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Abstract: Recent years have witnessed an ever-increasing interest in developing electrochemical biosen-
sors based on direct electron transfer-type bioelectrocatalysis. This work investigates the bioelectrocatalytic
oxidation of glucose by membrane fractions of Gluconobacter oxydans cells on screen-printed electrodes
modified with thermally expanded graphite and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS). Electrooxidation of glucose was shown to occur without the presence of electron trans-
port mediators. Chronoamperometric and cyclic voltametric characteristics showed an increase of
anodic currents at electrode potentials of 0–500 mV relative to the reference electrode (Ag/AgCl).
The direct electron transfer effect was observed for non-modified PEDOT:PSS as well as for PE-
DOT:PSS linked with crosslinkers and conductive fillers such as polyethylene glycol diglycidyl or
dimethyl sulfoxide. Bioelectrodes with this composite can be successfully used in fast reagent-free
glucose biosensors.

Keywords: Gluconobacter oxydans membrane fractions; thermally expanded graphite; PEDOT:PSS;
PEGDE; DMSO; direct bioelectrocatalytic oxidation; glucose biosensors

1. Introduction

The phenomenon of bioelectrocatalysis by the direct electron transfer (DET) between
the active site of an enzyme and an electrode was first discovered and investigated in 1978.
This effect was observed for laccase [1], peroxidase [2], and hydrogenase [3]. Mediatorless
bioelectrocatalysis is widely used in such devices as biofuel cells and biosensors [4,5]. The
biggest advantage of using this phenomenon is the minimization of bioelectrocatalytic
reactions’ thermodynamic losses. Furthermore, there is no need for any additional reagents,
so the bioelectrode design can be simplified significantly [6].

Gluconobacter bacteria contain membrane-bound dehydrogenases, which catalyze the
oxidation of a number of lower alcohols and monosaccharides. The possibility of a DET
from the active site of an enzyme to an electrode has been shown for some dehydrogenases
isolated from these bacteria. Such dehydrogenases include aldehyde dehydrogenase [7],
alcohol dehydrogenase [8], fructose dehydrogenase [9], gluconate dehydrogenase [10],
and lactate dehydrogenase [11]. No DET effect has been observed for intact Gluconobacter
cells. An alternative to the use of bacterial cells as biosensor biocatalysts is the use of their
membrane fractions (MF), in which enzyme complexes are preserved in active state [12].
We demonstrated the use of this biocatalyst for creating a mediatorless alcohol biosen-
sor [13]. Biosensors in greatest demand today are glucose detection devices [14], and
Gluconobacter oxydans membrane fractions contain the pyrroloquinolinequinone(PQQ)-
dependent glucose dehydrogenase [15]. For this reason, it seemed worthwhile to inves-
tigate the possibility of developing a DET-type glucose biosensor based on G. oxydans
membrane fractions.
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It should be noted that it is often necessary to use nanomaterials, such as carbon
nanotubes [16], or modify the enzyme genetically [17,18], in order to achieve the DET effect.
In [19], we used electrodes from a biocompatible carbon material, thermally expanded
graphite (TEG). It is a graphene-like material that offers high electrical conductivity, large
specific surface, and chemical stability [20]. The use of TEG as a modifier of the surface of
standard screen-printed electrodes (SPE) would improve the electrochemical properties of
biosensors for their real-world applications.

To achieve the DET effect, a conductive polymer is often required to ensure a tight
contact between the electrode surface and the active site of the enzyme. The use of
poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been exten-
sively studied in recent decades in bioelectronics and biomedicine [21,22]. PEDOT:PSS
possesses a low oxidative potential and high conductivity [23]. In [24,25], a modification of
enzyme biosensors for glucose detection with PEDOT:PSS and graphene made it possible
not to use additional electron transfer mediators.

The aim of this work is to study the possibility of and conditions for the direct
bioelectrocatalytic oxidation of glucose by membrane fractions of G. oxydans bacteria
immobilized on SPE modified with TEG and PEDOT:PSS.

2. Materials and Methods
2.1. Reagents

Potassium phosphate dibasic trihydrate, sodium hydroxide, sodium chloride, urea,
ascorbic acid (Mosreaktiv, Russia); potassium hexacyanoferrate(III), chitosan (low molec-
ular weight), PEDOT:PSS (1.3 wt % dispersion in H2O), polyethylene glycol diglycidyl
(PEGDE), dimethyl sulfoxide (DMSO) (Sigma, USA); sorbitol, glucose, yeast extract; bacte-
riological agar-agar, potassium chloride (Dia-M, Moscow, Russia) were used. Three-contact
SPE were purchased from Color Electronics (Moscow, Russia). Whatman GF/A glass mi-
crofiber paper (Sigma, USA) was used to immobilize MF for Clark electrode measurements.
As an electrode-modifying carbon material, we used TEG synthesized as described in [26].

