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Abstract: Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling
and drug discovery by providing biologically relevant models of tissues and organs in vitro with
a high degree of control over experimental variables for high-content screening applications. Yet,
to fully exploit the potential of these platforms, there is a need to interface them with integrated
non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external
stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated
technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an
OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that
is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we
developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a
cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip
LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a
powerful tool to enable the in situ response study of microtissues to external stimuli for applications
such as a drug-screening platform for human models, bypassing animal testing.

Keywords: LSPR sensors; organ-on-a-chip; in situ insulin monitoring

1. Introduction

Type 2 diabetes (T2D) is one of the most common metabolic diseases, affecting millions
of people worldwide [1]. Patients with T2D present a progressive decline in pancreatic
B-cell function, mainly characterized by impaired insulin secretion. For this reason, the
study of insulin secretion aimed at addressing islet functionality requires the ability to
monitor insulin in situ over time, and measurements of insulin secretion dynamics are
of significant clinical relevance. Traditionally, pancreatic (3-cell function is assessed by
measuring the insulin released by glucose-stimulated insulin secretion (GSIS) assays. These
experiments involve manual liquid handling, static incubation of the islets, and enzyme-
linked immunosorbent assays (ELISA) that require a long processing time.

Biosensors 2021, 11, 138. https:/ /doi.org/10.3390/bios11050138

https:/ /www.mdpi.com/journal /biosensors


https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-4788-6668
https://orcid.org/0000-0002-6139-8177
https://orcid.org/0000-0001-7317-4907
https://orcid.org/0000-0003-0465-2949
https://orcid.org/0000-0002-1241-8004
https://orcid.org/0000-0001-8995-8976
https://orcid.org/0000-0002-3636-8013
https://doi.org/10.3390/bios11050138
https://doi.org/10.3390/bios11050138
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bios11050138
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios11050138?type=check_update&version=1

Biosensors 2021, 11, 138

20f 14

Several approaches have emerged for engineering biomimetic, easy-to-use, and com-
patible organ-on-a-chip (OOC) microfluidic devices capable of reproducing physiological
cell responses in vitro. Indeed, numerous micro-scale engineering OOC have been fabri-
cated, modeling different tissues (e.g., muscle [2], blood vessels [3], liver [4], gut [5], or
pancreatic islets [6]). Recent advances in miniaturizing microfluidic systems and advanced
tissue fabrication procedures have enabled researchers to create multiple tissues-on-a-
chip with a high degree of control over experimental variables for high-content screening
applications [7-11].

Currently, there is a gap in the integration of these potential platforms to sensing mod-
ules, capable of monitoring in situ fast metabolic behaviors subjected to external stimuli,
such as stress or drugs. Extensive efforts have been made to integrate three-dimensional
(3D) tissue platforms with a sensing system for in situ continuous measurements of relevant
targets [2,12-14]. However, the integration and application of sensing strategies are still far
from providing a high throughput and reliable data to reveal the status and dynamics of
the OOC.

Regarding pancreatic islets, there are only few examples where microfluidic systems
have been integrated with free-labeled sensing platforms to study the dynamic of the
insulin secretion profile. These works are focused on the monitoring of electrophysiology
phenomena using complex microelectronic arrays with fluidic systems [15,16]. However,
in those studies, neither do the biological models represent the islets in a 3D environment
(biomimicking native pancreas configuration), nor can the electrochemical sensors effi-
ciently monitor in a label-free way the secretion of insulin, as they only provide a recording
of the cell activity. To fully exploit the potential of these platforms, there is a need to
interface them with an integrated sensing module capable of directly monitoring the islet
insulin response.

Among the different existing transduction methods, optical biosensors have the advan-
tage of being highly sensitive, enabling label-free, cost-effective, and real-time sensing. As
a well-studied optical sensing scheme, localized surface plasmon resonance (LSPR)-based
sensors, which exploit the unique properties of noble metal nanostructures, have shown
a great ability to detect all kinds of molecular biomarkers (proteins [17], peptides [18],
mRNA [19], DNA [20,21], and miRNA [22]) in biological samples. The ease of optical
transduction and the compact nature of LSPR sensors means their integration into fully
automated microfluidic devices to perform multiplexed quantitative detection can be
achieved [23].

