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Abstract: The past decade has witnessed a surge into research on disruptive technologies that
either challenge or complement conventional thoracic diagnostic modalities. The non-ionizing,
non-invasive, compact, and low power requirements of electromagnetic (EM) techniques make
them among the top contenders with varieties of proposed scanning systems, which can be used to
detect wide range of thoracic illnesses. Different configurations, antenna topologies and detection or
imaging algorithms are utilized in these systems. Hence, to appreciate their progress and assess their
potential, a critical review of EM thoracic scanning systems is presented. Considering the numerous
thoracic diseases, such as fatty liver disease, lung cancer, respiratory and heart related complications,
this paper will exclusively focus on torso scanning systems, tracing the early foundation of research
that studied the possibility of using EM waves to detect thoracic diseases besides exploring recent
progresses. The advantages and disadvantages of proposed systems and future possibilities are
thoroughly discussed.

Keywords: torso scanning; antennas; processing algorithms; electromagnetic imaging

1. Introduction

The urge and curiosity of human beings toward understanding diseases and devel-
oping tools to diagnose them can be backdated to ancient times and has been an ever-
developing part of science throughout past centuries. However, it was the invention of
the X-ray by Wilhelm Rontgen in the 19th century that created a new direction in medical
science. It provided a third eye to the medical staff that could confirm or reject their
hypothetical diagnosis. This advancement has changed the course of treatments and raised
medical standards significantly. Hence, huge investments were made to enhance this
technology and improve the quality of the obtained images, leading to the invention of
Computed Tomography (CT scan) in the second half of 20th century. However, despite
all these innovations, both systems came with an undesirable caveat: they use ionizing
radiation. Efforts by numerous researchers resulted in the invention of magnetic resonance
imaging (MRI) that utilizes a combination of a strong magnetic field and electromagnetic
(EM) waves to map the changes inside human body. MRI is accepted as the gold standard
among medical imaging devices and its image quality has significantly improved, thanks
to advancements in imaging algorithms and coil fabrication technology. Consequently,
MRI technology comes with a huge price tag and highly shielding requirements to contain
the strong magnetic fields. Hence, it is not suitable for rapid onsite diagnosis and frequent
monitoring, besides limiting its accessibility to large medical centers.

Motivated by the aforementioned limitations, researchers have been investigating
alternative or complementary techniques that are non-invasive, safe, low cost and portable.
EM techniques are among the top candidates that have been widely studied. The basis
of using those techniques is the fact that characteristics of EM waves, such as phase and
magnitude, are altered by the dielectric properties of biological tissues [1]. For instance,
a cancerous cell has higher fluid content compared to a healthy one [2]. This results in
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a change in the response of EM signals, and this change can be potentially exploited
for detection purposes. This review focusses on application of EM scanning systems for
thoracic diseases, as one of the main contributors to mortality rates in the world [3]. Fluid
accumulation inside (pulmonary edema) and around (pleural effusion) the lungs is the
common symptom for various diseases such as heart failure, lung cancer, breast cancer
and more recently COVID-19 [4–6]. Hence, the ability to detect accumulated fluid at early
stages can potentially lead to early diagnosis of the underlying diseases. The possibility
of detecting lung fluid was first proposed by Susskind in 1973 [7], where the use of a
combination of a cathode ray tube and an antenna was proposed as a scanning platform.
The first studies on the application of microwaves to detect pulmonary edema were
performed by Pedersen [8,9]. These studies modeled human body as a load and calculated
reflection coefficient based on the changes inside the torso. Hence, those studies concluded
that any changes inside the torso affect the magnitude and phase of EM reflection and
transmission coefficients, although only limited tests were performed on the magnitude
of those signals. To further improve these outcomes, two methods were later introduced
in 1983 by Iskandar et al. [10] to measure the variations in lung water. The first method
analyzed the phase of transmission coefficient of a microwave applicator [11], whereas the
second method employed the radiometry concept that monitors changes in microwave
emission levels [12]. To provide a more robust detection process, dielectric properties
estimation methods were used to detect pathological changes in tissues inside lungs [13].
It follows the same logic that accumulated fluid inside or around lungs alters the average
permittivity as experienced by the sensing antennas.

While all these methods have advanced the field, they all have limitation in that detec-
tion is performed based on the assumption of known dielectric properties of the healthy
status of the scanned subject [8–11,13], which is difficult to achieve in practice. Accord-
ingly, different approaches such as the combination of microwave transmission with X-ray
scanning were investigated. The method in [14] estimated the amount of water content
inside lungs using a method of moments. This study was an important step in moving
towards a more sophisticated analysis of the torso’s internal tissues. This view was further
advanced by the introduction of radar-based microwave imaging [15–21] and tomography
methods [22,23], where the scattered fields from the abnormal tissue inside the torso is
calculated using forward and backward processing methods. Considering the higher water
content, in the case of edemas and cancerous tissues, the reflected/transmitted signals
from those pathologies create a strong scattered field or high contrast permittivity map
that can be shown as two- or three-dimensional images. The advances in computational
methods and artificial intelligence open new horizons in research that were not feasible
before. For example, a statistical analysis was adopted to predict changes in fat levels
inside the liver [24]. This method is based on the high symmetry between the right and left
sides of the body and analysis of the correlation between signals from these areas at several
frequency points. In another method, the feasibility of a supervised decent method [25] for
torso imaging was adopted to estimate the torso’s structural information, paving the way
for real time imaging.

To ascertain the importance of the abovementioned advances, the present review
focuses on torso scanning systems aimed at detecting thoracic diseases and thus does not
include vital sign monitoring applications. Section 2 of the paper reviews electromagnetic
scanning systems and discusses their operation principles. It then investigates different data
acquisition methods and their role in complexity and accuracy of the system. Moreover, it
reviews the most utilized scanning platforms for torso scanning systems, their capabilities
and limitations. The safety considerations for torso scanning systems are thoroughly
investigated in Section 3. The safely limits are investigated using specific absorption rate
(SAR), followed by a discussion on range of SAR values for current EM torso scanners.
Section 4 presents an overview of design criteria for torso scanning systems and provides a
detailed review of two different categories of on-body matched and free space antennas.
The advantages and disadvantages of each subcategory in terms of penetration, impedance
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matching, size and fabrication complexity are investigated. Section 5 classifies the utilized
algorithms in these systems into three subcategories of detection only, classification and
detection and localization (imaging). This section concludes that there is a compromise
between accuracy of the scanning system, its complexity, and practicality. Each section is
accompanied by a comparison table that highlights the pros and cons of each subcategory.
Section 6 offers conclusions based on the discussions provided in previous sections and
provides thoughts for future development of these systems.

