Our best results were obtained with SVM and KNN while for low dimensions (2
or 3), the best outcomes have been achieved with LE with the drawback that computations
should be repeated for any new signal. Additionally, it has been found that in the case of
CS for more than 10 dimensions the classification rate is near that obtained in the original
space. Similar classification rates results have been achieved for dimensionality reduction
larger than 10 with LPP for which the advantage for new testing signal is that no new
calculations are necessary. Regarding CS, it is the most computationally advantageous
compared to LE and LPP, which are much more computationally expensive.

For EEG signals, the CS and LE algorithms led to results similar to those obtained for
ECG signals. The major difference that occurs in the case of EEG signals is for the LPP
algorithm. This leads to much weaker results in reducing the dimensionality of the signals.
To explain these results, we propose two hypotheses. A first one is that the LPP algorithm
cannot find universal optimal projections for all 8 channels. The second hypothesis is that
in the case of EEG signals the data are located on a manifold and the LPP algorithm fails
to capture the local and at the same time general structure of the manifold, a situation
encountered, for example, in the Swiss Roll manifold case.

The main conclusions of this work envisage the way dimensionality reduction and
classification algorithms can be combined in order to obtain reasonable classification results
even for (very) low dimensions both for ECG and a class of EEG signals. Choosing the
rate of reduction of dimensionality is dependent on the motivation of the analysis. Thus,
if we intend to reconstruct the initial signal, we will adopt CS, if we want intuition for 2
or 3 D we will choose LE while if we want to reduce dimensionality by about ten–twelve
times and make classification in the reduced space without re-computation for new signals,
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we will use LPP. However, it seems LPP does not fit too well the global structure for EEG
signals so that between LPP and LE the second one is better.

We assume these methods and outcomes might be extended in specific limits for more
types of signals too, yet this concept should be attentively applied.
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