In this work, we present an integrated on-chip insulin secretion study platform, com-
bining novel islet-on-a-chip (IOC) technology interfaced with an on-chip LSPR biosensing
platform (Figure 1). Unlike other IOC devices that are based on multiple tiny wells to trap
the islets [24-27], which can promote shear stress-induced cell damage, we have developed
an IOC that houses primary mouse pancreatic islets embedded in a non-biodegradable
cellulose-based scaffold that intends to biomimic the native pancreas host. The integration
of both platforms allows, for the first time, a highly sensitive and label-free monitoring
of in situ insulin secretion by pancreatic islets subjected to different glucose concentra-
tions, under physiological conditions, offering a powerful tool for future biomedicine and
pharmaceutical research related to diabetes.
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Figure 1. Schematic overview of the integration of the islet-on-a-chip (IOC) device with the on-chip LSPR sensing platform.

(a) KRBH buffer with a chosen glucose content; (b) a peristaltic pump to drive the buffer into the IOC device; (c) IOC device

containing mouse islets embedded in a cellulose-based scaffold; (d) the LSPR sensing platform to interrogate the buffer

from the IOC device; and (e) monitoring of the insulin detection as a consequence of glucose stimulation.

2. Materials and Methods
2.1. Carboxymethyl Cellulose (CMC)-Cryogel Fabrication

Carboxymethyl cellulose (CMC, 419273, Merck Life, Darmstadt, Germany) is dissolved
in MilliQ water (DI) to the desired concentration of 0.5% and crosslinking initiated by
adding 50 mg mL ! of adipic acid dihydrazide (AAD, ref A0638, Merck Life, Darmstadt,
Germany), 1 pg uL~! of N-(3-Dimethylaminopropyl)-N"-ethylcarbodiimide hydrochloride
(EDC, E7750, Merck Life, Darmstadt, Germany), and MES buffer 0.5 M, pH 5.5. To stain
the CMC cryogels, aminofluorescein (Merck Life, Darmstadt, Germany) was added to the
prepolymeric solution in case the fibers need to be stained. The reaction mixture is rapidly
dispensed inside a mold and placed overnight at —20 °C resulting in ice crystal nucleation.
Finally, the cryogels are thawed and washed consecutively by submerging them in DI,
100 mM NaOH (Panreac, Darmstadt, Germany), 10 mM ethylenediaminetetraacetic acid
(EDTA, 03690, Merck Life, Darmstadt, Germany), and 3 times in PBS. Once finished, the
cryogels were autoclaved for further experiments.

2.2. Characterization of CMC Cryogels

The swelling ratio indicates, quantitatively, the water uptake capability of the scaf-
fold. After the cryogel fabrication, scaffolds were dried at room temperature for 2 days
and weighted. Subsequently, the cryogel was submerged into MilliQ water for 4 days
until it reached equilibrium state and was weighted for a second time. For the swelling
measurements, Equation (1) was used:

Swelling ratio = (Weq — Wd)/Weg x 100 (1)

where Weg represent the scaffold equilibrium weight and Wd is the scaffold dry weight. A
total of 3 cryogels per condition were measured in this assay. On the other side, stiffness
measurements were obtained from compression assays using a Zwick Z0.5 TN instrument
(Zwick-Roell, Ull, Germany) with 5 N load cell. Compression assays were performed with
samples at room temperature up to 30% final compression range at 0.1 mN of preloading
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force and at 20%/min of strain rate. Finally, the Young’s modulus was calculated from the
slope of the curve in a range from 10% to 20% of compression.

Scanning electron microscopy (SEM) characterization was performed using a NOVA
NanoSEM 230 at 10 kV. Different washing steps were performed using ethanol as a solvent,
gradually incrementing its concentration from 50% to 99.5%. Samples were treated with
critical point drying and carbon sputtering before the SEM acquisition.

2.3. Mouse Pancreatic Islet Isolation

Mouse pancreatic islets were isolated from 8- to 10-week-old C57BL/6] male mice by
collagenase (Roche, Basel, Switzerland) digestion of the pancreas followed by Histopaque
gradient (Sigma-Aldrich, St. Louis, MO, USA), as described previously [28]. Islets were
cultured for 24 h at 37 °C and 5% CO, in RPMI 1640 medium (11.1 mM glucose) supple-
mented with 10% FBS (v/v), 2 mM glutamine, 100 units/mL penicillin, and 100 pg mL ™!
streptomycin before performing the experiments. Experimental procedures were approved
by the Animal Ethics Committee of the University of Barcelona according to the Principles
of Laboratory Animal Care.

2.4. Gene Expression Analysis

The miRNeasy kit (ref 74204, Qiagen, Hilden, Germany) was used to extract total
RNA, and the high-capacity cDNA reverse transcription kit (ref 4368813, ThermoFisher
Scientific, Carlsbad, CA, USA) was used to reverse transcribe it. Gene expression was ex-
amined by quantitative Polymerase Chain Reaction (PCR) using SYBR Green (ref 1178401K,
Invitrogen, Carlsbad, CA, USA) in a 7900HT Fast Real-Time PCR System (ref 4329001,
Applied Biosystems, Foster City, CA, USA). The primer sequences used are listed in Table 1.
The expression levels of genes of interest were normalized to the expression of Tbpl.