2. Electromagnetic Scanning Systems

An electromagnetic scanning platform includes two main elements: (1) hardware
and (2) software. In the hardware unit, antennas are used to transmit signals towards
torso (imaging domain) and receive the reflected or transmitted signals that are then
recorded using a vector network analyzer (VNA), or any proper EM transceiver, and
stored in a computational tool that contains the detection algorithm (software). The
detection algorithm analyzes different aspects of the signal and either form an image or
give estimation of the pathology. While the next sections of the paper will go through
details of utilized elements and methods, this section focuses on the overall operating
mechanism and formation of EM scanning systems.

2.1. Data Acquisition Methods

Data acquisition methods can be broadly categorized as mono-static and multi-static
ones. In a mono-static system the same antenna is utilized as the transmitter and receiver.
Therefore, these systems can only analyze the reflection coefficient signals [26–28]. Since the
system has no switching requirement, its implementation is simple. However, due to the
lack of transmission coefficient data, the system has less degree of freedom to compensate
for the effect of noise on detection decision. Additionally, the system is less sensitive to
changes in the dielectric properties of deeper targets. Hence, this method is more suitable
for surface or subsurface abnormalities [29]. In the multi-static system, an array of antennas,
at least two, are used to transmit and receive signals [24,30–32]. This process continues
sequentially until all the antennas in the array have received signals from each other. Hence,
more data in the form of transmission coefficient signals between different channels is
obtained compared to a mono-static method. This enables higher detection accuracy and
enhances deep target detection. However, the system requires a switching network, which
introduces additional insertion loss to signals plus increasing the scanning time [33,34].

2.2. Scanning Platform

Two main factors define the configuration of the scanning platform: (1) requirements
of the detection algorithm and (2) size of the antennas. Detection algorithms are divided
between the ones that focus on detection only and the ones that aim at detection and
localization of the malignancy. The size of the antenna mainly depends on the operating
frequency band and this could be a limiting factor when operating at low microwave
frequencies. Generally, algorithms that only aim at making a binary decision of presence or
absence of the malignancy, e.g., water accumulation, require simpler setups. As seen from
Figure 1, the system that is used in early studies [31] follow this approach and use two
applicators on either side of the torso to capture and utilize transmitted signal. A proper
detector is used to measure the phase of the transmitted signal, which is then recorded
using a VNA.

The second category of algorithms requires more sophisticated scanning platforms
with higher number of antennas. To provide a statically quantifiable data or map the
location of the malignancy, several scans from different angles and positions around the
torso are required. To fulfill the requirements of these algorithms, three main categories
of scanning platforms are designed: (1) linear platforms, (2) circular platforms and (3)
quasi-circular platforms.
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Figure 1. Configuration of an early torso scanner setup (concept taken from [31]).

2.2.1. Linear Platforms

Linear platforms are designed to scan the rear side of the torso and are generally used
with algorithms that utilize differential detection approach [18,26]. In these systems an
antenna or an array of antennas scan the right and left sides of the torso and their location
is mechanically displaced along the torso [18,35]. Stepper motors are used to perform
the movement with small, around 1 mm, steps at each scan. To simplify the scanning
setup, a mono-static data acquisition technique can also be utilized in these systems. An
example of these systems is depicted in Figure 2, where two antennas are located side by
side on a lever to eliminate positioning errors while being displaced up and down. The
main advantage of this scanning system is that high number of scans can be performed,
and hence the obtained image could provide an accurate estimation of the location of the
malignancy. However, these systems come at the cost of more complicated setup and
slower scanning process.

Figure 2. Linear scanning platform. (a) Dynamic system, schematic view (left) and system view (right). Reproduced with
permission from [35]. Copyright 2014 IEEE. (b) Static system, schematic view (left) and system view (right). Reproduced
with permission from [18] (open access).
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The second types of linear systems are the static ones, where antenna elements form
an array and are fixed in a position along the torso. Examples of the systems are presented
in [18,34], where two arrays of antennas are embedded in a foam or a bed for a patient to
lay on when the scan is performed. These platforms remove the complications with the
movable systems at the cost of using lower number of antennas due to mutual coupling
considerations. To compensate for reduced antenna numbers and to maintain the accuracy
of the system, a multi-static data acquisition method is utilized. Hence, a switching network
is added as part of the system, and this in turn increases the overall cost of the scanning
system (See Figure 2b)

The linear scanning systems are most suitable for applications where scans of the
upper sides of the torso are required. This facilitates a uniform scan for all male and
female subjects and the obtained signals are not convoluted by the presence of breast.
However, due to limited power allowed in EM scans, these systems are less sensitive to
deep malignancies or the ones that are far away from the antennas.

2.2.2. Circular Platforms

To alleviate the problem of low accuracy for deep targets, circular platforms are
proposed in which the antennas are located around the torso [36,37]. An example of a
circular platform configuration is depicted in Figure 3. The system consists of an array
of 16-element antennas, a VNA and a laptop as the processing unit. A monostatic data
acquisition method is performed where each of the antennas are used to both transmit
and receive backscattered signals. These setups are used for imaging algorithms that
require obtaining information from all angles around the object. This is necessary to
produce a scattering profile or map dielectric properties across the imaging domain, e.g.,
torso. Three dimensional images can also be obtained by locating the circular array on a
moving flange [29] and scanning different heights across the torso. Both mono-static and
multi-static data acquisition techniques can be used to obtain the scattered signals. The
main consideration in these systems is the distance of the antenna from the torso, due to
semi-elliptical shape of the body. Considering the significant variations between torso sizes
in different individuals, the designed systems are generally not fit for every single case.
While a certain degree of movement for antenna locations is allowed within the system,
a fixed distance between the antenna and body cannot be guaranteed/achieved for all
scanning cases, hence, creating difficulties for the imaging algorithm in the form of ghost
targets due to stronger reflections at the skin/air boundary. This is addressed by using
strict calibration measures before each test, besides filtering techniques that add to the
complexity of the system. The circular system setup is best suited for applications where
information regarding the location, size and severity of the malignancy is required.