2.2. Production of Gluconobacter oxydans Membrane Fractions

Gluconobacter oxydans sbsp. industrius VKM B-1280 (All-Russian Collection of Microor-
ganisms) was used. Cells were grown in [27]. Membrane fractions of G. oxydans were
produced by ultrasonic dispersion followed by step centrifugation as described in [28].

2.3. Preparation and Characterization of Biosensors

The screen-printed three-contact electrode consisted of a counter electrode, a work-
ing electrode formed from Electrodag 6017SS graphite paste (Henkel, Germany), and
a reference electrode (Ag/AgCl) (Figure 1a). The working electrode was 3 mm in di-
ameter. A layer of 0.1 mm TEG was formed on the working electrode by pressing at
150 Bar (Figure 1b). Membrane fractions of G. oxydans VKM B-11280 were immobilized
on the working electrode surface using a 2% solution of chitosan in 1% acetic acid, a
solution of PEDOT:PSS, as well as PEDOT:PSS solutions modified with 5% DMSO or 3%
PEGDE (Figure 1c). The concentration of membrane fractions on the electrode surface
was 0.4 mg/mm2. After applying the composite, the electrode was dried for 1 h at room
temperature and then was left for 12 h at +4 ◦C.

Electrochemical measurements were carried out in a 2-mL cuvette at a temperature
of 25 ◦C with constant stirring. As a background solution, we used a 25 mM potassium
phosphate buffer (PBS), pH 6.5, containing 10 mM sodium chloride. All electrochem-
ical measurements were conducted using IPCmicro (Kronas, Russia) and VersaSTAT 4
(Ametek, Berwyn, PA, USA) galvanostat potentiostats. The chronoamperometric curves
were registered at an applied potential of +400 mV (vs. Ag/AgCl). The cyclic voltammo-
grams (CVA) were registered at a potential scan rate of 3 mV/s within the range of 0 up to
500 mV. The impedance characteristics were measured in PBS at an applied potential of
+200 mV (with 5 mM potassium ferricyanide) or +400 mV (without potassium ferricyanide)
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vs. Ag/AgCl within the range of frequencies from 40 kHz up to 0.02 Hz at a modulation
amplitude of 10 mV.

The structure and morphology of the formed composites was examined by scanning
electron microscopy (SEM) (JSM-6510LV 40, JEOL, Tokyo, Japan).

3. Results and Discussion
3.1. Optimization of Detection Electrodes

Screen-printed electrodes as the basis of electrochemical biosensors have a number
of advantages over other types of electrodes—portability, speed of measurement, simplic-
ity of use, low cost. For this reason, we used commercially accessible and cheap (<0.3€)
carbon SPE that could be readily integrated into almost any measuring setup. Formation
of the developed biosensor is shown in Figure 1c. The measuring setup consisted of a
TEG/PEDOT:PSS-modified SPE connected to a potentiostat controlled by corresponding
measuring software. Owing to the use of SPE, this system can be expanded for simulta-
neous monitoring of up to eight electrodes in real time mode by means of a multiplexer.
Due to a modification of the graphite SPE surface with thermally expanded graphite, the
active area of the biosensor surface increases to provide for a tighter contact of the biocata-
lyst with the electrode. The SEM image in Figure 1b shows that the TEG surface is uneven
and has cavities for sorption of biological objects.
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Figure 1. (a) Schematic of a graphite screen-printed electrode featuring counter, reference and working electrodes. (b) SEM
image of thermally expanded graphite. (c) Schematic of the formation of a composite on the surface of the biosensor’s
working electrode and its operating principle.