Table 1. Primer sequences used for gene expression analysis for gPCR.

Gene Species Fw Rv

MafA Mouse CAAGGAGGAGGTCATCCGAC TCTCCAGAATGTGCCGCTG

Pdx1 Mouse CCCCAGTTTACAAGCTCGCT CTCGGTTCCATTCGGGAAAGG

NeuroD1 Mouse GGATCAATCTTCTCTTCCGGTG TGCGAATGGCTATCGAAAGAC

Ddit3/Chop Mouse TCATCCCCAGGAAACGAAGAG GCTTTGGGATGTGCGTGTG

Trib3 Mouse CGTGGCACACTGCCACAAG TCCAGGTTCTCCAGCACCAG

Atf3 Mouse GTCCGGGCTCAGAATGGAC CGTGCCACCTCTGCTTAGCT

Tbp1 Mouse ACCCTTCACCAATGACTCCTATG ATGATGACTGCAAATCGC

2.5. Glucose-Stimulated Insulin Secretion (GSIS)

Islets housed within CMC cryogels were transferred into the microfluidic chip and
were allowed to settle to the bottom of the chamber for 24 h. Subsequently, they were
preincubated with Krebs—-Ringer bicarbonate HEPES (KRBH) buffer solution (115 mM NaCl,
24 mM NaHCOj3, 5 mM KCl, 1 mM MgCl,-6H,0, 1 mM CaCl,-2H,0, and 20 mM HEPES,
pH 7.4) containing 11.1 mM glucose for 30 min at 37 °C (basal condition). The cryogels
were then incubated at 2.8 mM glucose, followed by perfusion with KRBH solution with
16.7 mM glucose. First, supernatants were collected, and the cellular insulin contents were
recovered in an acid-ethanol solution. Insulin concentration was determined by Insulin
Mouse ELISA. For in situ and label-free detection of insulin levels, we integrated the
microfluidic chip with the on-chip LSPR platform.

2.6. Immunofluorescence

Cryogels stained with aminofluorescein (green) were fixed with 10% formalin solution
(Merck Life, Darmstadt, Germany) for 30 min and were then permeabilized with 0.5%
Triton X-100 (Merck Life, Dorset, UK) and blocked by adding 3% donkey serum (Merck Life,
Darmstadt, Germany). The cryogels were incubated overnight at 4 °C with the primary an-
tibody anti-insulin (mouse anti-insulin (+proinsulin) monoclonal antibody 1:500; ref BM508,
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OriGene EU, Herford, Germany) to stain the insulin from the pancreatic 3-cells. Subse-
quently, secondary antibody was added for 2 h at room temperature (ref A32, AlexaFluor
555 conjugate anti-mouse 1:250; Life Technologies, Carlsbad, CA, USA). 4,6-diamidino-2-
phenylindole (DAPI) (1:1000; ThermoFisher Scientific, Carlsbad, CA, USA) was used to
counterstain the nuclei. Fluorescent images were obtained using confocal microscopy (LSM
800 microscope model, Zeiss, Orberkochen, Germany).

2.7. Immunoreagents and ELISA Immunoassay Protocol

The 96-well plate (Polystyrene Maxisorp 96 well microplates, Nunc, Roskilde, Den-
mark) was coated with 50 puL per well of the capture antibody (also used as the capture
antibody in the LSPR measurements) mouse anti-insulin monoclonal antibody (ref NB100-
73008, clone 3A6, Novus biologicals, Littleton, CO, USA) at 4 g mL~! prepared in a
coating buffer (0.05 M of Nay,CO3/NaHCOj3, pH 9.6). The plate was washed and 8 solu-
tions of recombinant human insulin (ref 91077C, Merck Life, Darmstadt, Germany) from
580 to 0 ng mL~! prepared in PBST (PBS = 0.01 M phosphate buffer, 0.14 M NaCl, and
0.003 M KCl, with 0.05% (v/v) Tween 20 at pH 7.5) was added as an internal calibration
curve together with the samples to interrogate (50 pL/well). The plate was incubated at
room temperature for 1 h. A second wash step was performed, and detection antibody
(Biotinylated Insulin Antibody (ref NB100-64697B, clone D3E7 (5B6/6), Novus Biologicals,
Littleton, CO, USA) prepared in PBST at 0.031 ug mL~! was added (50 uL per well) and
incubated at RT for 30 min. Finally, 50 uL/well of streptavidin-horseradish peroxidase
(SAv-HRP) solution at 0.25 ug mL~! prepared in PBST was added and incubated for 30 min
at RT. Following that step, 50 uL/well of the substrate solution was added and incubated
for 3-5 min, protected from light. Finally, 50 uL/well of HySO,4 4 N was added to stop the
enzymatic reaction. The absorbances were read at 450 nm. Calibration curves were fitted
using a sigmoidal fit function.