Figure 3. Antenna array platform for scanning the torso area: (a) schematic view; (b) system view. Reproduced with
permission from [36]. Copyright 2016 IEEE.
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2.2.3. Quasi-Circular Platforms

While circular systems provide a convenient setup for scanning, their design can
be complex due to high number of antennas and switching network that ensures timely
scanning of the patient. Therefore, a simpler version of these systems has also been utilized,
in which the system is comprised of a single antenna and the subject is located on a turning
platform [19]. In this system the subject is rotated at desired intervals, e.g., every five
degrees, and the antenna constantly scans the patient until a full scan is performed. This
system can only operate in mono-static data acquisition mode and the imaging algorithm
is limited to the use of reflected signals only. However, a higher number of scans/data
points are obtained that can potentially compensate for the lack of transmission coefficient
data. The configuration of the proposed system is depicted in Figure 4.

Figure 4. Quasi circular platform: (a) fixed beam antenna (concept taken from [19]). (b) Pattern
reconfigurable antenna. Reproduced with permission from [38] (Copyright 2019 IEEE).

Additionally, three dimensional scans can also be obtained using pattern reconfig-
urable antennas [38]. An example of a quasi-circular platform using pattern reconfigurable
antenna is shown in Figure 4. The schematic of pattern reconfigurable antenna for torso
scanning is depicted in Figure 5.

Figure 5. Schematic of pattern reconfigurable antenna for torso scanners.

2.2.4. Wearable Platforms

To overcome the complications of finding the exact location of the antenna with respect
to the body, wearable systems can be used [13,24,39,40]. As shown in Figure 6, in these
systems the antenna array is located on the body, and depending on the utilized detection
algorithm, the antennas can be located locally adjacent to the subject [40] or surround the
circumference of the imaged body [24]. These systems can utilize multi or mono static
data acquisition methods and can accommodate larger number of antennas as antenna size
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can be significantly reduced due to the body loading on the antenna. This arrangement
provides the scanning system with larger number of data points that can be collected
during the scan.

Figure 6. Wearable platform: (a) Schematic view; (b) system view. Reproduced with permission from [24] (open access).

3. Safety Considerations

Electromagnetic medical scanning systems should follow the safety regulations that
are defined by different government bodies such as Federal Communications Commission
(FCC) [41] in United States and European Council (EC) [42] in Europe. The safety limit
is specified using specific absorption rate (SAR), which is the amount of energy stored in
human body during each exposure. These limits vary depending on different jurisdictions
and are generally defined as Watts per kilogram. For instance, FCC limits maximum
exposure at 1.6 W/kg, whereas EC allows exposures up-to 2 W/kg.

Two main factors affect the obtained SAR value in an EM scanning system; (1) the
operating frequency band and (2) the distance of the antenna from body [43]. The oper-
ating frequency of the antenna can significantly affect the obtained SAR value as it has
an inverse relation with the operating wavelength. Consequently, lower microwave fre-
quencies have deeper penetration that result in higher SAR values [44]. Similarly, SAR
value has an inverse relation with the distance of the antenna from human body. This is
attributed to a wider distribution of EM field at longer distances compared to the focused
distribution at closer distances [43]. Studying torso scanning systems reveals that using
a 1 mW (0 dBm) transmitted power results in SAR values between 0.004–0.04 W/kg at
0.6–0.9 GHz [18,24,29,33,34]. Lower values are obtained when antennas are located farther
from body [29,33] and higher values are attributed to antennas closer to body [18,24,34].

4. Antenna Designs

The effectiveness of EM scanning system for the detection of different types of diseases
highly depends on performance of the utilized antennas. A review of some important
antennas that are utilized for medical EM scanning systems, their operation principles and
performance requirements are presented in this section.

4.1. Antenna Design Criteria

The following main requirements should be considered for designing antennas for
EM scanning systems: operating frequency, bandwidth, and radiation characteristics, such
as directivity, penetration level and efficiency.

The first step in designing antennas for EM scanning systems is to define the optimum
frequency bandwidth for the scanning system. Human tissues have frequency-dependent
dielectric constant (relative permittivity) that generally decreases with increasing the oper-
ating frequency. Moreover, human tissue is a lossy medium with losses that increase with
frequency [45]. Hence, increasing the operating frequency in general decreases signal pene-
tration into human tissues. Studying the literature reveals that historically low microwave
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frequencies at 0.9 GHz have been utilized for torso scanning applications [8–11,30–32] that
is consistent with signal loss considerations. However, to define a range for wideband
torso imaging/detection applications, a study is conducted in [46], where the equivalent
circuit model of an average human torso is utilized. The variations of signal magnitude
at the center of the lungs for different frequencies are calculated (Figure 7). As seen in
Figure 7b the attenuation of the penetrated signal increases significantly at frequencies
above 1.5 GHz. Moreover, there is a direct relation between antenna’s physical size and
operating wavelength. Microwave frequencies below 0.5 GHz lead to physically large
antennas, which makes the EM scanning system bulky and hinders its portability. Addi-
tionally, decreasing the operating frequency adversely affects resolution of the obtained
images [47]. Considering all these factors, recent studies indicate that using the operation
bandwidth of 0.5–1.5 GHz provides the best compromise between the signal penetration
into human torso, image resolution, and antenna size [15,30,48].

Figure 7. Signal penetration into human torso: (a) lumped element model of human torso; (b) variation of signal magnitude
at the center of human lungs with frequency. Reproduced with permission from [46]. Copyright 2013 IEEE.