A layer-by-layer application of components onto the surface of the working electrode
was used. The effect of each of the successively applied components on the electrochemical
properties of the electrode was evaluated by electrochemical impedance spectroscopy (EIS).
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Figure 2 presents Nyquist diagrams for non-modified SPE, as well as for SPE modified
with TEG, PEDOT:PSS and their mixture. It is seen from the presented data that the use of
TEG for modification of the graphite electrode surface not only increases its specific surface
area, but also significantly decreases the charge-transfer resistance and the total impedance
of the electrode, which subsequently improves the electrical conductivity between the
active site of the enzyme and the electrode surface. PEDOT:PSS has a mixed electron–
ion type of conductivity and also reduces the impedance of the graphite electrode. The
lowest total resistance (R = 49 kOhm) was achieved when using an SPE/TEG/PEDOT:PSS
composite. Besides, Figure 2b shows EIS spectra for an SPE/TEG/PEDOT:PSS composite
at an additional modification of PEDOT:PSS with DMSO and PEGDE. Nyquist diagrams
for those EIS spectra are presented in Figure S1; a Randles equivalent circuit used to fit the
impedance data is presented in Figure S2a. The use of various solvents [29] to improve the
conductivity of PEDOT:PSS gel was described. PEGDE interacts with PSS chains to form a
three-dimensional highly conductive network. At the same time, addition of DMSO leads
to a redistribution of conductive PEDOT particles and the removal of excess PSS particles
from the surface, which establishes an easier way for charge transfer into the polymer film,
thus increasing the conductivity of the system. It is clearly seen from the data obtained that
both compounds greatly reduce the impedance of the electrode with PEDOT:PSS within
the entire range of investigated frequencies.
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Figure 2. EIS Nyquist plots recorded in the presence of a 5 mM [Fe(CN)6]3−/4− redox couple prepared in a 25 mM
phosphate buffer with 0.01 M NaCl at an open-circuit potential (+200 mV vs. Ag/AgCl). (a) Change in impedance due to
the presence of TEG, PEDOT:PSS and TEG/PEDOT:PSS on SPE; (b) change in the impedance profile due to a modification
of PEDOT:PSS with DMSO and PEGDE.

3.2. Respiratory Activity of G. oxydans Membrane Fractions

As membrane fractions of G. oxydans bacteria represent fragments of the respiratory
chain, we used a Clark-type oxygen electrode to characterize their catalytic activity in
the glucose oxidation reaction. To determine the extent of the possible negative effect of
the system’s components on the catalytic activity of the respiratory chain enzymes, we
applied a mixture of membrane fractions and PEDOT:PSS gel with various modifications
onto a fragment of Whatman GF/A, 3 × 3 mm2 in size. This fragment was then used as a
bioreceptor for the Clark-type oxygen electrode. The rate of the bioreceptor’s respiratory
activity variation did not practically change depending on the concentration of MFs on the
electrode surface within the range of 0.02–0.1 mg/mm2 (Figure S3). The effect of polymer
gel on the activity of the respiratory chain enzymes was determined by the change of the
parameters of the biosensor’s calibration curve presented in Figure 3.
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The respiratory activity of membrane fractions decreased in the presence of all variants
of PEDOT:PSS gels. On the linear segment of the calibration curve, a decrease of the
biosensor signal was 25% for PEDOT:PSS, 14% for PEDOT:PSS/PEGDE and 37% for
PEDOT:PSS/DMSO. The affinity of an enzyme for its substrate was also evaluated using
the apparent Michaelis–Menten constant, KM. When PEDOT:PSS was introduced into the
system, the constants increased from 3.56 (for a system without polymer gel) to 6.91 (for a
PEDOT:PSS/DMSO system). This implies that the used polymers decrease the affinity of
the enzyme complexes of the G. oxydans respiratory chain to glucose. Herewith, the addition
of an extra stabilizing agent PEGDE to PEDOT:PSS led to a decrease of the said negative
effect, which once again proves the efficiency of using additional PEDOT:PSS-modifying
agents in bioelectrodes.