2.8. Fabrication of IOC Microfluidic Platform

The microfluidic chip was firstly designed using CleWin software and fabricated using
a standard soft lithography replica molding technique. Briefly, a silicon wafer mold was
created through a one-layer process using negative photoresist SU8-2100 (MicroChem,
Westborough, MA, USA). The microfluidic chip design was printed on a high-quality
acetate film to be used as a mask, and finally a microfeatured master mold was then
obtained by contact photolithography. To obtain a polydimethylsiloxane (PDMS) fluidic
chip, a mixture of prepolymer with curing agent (Sylgard 184, Dow corning, Midland, TX,
USA) was prepared at a 10:1 ratio, degassed in a vacuum chamber for 1 h, and poured on
the SU8 master mold. The polymer mix quantity was calculated to obtain a 3 mm layer
(Layer 2, see Figure 4(ai)). After 4 h at 80 °C in an oven, the PDMS replica was cured
and carefully peeled off from the mold. Holes were punched both for the entry and exit
of liquids. In parallel, a 2 mm layer of PDMS (Layer 1, see Figure 4(aii)) was prepared
(using a non-patterned silicon mold), cured, and cut out. The two layers were finally
bonded irreversibly by oxygen plasma activation (Expanded Plasma Cleaner, PCD-002-CE
Model, Harrick Scientific Corporation, Ossining, NY, USA), and chambers for the CMC-
islet scaffolds were punched. The final microfluidic chip was bound to a standard cover
slide, allowing handling and visualization under the microscope if needed (Figure 4(aiii)).
Finally, a customized glass cover (37 mm x 20 mm) was activated using oxygen plasma
and bound to the PDMS chip irreversibly in order to seal the chip (Figure 4(aiv)).

2.9. Statistics

Statistical analysis was performed using Graph Prism software (GraphPad Software,
San Diego, CA, USA). Data are expressed as the mean + SEM, and statistical significance
was determined by two-tailed Student’s t-test. Results were considered significant at
p < 0.05.
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3. Results and Discussions
3.1. Fabrication of a 3D Effective Cellulose Matrix to House Pancreatic Islets

We developed a functional islet-on-a-chip (IOC) microfluidic device to monitor insulin
secretion under flow conditions. It is known that platforms of islet perfusion mimic in vivo
physiology better than static culture systems, therefore improving the islet health [29].
Islets of Langerhans are clusters of cells within the pancreas that are responsible for the
production and secretion of different hormones that regulate circulating glucose levels.
-cells are the predominant cell type within the pancreatic islets in mammals and the
unique source of circulating insulin, being fundamental for the maintenance of glucose
homeostasis [30-32]. Unlike the other IOC devices that are based on multiple tiny wells to
trap the islets [24-27,33-36], we have precisely engineered a heterogeneous porous cryogel
scaffold which offers a robust approach for spatially organizing the islets, and which can
limit shear-induced cell damage. It was recently demonstrated that 3D polymeric-based
scaffolds offer mechanical and chemical properties that make them valuable in tissue
engineering applications [37].

The most extensively utilized technique to achieve in vitro tissue engineering is to use
the encapsulated hydrogels which present a high-water content and highly resembling
in vivo physical properties [38—-42]. However, conventional hydrogels present several
limitations due to the small pore size. They present an inadequate diffusion of oxygen
and nutrients/waste products, as well as limited cellular mobility and cell spreading. To
address these challenges, we used the cryogelation technique, a procedure that allows the
formation of cryogels at sub-zero temperatures. Typically, the liquid prepolymer solution
is cooled at —20 °C. At this temperature, a large percentage of the material crystallizes due
to its water content. When thawed, the ice crystals leave behind empty spaces, allowing us
to obtain different pore diameters, as shown in Figure 2a. Following this principle, we can
generate a 3D extracellular matrix mimicking scaffolds with a specific range of porosity
(Figure 2b,c), in which the islets can be seeded, allowing the transfer of oxygen, nutrient
and waste removal, and avoiding possible apoptosis or cell death. The scaffold properties
can be modulated simply by altering the concentrations of the polymer and varying the
freezing temperature [43]. As the cryogel technique allows us to achieve a micro-range
porosity with a wide distribution range, and mouse pancreatic islets are diverse in size
(~50-150 um in diameter) with an average size of 100 um, we determined 0.5% of CMC
cryogel as a potential suitable niche for the islets (Figure 2b,c). The designed carboxymethyl
cellulose (CMC) cryogel presents several advantages—besides its high porosity, it also
offers the mechanical strength required for housing pancreatic islets, with a stiffness of
0.67 = 0.1 KPa and a swelling ratio of 98.1% =+ 0.3% [44] (Figure 2d), as well as being
elastic. It is a non-degradable material from mammalian cells and it also allows surgical
sterility by means of autoclaving [45]. Indeed, we have recently demonstrated that CMC
scaffolds can be used to generate functional pseudoislets from insulin-producing INS1E-
cells, representing a suitable technique to generate [3-cell clusters and to study pancreatic
islets in vitro [46].