Different studies reveal that the accuracy of radar-based imaging algorithm is directly
related to the utilized bandwidth of the antenna. The study in [49] reveals that in radar-
based EMI systems, the lack of discrete observation points can be compensated using
different scattered profiles from frequency samples across a wideband signal. Hence,
wideband signals are preferred in EM scanning systems [18–20,50].

The other important requirement of antenna design for EM scanning systems is fo-
cused beam radiation in near field and/or far-field. In EM imaging systems, unidirectional
radiation is preferred to reduce the adverse effects of environmental noise and scattered
fields on signal-to-noise ratio, hence providing better detection results [51,52]. The effects
of the focused beam antennas on the reconstructed images in EMI systems are thoroughly
investigated in [51]. As seen from Figure 8, unidirectional focused beam antennas can
reduce the adverse effects of undesired scatterers, such as surrounding organs in the
imaging domain. A performance comparison of the unidirectional and omnidirectional
antennas for the EMI system is presented in [52]. The results indicate that the unidirectional
antennas have significantly better performance in reducing the artifacts that result in higher
resolution/accuracy images.
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Figure 8. EM scanning system using focused beam antennas (left) and non-focused beam antennas
(concept taken from [51]).

4.2. Antenna Categories

Investigating EM scanning systems reveals that two broad categories of radiators
are used to scan the human torso; (1) on-body matched antennas [24,30,31,53,54], and (2)
free-space antennas [55–60]. Different methods were proposed to design these antennas
that are detailed in this section.

4.2.1. On-Body Matched Antennas

An on-body matched antenna is designed in the presence of human body model and
its performance is optimized considering the frequency-dependent characteristic of investi-
gated body area, e.g., torso. This ensures that the radiated power by the antenna is directly
penetrated inside the body and no reflection occurs in the air-body boundary. Because these
antennas are located on-body, their performance is not measured using conventional mea-
surement concepts such as directivity or far-field radiation patterns. Instead, their success
is measured by the intensity of electromagnetic field that is induced/directed inside inves-
tigated area. The EM field intensity can be increased by optimum impedance matching and
directing the radiated EM signal towards the body. Considering the frequency dispersive
properties of human tissues, wideband impedance matching is a challenging issue.

The most straight forward method to achieve impedance matching is to terminate the
antenna with a resistor. The design of these antennas can be traced back to early studies
where an electromagnetic coupler was used as microwave sensors to transmit electromag-
netic signals into the torso and receive reflected/transmitted signals [30–32,55]. These
couplers are designed based on co-planar waveguide structures. A strip-line impedance
matching transition between coaxial cable and coplanar waveguide is implemented to
increase their operating bandwidth as depicted in Figure 9a [30]. These structures are
terminated by resistors to provide impedance matching to human body. However, the ad-
dition of the resistor decreases the radiation efficiency of this antenna/coupler significantly,
hence, it reduces their practicality for deep target detection.

To overcome the limitations in obtaining matching with resistor termination, different
methods have been developed. An L-shaped monopole antenna is proposed to reduce the
size of the antenna by increasing its electrical length [40]. The configuration of the antenna
is depicted in Figure 9b. As seen, a meandered shorted stub and open-ended stub are used
to adjust the two main operating modes of the antenna. To enhance the bandwidth of
the antenna, a triangular patch is added to the L-shaped monopole. A combination of a
rectangular ring-shaped monopole and a meandered patch is proposed in

Two sets of L-shaped and I-shaped slots are etched to the ground plane to create new
resonances at higher frequencies and improve the operating bandwidth [53].
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Figure 9. On-body matched antenna: (a) coplanar waveguide-type antenna (reproduced with permission from [30],
Copyright 2014 IEEE); (b) L-shaped monopole antenna (reproduced with permission from [40], Copyright 2020 IEEE).

Despite their success in achieving wide operating bandwidth, the utilized antennas
possess monopole-type radiation characteristics. Consequently, while part of the accepted
power is matched to the torso, the rest of the power is dissipated from the back of the
antenna. To address this problem, hybrid loop-dipole structure is proposed in [24], where
the theory of complimentary antennas is utilized (Figure 10a). This method utilizes the
well-known fact [61–64] that if the loop and dipole antennas are excited simultaneously
with equal phase and magnitude, the resulting radiation pattern would be unidirectional
with suppressed back lobe radiation, therefore, enhancing signal penetration inside torso
by almost two-fold compared to a monopole structure [24]. The electric field penetration of
the proposed design is depicted in Figure 10b.

Figure 10. Hybrid loop-dipole antenna: (a) configuration of the antenna; (b) signal penetration. Reproduced with permission
from [24] (open access).

Most radar-based imaging algorithms assume that the incident wave is a planar wave.
This assumption is not fulfilled when using conventional body matched antennas that
possess spherical wave-front for EM inside human torso. Consequently, the obtained
images using these antennas are accompanied by errors regarding location of the ma-
lignancy, its size and formation of ghost targets due to the plane wave assumption of
utilized algorithms. To address this problem, a body matched graded index (GRIN) lens
antenna is proposed in [54] and depicted in Figure 11. This lens, which is based on the
theory of multi-layer structures, transforms the spherical wave from its exciting source
(slot antenna) to a planar wave inside the torso as shown in Figure 11b. This is achieved
through transitioning wave from air that has a low permittivity of 1 to that of an average
torso, 45, through gradual increase in permittivity in each lens layer. To fabricate different
dielectric layers, a combination of low permittivity plastic and water is utilized. To obtain
the desired dielectric values, a host structure that has different hole sizes is 3-D printed
using the plastic material, and then filled with water. The obtained results reveal that the
antenna achieves a strong penetration (more than 6 dB) compared to the body matched
antenna (see Figure 12).
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Figure 11. On-body matched GRIN lens: (a) configuration of the antenna; (b) spherical wave to plane wave transformer.
Reproduced with permission from [54], Copyright 2021 IEEE.

Figure 12. Electric field comparison: (a) on-body matched slot’; (b) on-body matched GRIN lens. Reproduced with
permission from [54], Copyright 2021 IEEE.