3.3. Electrochemical Parameters of Bioelectrodes

The electrochemical characteristics of the produced composites based on PEDOT:PSS
and membrane fractions were investigated by cyclic voltammetry, chronoamperometry,
and electrochemical impedance spectroscopy. Figure 4a presents cyclic voltammograms
for a bioelectrode with a TEG/PEDOT:PSS composite in the presence and absence of
glucose. Membrane fractions immobilized on the electrode surface in PEDOT:PSS gel
interact directly with the electrode in the presence of glucose, which is expressed in an
increase of anodic currents within the range of 0.1 up to 0.5 V. Electroactive enzymes
present in membrane fractions transfer the electrons formed in the oxidation of glucose to
the electrode without the presence of any additional reagents. Most likely, PQQ, which is
already present in the membrane fractions of the bacteria [30], acts as an electron carrier. The
discrepancy between voltammograms in the presence or absence of glucose was observed
for all types of PEDOT:PSS. The maximal discrepancy between voltammograms in the
presence and absence of glucose was observed for a TEG/PEDOT:PSS/PEGDE composite.
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Figure 4b presents the cyclic voltammograms for four types of bioelectrodes in the
presence of 3 mM glucose. All reported CVA curves for electrodes containing PEDOT:PSS
(Figure 4b) were of rectangular shape, which is typical of PEDOT in an aqueous medium
and is indicative of a capacitive behavior of these materials. The maximal level of an-
odic currents within the range of 0 up to 0.5 V was obtained for the bioelectrode with a
TEG/PEDOT:PSS/PEGDE composite.

When choosing the applied potential for the biosensor, we compared the analytical
performance of the bioelectrode at different applied potentials. The chronoamperometric
curves for these applied potentials are shown in Figure S4. Since the maximum signal upon
addition of 0.5 mM glucose was observed at an applied potential of 400 mV, we used this
applied potential to obtain EIS spectra and chronoamperometric curves.

The EIS spectra of the investigated composites feature a decrease of impedance
of the system in the sequence TEG > TEG/PEDOT:PSS > TEG/PEDOT:PSS/DMSO >
TEG/PEDOT:PSS/PEGDE (Figure 4c). This is consistent with the data obtained for the
same composites without the biocatalyst (Figure 2b). It is to be noted that the impedance of
electrodes with membrane fractions in the presence of substrates is generally lower than for
electrodes without membrane fractions. This is indicative of an electron transfer from the
enzyme systems to the electrode in the absence of an additional electron-transport mediator.
Simulations of the EIS data using an equivalent circuit model (modified Randles equivalent
circuit, Figure S2b) showed that the value of charge transfer resistance was 426 kOhm for a
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TEG bioelectrode; 143 kOhm for TEG/PEDOT:PSS; 49 kOhm for TEG/PEDOT:PSS/DMSO,
and 33 kOhm for TEG/PEDOT:PSS/PEGDE.

Typical signals for an amperometric biosensor in response to the addition of glu-
cose are given in Figure 4d. A bioelectrode, the surface of which was not modified
with TEG but only with PEDOT:PSS gel, yielded no signal to glucose addition. Here-
with, it should be noted that even in the absence of PEDOT:PSS, at the electrode mod-
ified with TEG, we observed the transfer of electrons from the enzyme active site to
the electrode at the transformation of substrate. The amplitude of the signal for TEG-
modified electrode upon addition of 3 mM glucose was 23 ± 4 nA. For biosensors
modified with PEDOT:PSS, the amplitude of the signal upon addition of glucose in-
creased from 23 ± 4 nA (TEG) up to 0.74 ± 0.04 µA (TEG/PEDOT:PSS), 1.04 ± 0.05 µA
(TEG/PEDOT:PSS/DMSO) and 1.97 ± 0.18 µA (TEG/PEDOT:PSS/PEGDE). Thus, accord-
ing to all electrochemical methods, the TEG/PEDOT:PSS/PEGDE composite outperforms
the other PEDOT:PSS formulations.

In order to assess the analytical performance of the proposed biosensors, we plotted
calibration curves of current vs. glucose concentration (Figure 5). The analytical parameters
for the three types of biosensors are presented in Table 1. The data from the glucose
calibration curves were analyzed using the Michaelis–Menten kinetics with the measured
current serving as the reaction velocity [31]:

I =
ImaxSh

Kh
M + Sh

(1)
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Comparing the metrological characteristics of the developed systems and their ana-
logues, it can be seen that the lower limits of the linear ranges of detection for all three
composites are approximately the same. The amplitude of the signal upon addition of
glucose and the maximum achievable current (Imax) increase when using modified variants
of composites. Moreover, the biosensor sensitivity coefficient at an additional modification
of PEDOT:PSS with DMSO or PEGDE increased from 0.46 up to 0.8 or 0.82 µA/mM. The ap-
parent Michaelis constant (Km), which is the substrate concentration needed to achieve half
of the Imax value, increases in the sequence TEG/PEDOT:PSS > TEG/PEDOT:PSS/DMSO
> TEG/PEDOT:PSS/PEGDE. The Hill coefficient (h) is a dimensionless value that char-
acterizes the cooperativity of ligand binding by the enzyme. As seen from the data ob-
tained, in all cases, the Hill coefficient is greater than 1, i.e., a positive cooperativity of
the enzymes is observed for MFs immobilized in all types of PEDOT:PSS polymers. It
should also be noted that the single measurement time decreased to 2 min when using a
TEG/PEDOT:PSS/PEGDE composite, which is due to a decrease of electrode impedance
and an increase of electron transfer rate in the system.
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Table 1. Analytical characteristics of PEDOT:PSS biosensors for glucose.