Pancreatic islets were obtained from C57BL6 wild-type mice as described elsewhere [47].
A total of 30 islets were seeded in a 0.5% CMC cryogel as shown in Figure 3a and were
allowed to recover overnight prior to performing the microfluidic experiments. Figure 3b
shows the bright field image of the pancreatic islets housed in a CMC scaffold and im-
munofluorescent confocal images of the islets integrated within the cellulose fibers. The
gene expression analysis of the three (3-cell-specific transcriptional regulators and posi-
tive indicators of 3-cell health and functionality, Pdx1 (pancreas/duodenum homeobox
protein 1), MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A), and
NeuroD1 (Neuronal Differentiation 1), revealed no significant differences when comparing
the islets housed within CMC-based scaffolds and isolated pancreatic islets in suspension
(Figure 3c). Additionally, the stress markers Chop (C/EBP homologous protein), Trib3 (Trib-
bles pseudokinase 3), and Aff3 (activating transcription factor 3) did not present significant
differences either (Figure 3c), indicating that our cellulose-based cryogel provides a physio-
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logically relevant environment and facilitates the diffusion of oxygen and nutrients, as well
as demonstrating that islets do not suffer stress when integrated inside the CMC scaffold.
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Figure 2. Cellulose-based cryogel fabrication and characterization. (a) General overview of the CMC cryogel fabrication
protocol. Real images of CMC cryogel 0.5% (w/v) before islet seeding. Dimensions are 0.5 cm in height and 1 cm in diameter.
(b) Pore diameter distribution of the cryogel at different CMC concentrations: 5%, 1%, 0.5%, and 0.25% (w/v), respectively.
A total of 3 replicates and 20 images from 5 different depths were analyzed. (c) SEM image of the 0.5% (w/v) CMC cryogel
condition after critical point drying. A confocal image of the same sample stained using 1 mM aminofluorescein (green)
is on the right. (d) Characterization of the mechanical properties of the 0.5% (w/v) CMC cryogel. Young’s modulus of
0.67 £ 0.1 KPa was obtained by compression assays with 5 N load cell. Data corresponds with 3 compressions per cryogel
and n = 3. The swelling ratio was determined obtaining values of 98.1% =+ 0.3% for replicates n = 3 and 3 measures per
cryogel. Values are expressed as mean £ SD: p < 0.05.

3.2. Islet-on-a-Chip Microfluidic Platform

A microfluidic device was designed and fabricated to host the in vitro model inte-
grated by the CMC cryogel and mouse pancreatic islets. The dimensions of the device
are shown in Figure 4a. Two circular chambers with a diameter of 10 mm were designed,
where the CMC islets 3D in vitro model is located. Microfluidic channels of 1 mm width
and 0.20 mm height were designed to connect those chambers and enable the circulation of
the liquids inside the device (Figure Sla).
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Figure 3. Development and characterization of the CMC islet construct. Gene expression analysis and immunostaining
assays of islets were performed 24 h after being seeded within the cryogel. (a) Schematic diagram of mouse islet isolation.
Islets inside the cryogel are also represented. (b) Left: pancreatic islets embedded within a carboxymethyl cellulose (CMC)
cryogel under bright field (scale bar: 200 um); middle and right: images of islets stained with insulin (red) and DAPI
(blue). Cellulose fibers are stained with fluorescein (green). Images show islets at different depths through the cryogel
(along the z-axis) (scale bar: 50 pm). (c) Gene expression analysis of MafA, Pdx1, NeuroD1, Chop, Trib3, and Atf3 from islets
in suspension and islets housed within the cryogel. Gene expression data were normalized against Tbp1 and are shown
relative to islets in suspension. Results are expressed as the mean £ SEM from three independent experiments. A {-test was
applied to compare the data set, evidencing no statistical differences between islets in suspension and islets in the cryogel.