4.2.2. Free-Space Antennas

To accommodate the requirements of different detection algorithms, free-space anten-
nas were proposed and widely used to build alternative platforms. Free-space antennas
are designed without the presence of body and their radiation properties are character-
ized using directivity, gain and radiation patterns. The detection is performed using the
differences in the reflection and transmission coefficients in free space and in front of
human body. These antennas strive to have compact sizes, wide operating bandwidth, and
high gain/directivity. Considering that torso scanning systems operate at low microwave
frequencies, obtaining all these merits is a challenging task. Hence, there will always
be a compromise that is defined by the scanning system. This section summarizes the
proposed designs.

Vivaldi antennas have been widely used in EM scanning systems due to their wide-
band operation and high radiating gain [28,55,56,65–67]. These antennas are generally
comprised of a strip feed that is magnetically coupled to a flared ground plane. Corrugation
methods [67,68] and fractal leaf arm techniques [56,66] are applied on the flared ground
structure to increase the electrical length of the antenna for a broad bandwidth and high
gain. An example of a Vivaldi antenna with fractal leaf arm is depicted in Figure 13a.
Vivaldi antennas have been investigated for pulmonary edema detection [55] as well as
lung tumor detection [56].

Owing to their unidirectional radiation pattern, patch antennas are widely used in
some EM scanning systems [42,43]. In [69,70], dual patch antennas are used as electromag-
netic sensors for pneumothorax diagnosis applications. Monopole antennas are used for
lung tumor detection applications [44,45]. To improve signal penetration, the monopole
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antenna structure is loaded with a cavity back to achieve unidirectional radiation and hence
increase the signal penetration into the human chest [71]. An example of cavity-backed
elliptical monopole is illustrated in Figure 13b. Similar to on-body matched antennas, a
combination of a loop and dipole can be used to increase directivity of the antenna and
reduce its back radiation [24,36,57].

Figure 13. Free-space antenna: (a) fractal leaf Vivaldi antenna (reproduced with permission from [66],
Copyright 2017 IEEE); (b) cavity-backed elliptical monopole antenna (concept taken from [71]).

To overcome the size constraints that are imposed by the limited torso area, folding
techniques are used in EM scanning antennas to reduce the physical size of antennas
and increase the operating bandwidth and antenna’s directivity [26,58,72,73]. The pro-
cess involves folding the edges of a planar antenna to form three dimensional structures.
This method reduces the back radiation of antenna by changing the current flow along-
side the antenna’s edge which eventually reduces its size. A three-dimensional folded
loop-monopole structure for EM scanning systems is presented in [57]. The loop-dipole
composite is first designed based on a planar structure and then folded over an optimal
folding line to increase the antenna’s directivity and reduce its size. Another wideband
folded antenna operating in the frequency bandwidth of 0.77–1 GHz for the early-stage
detection of congestive heart failure (CHF) is presented in [26].

Metamaterial techniques are also applied to reduce the size of antennas and improve
directivity at low microwave frequencies. The structures are formed by applying series
capacitance and/or shunt inductance to the host antenna to tune the resonance frequency.
For example, mu-negative (MNG) metamaterial unit-cells were applied to a conventional
square loop antenna in [60,74] to lower the resonance frequency of the antenna (Figure 14a).
Since this resonance is independent of the antenna size, the overall size of the antenna is
miniaturized by more than 50%. Additionally, it is shown that by non-periodic distribution
of unit-cells, a unidirectional radiation pattern can be obtained. MNG unit-cell loading
is also used to enhance the operating bandwidth of directional Yagi-antennas trough
excitation of mu zero resonance below existing resonance of the Yagi antenna [75,76]. An
example of MNG loaded reflector Yagi-antenna is illustrated in Figure 14b.

As stated before, certain detection algorithms require scanning different locations
along the torso to perform comparative detection decisions. While mechanical movement is
used to scan high number of regions, certain comparative algorithms can provide detection
decisions using low number of torso regions, such as three in [29]. To eliminate the
complications of mechanical movements, these systems can be fabricated using pattern
reconfigurable antennas to electronically scan the upper, middle and lower parts of the
torso [38,54,59,77–79]. A wideband reconfigurable loop antenna operating at 0.8–1.15 GHz
for torso scanners is presented in [77]. Capacitive gaps are created along the loop arms
to form virtual dipole arrays, which leads to unidirectional radiation with a peak gain of
2.1 dBi. Changing the location of gaps changes the direction of the dipole array, which
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leads to changes in the direction of the beam. Another pattern reconfigurable loop-dipole
antenna with the capability of scanning the upper, middle and lower parts of an average
human torso for pleural effusion detection is presented in [78]. The antenna consists of a
one-wavelength loop, a have-wavelength bow-tie dipole, and two parasitic directors. The
combination of loop-dipole mode increases the antenna’s directivity. The antenna operates
in a wide fractional bandwidth of 55% at 0.8–1.4 GHz with a peak gain of 5 dBi. The beam
steering is achieved using parasitic directors to alter the current distribution on the loop
and enable beam switching in different directions to scan the whole chest area.

Figure 14. MNG loaded antennas: (a) MNG loaded loop antenna (reproduced with permission
from [60], Copyright 2016 IEEE); (b) MNG loaded reflector Yagi-antenna. Reproduced with permis-
sion from [75]. Copyright 2017 IEEE.

To satisfy the plane wave radiation assumption inside the imaging domain for radar-
based imaging applications [80], reconfigurable metasurface lenses are proposed to achieve
near field beam focused plane wave radiation inside the imaging domain [38,54,59]. Meta-
surface structures are built using an array of unit-cells that are distributed periodically
and illuminated using a source antenna, e.g., a slot antenna. These unit-cells collimate the
incident field into a focused transmitted beam. A pattern of reconfigurable metasurface
antennas based on the offsetting technique is presented in [38]. Three half-wavelength
microstrip-fed slots operating in the frequency band of 0.9–1.2 GHz radiate a metasurface
layer. Beam steering is performed based on the excitation of each metasurface unit cell
with different phase delays by changing the activated slot.