Parameter
Modification

TEG/PEDOT:PSS TEG/PEDOT:PSS/DMSO TEG/PEDOT:PSS/PEGDE

I, µA 0.41 0.74 2.13

Km, mM 1.14 1.42 2.36

h 6.48 8.48 4.08

Linear range of detection, mM 0.81–1.59 0.90–1.90 1.03–3.01

Regression equation for the linear segment y = 0.46x − 0.33 y = 0.80x − 0.77 y = 0.82x − 0.89

Correlation coefficient, R2 0.98 0.98 0.99

Sensitivity coefficient, µA/mM 0.46 0.80 0.82

Single measurement time, min 5–6 4–5 2–2.5

The correlation coefficient for the calibration curves and for the regression equation for the linear segment of R2 is 0.98.

In biosensor applications, a key concern is the fact that the selectivity of a glucose
sensing device can be decreased by interference from some coexisting substances in real
samples. As membrane fractions of bacteria contain a whole range of enzyme complexes,
it was necessary to understand which substances could hinder the accurate determination
of glucose in real blood samples. Figure 6 presents an amperometric signal of a biosensor
based on TEG/PEDOT:PSS/PEGDE in response to some potential interferents including
urea, ascorbic acid (AA) and KCl in an oxygen-containing PBS solution (0.1 M, pH 6.5)
under an operating potential of 0.4 V. None of the above interferents evoked any notable
response from the biosensor for 1500 s after their introduction, while the addition of 2 mM
glucose caused a significant increase (0.7 µA) of the current level within 100 s. Thus,
the membrane fraction/TEG/PEDOT:PSS/PEGDE electrode exhibited a good selectivity
towards glucose over these molecules that can be found in the human blood.
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4. Conclusions

In this work, we investigated mediatorless bioelectrocatalytic oxidation of glucose
by G. oxydans membrane fractions on SPE modified with TEG. Membrane fractions were
immobilized on screen-printed TEG-modified electrodes into PEDOT:PSS-conductive poly-
mer, as well as PEDOT:PSS activated with PEDGE or DMSO. The electrochemical reaction
was shown to occur in the absence of artificial redox mediators. Introduction of additional
reagents, such as DMSO and PEDGE, led to a decrease of the electrode charge transfer
resistance, a decrease of the negative effect of polymer on the biocatalyst’s respiratory
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activity, an increase of the biosensor signal amplitude, and an increase of its sensitivity
to glucose. Besides, the use of TEG/PEDOT:PSS/PEGDE composite enabled reducing
the glucose single assay time to 2 min as compared with 5–6 min for TEG/PEDOT:PSS.
One of the additional advantages of the developed biosensor is that the costly protein
purification step can be skipped, and stability can be greatly improved. This indicates that
these biosensors have a great potential for clinical application. The presented strategy can
also provide insights into the development of other biosensors or biofuel cells based on
membrane fractions of bacterial cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11050144/s1, Figure S1: Change in EIS Nyquist plots, recorded in the presence of a
5 mM [Fe(CN)6]3−/4− redox couple prepared in a 25 mM phosphate buffer with 0.01 M NaCl
at an open-circuit potential (+200 mV vs. Ag/AgCl) due to the presence of TEG/PEDOT:PSS,
TEG/PEDOT:PSS/DMSO and TEG/PEDOT:PSS/PEGDE on SPE, Figure S2: Randles equivalent
circuit (a) and modified Randles equivalent circuit (b) used to fit Nyquist plots for electrodes. Rs,
solution resistance; Rct, charge-transfer resistance; Cdl, double-layer capacitance; Zw, Warburg
impedance, Figure S3: Respiratory activity of membrane fractions in the presence of glucose (0.5 mM)
as a function of their concentration in a bioreceptor, Figure S4: TEG/PEDOT:PSS/PEGDE biosensor
signals in response to the addition of 0.5 mM glucose at various applied potentials (vs Ag/AgCl)
without the presence of redox mediators.
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