a. 37mm ] b. Velocity field volume (m/s)
(iv) . e
% 0o -
20mm \ Layer 2 g b % *
) \ s /| 2.6
(I) p 10 E 2.4
Y 50mm 15 -
20mm - - q 2
Layer 1 2 ¥ 2
- 2
(ii) 18
1.6
i 2
x.—% 1.4
25mm'.__\ 75mm %
(i)~ -
d.  o-
C. g 6 ﬁ
sg 3~
s § 15T
6= .
¢ 5 1.0+
£ 0
= Cc
7w
25 0.5
e .
0.0-

gvyﬂ.»é@‘ NG

v —
A4 2.8mM 16.7mM

Figure 4. Design and fabrication of the IOC device. (a) Schematic image showing the assembling of the IOC: (i) a 3 mm
layer of PDMS containing channels, inlet and outlet (Layer 2); (ii) a 2 mm layer of PDMS with the chambers for CMC islets
(Layer 1); (iii) two-layers of microfluidic chip is bound on a (25 mm x 75 mm) standard cover slide; and, finally, (iv) a
customized (37 mm x 20 mm) cover slide is used to sealed tissue chambers. (b) COMSOL Multiphysics® simulation of
the flow velocity and dynamics through the IOC device showing a maximum velocity of 0.03 mm s~! (red zones) at the
boundaries of the scaffold. (c) Real picture of the IOC device with a close-up view of the CMC islets fabricated inside
the chamber. (d) A glucose-stimulated insulin secretion (GSIS) assay was performed in static conditions to evaluate the
secretory capacity of pancreatic islets housed within the CMC-based cryogel inside the device. Results are expressed as
mean £ SEM from three independent experiments.
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The microfluidic IOC device was fabricated using a standard soft lithography replica
molding technique as previously described in the methods section. The IOC microfluidic chip
is integrated by two layers of PDMS with the purpose of elevating the microfluidic channels
and creating a pool where the scaffold with the islets can be located, decreasing possible
shear stress produced by a direct flow (Figure 4(ai,aii)). The device provides biomimicking
of the physiological environment of the organ, supplying nutrient and oxygen exchange to
the 3D in vitro construct. The flow profile inside the microfluidic device was simulated by
COMSOL Multiphysics Software. The fluid velocity field for each intersection was solved
using the laminar flow physics module with a customized mesh (3327 tetrahedral elements).
The boundary conditions of the inlets were defined by the channel geometry, resistance of
4.8 x 10'° Pa s m~3, operational flow rate of 50 uL. min~!, and an inlet pressure of 39.84 Pa.
The remaining boundaries were specified as walls (no-slip boundary condition) and the
material filling the channels was chosen as water under an incompressible flow. A stationary
solver was used for the calculations. In order to create a realistic approximation, a solid
cylinder with the dimensions and mechanical and chemical properties of the CMC scaffold
was incorporated in the simulations. Supplementary Videos V1 and V2 show the velocity
profile inside the whole device. The red zones indicate a higher flow velocity (7 x 10™* m s~!
at the well mouth and 3.69 x 10~2 m s ™!, as a maximum velocity, in the center of the chamber)
appearing in the boundaries of the scaffold. The study shows that the flow rates and geometry
used during the experiments do not affect the stability of the 3D construct and, additionally, do
not exert shear stress to the cell system as a consequence of flow, showing a maximum velocity
of 0.03 mm s~! (red zones in Figure 4b). Figure 4c shows a real picture of the microfluidic
device with the CMC islets fabricated inside the chamber. The fluidic system also helps the
delivery of the secreted insulin from the IOC to the on-chip LSPR sensing platform.

We examined the functionality of the islets housed within the CMC cryogel before
running microfluidic measurements by performing a glucose-stimulated insulin secretion
(GSIS) assay without flow inside the IOC device. Initially, the islets were incubated with
2.8 mM glucose, a condition that dampens the secretory capacity of the 3-cells, followed
by incubation with 16.7 mM glucose. Our results show that the islets remain as functional
units in the cryogel scaffolds, validated by the release of insulin from the pancreatic
-cells in response to glucose and quantified by a conventional ELISA (enzyme-linked
immunosorbent assay). Figure 4d shows how a high glucose concentration (16.7 mM)
causes a time-dependent insulin secretion from the (3-cells, normalized by the total insulin
content of the islets. The basal condition represents the accumulated insulin released by
the islets 30 min after an overnight culture in media containing 11.1 mM glucose. Having
demonstrated that islets housed within the cryogel respond to glucose, we set up the
integration of the LSPR system into the microfluidic system in order to detect the insulin
levels in situ.