Pattern reconfigurability in metasurfaces can also achieve using programable unit
cells by changing the characteristics of unit cells. A programable pattern reconfigurable
metasurface for pulmonary edema detection is proposed in [59], where a metasurface layer
containing 5 × 5 programable square ring resonator as the superstrate layer on an H-shape
slot radiator is designed. Four PIN diodes are embedded in each cell to alter the electric
field intensity within the metasurface layer and consequently switch the high intensify
electric field in different directions inside the human torso.

Figure 15 summarizes and compares various types of antennas used in EM scanning
systems to detect or localize any abnormality. Based on the requirements of different
imaging/detecting algorithms and the required level of signal penetration into the human
torso, a suitable antenna type is selected.
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Figure 15. Characteristics of different types of antennas used in EM thoracic scanning systems.

5. Microwave Detection Techniques

EM torso scanners utilize the high dielectric contrast between healthy and diseased
tissues for detection purposes. Generally, the processing unit exploits any changes in
the phase and/or magnitude of transmitted EM signals for abnormality detection or
localization. The variation in dielectric properties of tissues along the wave’s propagation
path alters the wave speed that results in the changes in phase and/or magnitude of the
transmitted wave.

These changes can be used to detect/classify the abnormality and/or localize it by
creating an image from the investigated domain. This image can be created either by calcu-
lating the scatter fields inside the domain (radar-based imaging) or by calculating dielectric
properties of the tissues (tomography). Based on processing outcome, EM processing tech-
niques can be classified into three main categories: (1) detection only methods, (2) detection
and classification methods, and (3) detection and localization (imaging) methods. Figure 16
presents an overview of the current microwave techniques. In this section, each technique
applied to the detection of different thoracic diseases is explained in detail. Then, the
advantages and disadvantages of each method are discussed and compared in terms of
practicality, computational time and accuracy.
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Figure 16. An overview of EM thoracic abnormality detection techniques.

5.1. Detection Only Methods

These methods aim at detecting any abnormality within the torso without providing
any information on the location of that abnormality. Hence, their computational time is
lower than localization techniques. These techniques are more suitable in disease detection
where the location of abnormality is not important such as, hepatic steatosis or bronchial
asthma detection. In this section, different methods utilized in malignancy detection are
reviewed. These methods can be classified into two main categories based on their detection
approach. First group exploits the change in magnitude and/or phase of electromagnetic
signals. Second group estimates the overall effective permittivity of the medium.

5.1.1. Phase/Magnitude Changes

Some techniques compare the magnitude or phase of the propagation coefficient
between control and diseased group to achieve a distinguishable trend [9,70,71,81–85].
These techniques are mostly utilized in linear scanning platforms operating in a mono-
static or bi-static (multi-static with use of two antennas) data acquisition mode. The
assessment of low and high frequency regions of reflection or transmission coefficients
results in a contrast between measured healthy and unhealthy signals.

In [82], propagation coefficients of upper and lower parts of the lungs are compared
between 12 patients with confirmed diagnosis of brachial asthma and a healthy controlled
group comprised of 10 individuals with appropriate age and sex, matched with patients
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by morphological characteristics of the chest. Analyses of measured signals from patient
group shows that the signals experience significantly lower attenuation compared to the
measured signals from healthy controlled group in the bandwidth from 0.9 to 1.5 GHz
when propagating through the upper part of the lungs (see Figure 17a). However, scanning
of lower parts of the lungs show maximum different between healthy and controlled
group at higher frequency bandwidth from 1.2 to 2 GHz, (see Figure 17b). Consequently,
monitoring of propagation coefficient at these frequency regions provides higher accuracy
of disease detection.

Figure 17. Propagation coefficient in a brachial asthma subject (solid line) compared to a healthy case (dashed line): (a) scan
of upper part of lungs; (b) scan of lower part of lungs. Reproduced with permission from [82]. Copyright 2017. IEEE.

In [81], the phase of transmitted signals at a single frequency is used to create a phase
diagram of the chest to detect any inhomogeneity within lungs. In [83], the transmission
coefficient is converted into a corresponding voltage at the output and the diagram of
the output voltage is created to detect any inhomogeneity inside the chest area. It is also
shown that the maximum probability of detection with more precise borders takes place at
higher frequencies.

The magnitude of transmission coefficients is also exploited to detect pneumoth-
orax [70] or pulmonary edema [9]. It is shown that the maximum difference between
transmission coefficients in healthy and pneumothorax scenarios occurs at frequency of
2.3 GHz and is about 7.1 dB, (see Figure 18). The existence of the trapped air in the chest
cavity due to the disease results in changes in electric field distribution at this frequency.
Additionally, it is shown that the magnitude of transmission coefficients increases in the
bandwidth 800–955 MHz as the result of increase in lung water volume [9] (see Figure 19).

Figure 18. Magnitude of transmission coefficient in healthy and pneumothorax scenarios. Repro-
duced with permission from [70]. Copyright 2014 IEEE.
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Figure 19. Increase in magnitude of transmission coefficients with increased percentage of accumu-
lated fluid in lungs. Reproduced with permission from [9]. Copyright 1978 IEEE.

Furthermore, changes in the magnitude of reflected signals is exploited to detect
the presence of tumors in lungs [84]. Differences between the measured signals with and
without presence of tumor are used for detection purposes. The differences between healthy
and unhealthy signals were mostly found at frequencies below 6 GHz and changing the
size of the tumor in the lung, creates a shift in the magnitude of reflection coefficients [85].

Although phase or magnitude of electromagnetic signals might differ in unhealthy
torso due to the existence of any abnormalities or disease, this difference cannot lead to a
comprehensive and accurate detection of the disease. For example, as realized from the
results in [82], the frequency at which maximum contrast occurs might vary depending
on the used sensors (antennas) and size of the torso. Hence, this contrast is not always an
indicator of the disease or abnormality.

5.1.2. Effective Permittivity Estimation

Some approaches try to estimate the overall effective permittivity of the torso to
detect changes in permittivity due to presence of an abnormality. These methods usually
model the overall effective permittivity of torso as a function of transmission coefficients.
Then, the weight parameters for the model are extracted using training process [13,86].
This model can be linear [13] or non-linear based on spatial statistical technique [86]. In
the spatial technique, the effective permittivity of torso from the receiver perspective is
modeled using a variogram. This is related to spatial dependence of each signal, a vector of
quadric regression function, and a vector of regression coefficients. Variogram is calculated
for each receiver using the measured S-parameters at that receiver due to transmission
from antennas located at a determined neighboring antenna. To estimate the effective
permittivity at each receiver, the best unbiased estimation regression coefficients is obtained
by training the model using training samples. These training samples are generated by
measured S-parameters of the homogenous equivalent medium with different known
permittivity values. After finding the regression coefficients vector by training, it can be
used to estimate the effective permittivity of any test medium.

In [86], the spatial statistical technique is used to estimate the effective permittivity and
conductivity from the viewpoint of each antenna. To do so, multi-static signals are collected
in a circular platform for healthy lung and lung with a tumor. The estimated permittivity
and conductivity values in unhealthy scenario are slightly higher than the healthy one due
to existence of tumor (see Figure 20). Although, it cannot directly interpret the health status
of the lung by these estimated values, they can be used as prior information in radar-based
imaging to improve the quality of the image in localizing the tumor. In [13], a wearable
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health monitoring sensor for detection of pulmonary edema is proposed. The 16-port
sensor is placed on the human chest to detect any lung abnormalities by estimating the
effective permittivity of lung (see Figure 21). Therefore, the effective permittivity of lung
at a single frequency is expressed as a weighted summation of S-parameters measured
at each port. The parameters of the weight vector are set based on training the model by
assigning different dielectric characteristic to the inner tissue (lungs). Using multiple ports
mitigate the effect of the outer layer (skin, fat, and muscle) on lung’s permittivity and allow
to characterize the inner layer tissue. The validation of this technique on measurements
of the healthy and edema lung shows less than 11% error in the calculated permittivity
of lung compared to the measured value. It is observed that the unhealthy lung has
a higher permittivity value than the healthy lung due to accumulated water inside the
unhealthy lung.

Figure 20. (a) Estimated permittivity and (b) conductivity from viewpoint of various antennas around torso for healthy and
unhealthy lung cases. Reproduced with permission from [86]. Copyright 2017 IEEE.

Figure 21. Permittivity estimation of inner layer (lung) by modeling it as a weighted summation of
S-parameters (concept taken from [13]).

Permittivity estimation methods reveal promising results in detecting lung abnor-
malities. However, the performance is hindered by training requirement to determine
coefficient vectors and achieve accurate result. Hence, they may not achieve reliable results
when the test models are considerably different from the training model, which is the case
in clinical application.

5.2. Detection and Classification Methods

These methods aim at classifying and labelling the collected data as healthy or un-
healthy based on their underlying pattern and characteristics. They can be classified into
two main categories: the first group exploits symmetry of the torso in a statistical approach,
whereas the second group utilizes artificial intelligence techniques to differentiate between
healthy and unhealthy torso.
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5.2.1. Statistical Analysis

Multivariate energy statistics method is another detection technique that operates
based on the assumption that organs within the left and right sides of torso have close
dielectric properties [45]. Hence, the changes in the dielectric properties of unhealthy tissue
enhance the contrast with surrounding tissues. Therefore, the similarity of electromagnetic
signals collected from left and right sides of torso is reduced.

In [24], a wearable electromagnetic belt is used to detect hepatic steatosis using
multivariate energy statistics method. Any changes in the dielectric property of liver due
to excess fat in hepatic steatosis increase the contrast between the liver and surrounding
tissues. The method calculates the distance correlation of the measured transmission
coefficients between symmetric paths from the left and right sides of torso. The results
indicate a peak measured dissimilarity of 15.1% between transmission coefficients of left
and right sides of the torso in steatotic liver, which is much higher than the healthy case [24].
Hence, healthy and steatotic liver can be classified based on the left/right permittivity
contrast after determining a threshold for healthy liver.

The limitation of this technique is the requirement of almost symmetrical setup to
achieve a reliable classification. Additionally, a sufficient number of healthy signals is
required in order to define the threshold and set the boundary between healthy and
unhealthy signals.

5.2.2. Machine Learning

Supervised machine learning is a form of artificial intelligence technique, which can
be used in classifying healthy and unhealthy cases. This method requires a set of training
signals to learn the characteristics of input signals. Then, the trained model is validated on
test signals. Supervised machine learning framework is utilized to learn an inferring model
for hepatis steatosis from the data collected by an antenna operating across 0.4–1 GHz
bandwidth in a mono-static mode [27]. Data are collected from a simulated numerical torso
by changing the permittivity of the liver from 30–60 within the frequency range of the used
antenna. Real and imaginary parts, magnitude and phase of the collected S-parameters
are used as inputs for the supervised classifier. Labels of healthy and unhealthy liver are
assigned based on the permittivity of liver. Learning is performed using different classifica-
tion techniques and leave-one-out-cross-validation is used to evaluate the classification
performance. The results indicate that this system can detect hepatic steatosis with accuracy
of more than 97% for the simulated torso model.

The main drawback of this method is the requirement for enough number of training
signals from various stages of disease. The accuracy of this method is highly depen-
dent on the training data base. Insufficient and non-comprehensive training set results
in misclassification.

5.3. Detection and Localization Methods

These methods aim at finding the location of abnormality within the torso by forming
an image of the investigated domain. This is achieved either by calculating the scattered
fields or by calculating dielectric map of the investigated domain. The target, which
can be tumor, fluid, or fat infiltration, can be recognized by its high intensity or dielectric
contrast with surrounding tissues. Based on the utilized approach in creating the image, the
localization methods can be categorized into three main groups: (1) radargram, (2) radar-
based imaging, and (3) tomography. In this section, an overview of each approach is
presented. All these imaging techniques require an equivalent homogenous medium for
detection and localization. The difference of measured signals with and without of the
investigated domain is considered in the calculations.