3.3. On-Chip LSPR Measurements

The on-chip LSPR platform was incorporated to quantify the insulin levels from
the IOC device. The platform is a state-of-the-art integrated opto-fluidic module that
had been previously used for the detection of several protein biomarkers [17,23]. It en-
ables parallel and controlled measurements on a single chip (2.5 x 2.5 cm?), reducing
the reagent volumes, and providing in situ and label-free detection of insulin concen-
trations in the samples. The LSPR sensing regions consist of arrays of gold nanorods,
fabricated by electron beam lithography on a glass substrate, using the optimized param-
eters of references [17,23,48]. The LSPR peak was set to be around 800 nm as measured
by a custom-built transmission microscopy set-up integrated with a spectrometer. The
optical set-up uses a galvanometric mirror to interrogate up to 32 different sensing regions
in parallel. Our data analysis software delivers both peak and centroid positions of the
sensed regions in situ [23]. To complete the assembly of the LSPR sensing platform, the
gold sensors on glass were integrated into a microfluidic environment (Figure 5a). The
latter, built by multilayer soft lithography [49], consists of two layers of PDMS networks,
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namely, flow and control layers. The flow network, hosting the LSPR sensors, is where the
insulin detection measurements are performed. In the upper layer, the control network
includes pneumatic “Quake valves” that are used to control the reagent flow through the
underneath channels. Each valve is individually managed by an external controller that
enables full automation of the successive steps of the detection bioassay. The microfluidic
architecture includes parallel channels that are individually addressable to perform, on the
same chip, eight parallel measurements with up to four replicas, which can be easily used
for multiplexed experiments.
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Figure 5. On-chip LSPR sensing platform description and detection. (a) Overview of LSPR sensing platform integrated by
functionalized gold nanoantennas couple with a complex microfluidic network. (b) Functionalization strategy applied on
gold nanoantenna sensors. (c¢) Optimization of capture monoclonal anti-insulin antibody. A saturation plateau is observed at
100 ug mL~1 antibody concentration (red arrow). (d) Calibration curve performed in KRBH basal glucose content (11.1 mM).
Curve shows a limit of detection of (0.85 4 0.13) ug mL ™! (n = 3). (e) Real-time insulin detection by the LSPR sensing
platform every 30 min from the connected IOC device stimulated with KRBH buffer at low (2.8 mM) and high glucose
(16.7 mM) concentrations, respectively.

The Au sensors were biofunctionalized by immobilizing the insulin antibody to
capture the insulin from the sample. To this end, a self-assembled monolayer of MUA
(mercaptoundecanoic acid) was formed on the nanorods prior to chip assembly. The
assembled chip with a stable MUA layer was then used to immobilize a monoclonal
antibody against insulin through EDC/NHS chemistry. A scheme with the functionalization
strategy is shown in Figure 5b. Once the antibody is immobilized on the sensors from
all eight parallel channels, the separate channels are then used to detect, consecutively,
the secreted insulin from the IOC device at eight different times. The eight channels
chip design allowed us to divide the whole sensor array in individual sensing areas,
monitoring the secreted insulin from the IOC device in situ and in a continuous way.
Prior to running the sample measurements, we optimized the antibody concentration
(Figure 5¢) obtaining a saturation plateau at 100 pg mL~!. Sensograms are shown in
Figure S2a,b corresponding to 2 h of functionalization of 0, 10, 50, and 100 ug mL~1, and a
functionalization of 200 ug mL~! (which reached the saturation in a shorter time ~45 min),
respectively. Furthermore, a direct detection of a recombinant insulin solution of 5 ug mL ™!
prepared in basal (11.1 mM), low (2.8 mM), and high (16.7 mM) glucose conditions were
compared to study the bulk refractive index effect on LSPR measurements. Figure S3a
reveals that there is no significant bulk refractive index effect observed for the glucose
concentrations considered here, greatly simplifying the integration of the on-chip LSPR
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platform with the IOC device. All experiments presented here were performed under direct
detection mode (without the need for a secondary antibody to amplify the signal), which
allows the continuous monitorization of secreted insulin from a connected IOC device.

For the reference of insulin detection of the IOC samples, the eight-point calibra-
tion curve of insulin in KRBH buffer with 16.7 mM glucose in eight parallel channels
was obtained. The calibration curve (Figure 5d) shows a limit of detection (LOD) of
0.85 + 0.13 pg mL~! and EC50 of 5.6 + 1.2 ug mL~!. Every data point represents the
mean value of three on-chip replicas, and error bars stand for the standard deviations. The
IOC device with CMC islets was connected to the LSPR sensing platform to interrogate
the secreted insulin. Basal, low (2.8 mM), and high (16.7 mM) glucose levels in KRBH
buffer were used to stimulate the CMC islets in the IOC device for different durations in
fluidic conditions. Every 30 min was defined as a cycle, and every cycle was flown into
separate channels of the LSPR chip for the detection of the accumulative secreted insulin
concentration from the IOC device during that cycle (Figure 5e). The raw data obtained for
the LSPR measurements during these measurements are shown in Figure S3b. The insulin
secretion profile obtained by LSPR measurements shown in Figure 5e reveals that our
integrated platform was able to detect an incremental insulin secretion by the pancreatic
islets in response to high glucose stimulation over time. The basal level corresponds to
insulin accumulated for a time interval of 30 min inside the chamber. With the aim to
validate these results, a second IOC device under the same experimental conditions was
implemented and the samples were interrogated by ELISA technique. Even though the
results cannot be directly compared between both techniques, the insulin secretion profile
shown in Figure S3c reveals the same trend in insulin secretion: a remarkable increment
of the insulin levels in response to a high glucose content, which supports the results
obtained by the on-chip LSPR platform. These results are the preliminary steps to monitor,
in a continuous way, the dynamics of insulin secretion by native pancreatic islets under
physiological conditions. They demonstrate the potential of the integrated platform to
perform OOC experiments with real-time insulin detection, providing a strong tool for
drug testing, toxicity studies, and the elucidation of secretion dynamics in relevant tissues
linked to metabolic diseases, such as T2D.

4. Conclusions

In this work, we present an OOC platform integrated with an on-chip biosensing
platform, enabling in situ monitoring of the insulin secretion from an OOC device. Previ-
ously described microfluidic perfusion systems aimed at studying islet functionality are
based on the off-line quantification of insulin by ELISA or on-line insulin detection by
means of immunofluorescence, therefore labeling this hormone with antibodies. To our
knowledge, this is the first time that an IOC device has been coupled with an LSPR sensing
module to monitor, in situ and label-free, the insulin released by pancreatic islets. This
integrated platform carries the potential to investigate the different secretion dynamics
of cells, tissues, and spheroids in OOC platforms, and can be used in new applications,
especially in drug screening and personalized medicine technologies. First, we presented
here the development of a cellulose-based scaffold to embed pancreatic islets, which pro-
vide adequate mechanical properties to biomimic its native architecture. This approach
could be extrapolated to other biological systems which require a soft, biocompatible, and
non-biodegradable environment to biomimic physiological conditions. The scaffold is inte-
grated into a versatile transparent microfluidic bioreactor to provide the medium exchange,
simulate the physiological conditions, and optical monitoring of the islet morphologies.
Finally, we developed an automated modular platform that used a microfluidics-controlling
breadboard for the timed routing of fluids to interface with an LSPR biosensor chip for
measuring soluble biomarkers, such as insulin in situ. All sensing was performed in situ
in an uninterrupted and automated manner, allowing for the long-term monitoring of
insulin secretion under external glucose stimuli for up to 3 h. We believe that our integrated
modular on-line fluid routing and biosensing platform will be compatible with existing
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tissue organoid models and will promote their performance in drug screening by providing
the capability for the real-time in situ monitoring of their microenvironment.

Even though the experimental set-ups we presented here are not optimally minia-
turized, at the initial prototyping stage, such a platform has allowed us to validate our
approach to biosensor integration. Combining, for the first time, these two unique technolo-
gies will open up new avenues of research into metabolic pathologies in a bid to meet the
strong need for the combination of organ-on-a-chip system with microfluidics-integrated,
non-invasive biosensing modules to achieve continual bioanalysis of microtissue behaviors.
These themes are in line with current efforts to find new techniques to reduce the amount
of animal testing, to provide personalized medicine, and to understand the onset and
progression of diabetes.
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PDMS microfluidic IOC device. Figure S2: raw data of the sensograms obtained during optimization
of capture monoclonal anti-insulin antibody attached on LSPR gold antennas for (a) 0, 10, 50 and
100 ug mL~! antibody concentrations and (b) 200 ug mL~! antibody concentration respectively.
200 ug mL~! concentration raw data curve showed a faster binding kinetics reaching saturation after
~40 min after injection. Figure S3: (a) sensograms showing the matrix effect observed for the relevant
glucose concentrations used in IOC experiments; (b) sensograms (raw data) obtained for insulin
detection every 30 min of secretion using low (2.8 mM) and high (16.7 mM) glucose-stimulation
regimes. Signals were acquired from different channels of the microfluidics LSPR chip; (c) insulin
detection profile from a second IOC device analyzed by ELISA technique every 30 min stimulated
with KRBH buffer at low and high glucose concentration, respectively. Video S1, Video S2.
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