5.3.1. Radargram

This technique provides a two-dimension visualization of torso by analyzing the
reflection coefficients [26,56,58,72]. This method transfers measured signals to time domain
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using an inverse Fourier transform. Then, using the wave speed in the medium the time
domain signal is scaled to show the intensity of the reflected signal within an investigated
depth. Finally, each of the measurement are overlaid to create the radargram (image).
Usually, the average permittivity of torso tissues is used to define the propagation speed.
Hence, the target is highlighted in the image due to its variant permittivity. In [26],
radargram technique is used for early detection of congestive heart failure due to fluid
accumulation inside lungs. The rear side of torso is scanned using one antenna in a linear
platform and a mono-static data acquisition mode. The symmetry of left and right lungs is
exploited to detect and localize the target (see Figure 22).

Figure 22. Radargram of (a) unhealthy and (b) healthy lungs. The square shows the location of 10 mL
water inside the lung. Reproduced with permission from [26] (open access).

In [56], time domain reflectometer (TDR) data, obtained in a linear platform, are used
to create an image of the scanned area. The imaging algorithm consists of pre-processing
and quadratic envelop detection. The pre-processing step reduces background noise and
clutters using absolute function and Shannon energy, which calculates the average energy
spectrum of the signal. Then, local maximums of the signal are derived using an envelope
function to obtain shape of the tumor. Finally, the fourth order quadradic function is
applied to enhance the edge detection of tumor. Figure 23 shows the created image of lungs
with three tumors in right and left lungs.

Figure 23. (a) Simulated lungs with tumors; (b) created image by TDR data analyzing. Reproduced with permission
from [56]. Copyright 2020 IEEE.

The main limitation of this technique is its insensitivity to deeper malignant tissues
that are far away from the antenna. Hence, its accuracy in localization small and deep
targets is low. Additionally, it needs the average effective permittivity of tissue to define
the propagation speed. This limits the suitability of the technique in clinical applications.
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5.3.2. Radar-Based Imaging

Radar-based imaging techniques can be classified as time-domain confocal microwave
imaging [20,21,50] and fast frequency-based radar imaging [18,19,29,38,77,87]. Both ap-
proaches require a calibration step when the free-space antennas are utilized to scan the
torso. This step is necessary to reduce the significant reflections from air-skin interface
which mask the desired target reflections. To calibrate the measured signals, the average
of all measured signals is subtracted from each measured signal. As antennas are located
at the same distance from skin, the effect of air-skin reflections is almost similar in all
measurements. Calibrated signals are then used in further calculations to localize and
detect the malignant tissue.

Time-domain confocal microwave imaging has broadly been used in head and breast
imaging and demonstrates successful results in tumor or torso fluid detection [20,21,50].
The method uses an ultra-wideband signal to illuminate the imaging object, whereas
the received signals in time domain are used to create a map of scattered fields inside
the investigated domain. Assuming the focal points inside the imaging domain as point
scatterers, the received signals are delayed depending on the wave traveled distances from
each transmitter to the individual point scatterers and the receiver. The sum of the delayed
signals at all the focal points are then used to calculate the scattered energy and obtain the
final image.

In [20], the human torso is modeled as a 100 × 100 × 70 mm block in which different
layers (skin, fat, muscle, bone, and lung) are presented with their dispersive dielectric
properties. The difference between reflection coefficients with and without the presence
of tumor is used for confocal imaging. A smoothing process is performed on signals to
improve the quality of the resultant image by applying a filter which provides nonpara-
metric smoothing of signals peaks and filter the noise. Using this filter, the detection and
localization of the tumor is enhanced (see Figure 24). In [21], confocal imaging of human
chest model using the reflection coefficients reveals better tumor detection and localization
during exhale.

Figure 24. (a) Front view of the locations of the antenna and tumor; (b) created image with confocal
imaging after smoothing. Reproduced with permission from [20]. Copyright 2014 IEEE.

Fast frequency-based radar imaging is used in several microwave systems to detect
and localize tumor [19] or fluid [18,29,38,77,87] inside torso. This method first calibrates
measured signals, which are the difference in S-parameters between presence and absence
of torso, using average subtraction techniques to remove artifacts at each frequency step.
Then, the calibrated data are multiplied by a back-propagation Green’s function and
summed over all antennas’ positions to calculate intensity of electromagnetic fields at each
scatter position inside torso. The Green’s function is modeled as the multiplication of first
order first kind Bessel function and an exponential term. Both Bessel and exponential
functions are dependent to the wave path distance and wave number.

In [18,19], fast-frequency radar based imaging is performed to detect and localize
abnormality inside lungs. Figure 25 present the detection and localization of accumulated
fluid in lung using this technique.
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Figure 25. Reconstructed image of a (a) healthy lung, and (b) edema lung with accumulated fluid using fast-frequency
radar-based imaging method. Reproduced with permission from [18] (open access).

In [33], fast-frequency imaging in conjunction with slice interpolation technique is
used to create a 3D visualization of torso. To do this, different slices along torso are scanned
with 1 mm resolution using a mechanically moveable array of antennas located on a flange.
This system could accurately determine the location and volume of the embedded water in
a phantom lung (See Figure 26).

Figure 26. Three-dimensional (3D) image of the torso with accumulated water in the lung. Repro-
duced with permission from [33] (open access).

Radar-based imaging techniques need a prior information about the effective permit-
tivity value of the medium. This value is usually set based on the average permittivity
of tissues at mid-point frequency. However, in clinical application the average effective
permittivity may be variant in different individuals who have different body shapes and
habitus. Hence, effective permittivity estimation technique is usually needed to estimate
the overall effective permittivity of the medium prior to imaging.

5.3.3. Tomography

Microwave tomography is based on the fact that biological tissues have different
dielectric properties at microwave frequencies and thus they can be imaged by solving an
inverse and forward scattering problem. In this method, the measured electric fields are
used as the input of an inverse problem derived from Maxwell’s equations. The non-linear
invers problem is ill-posed as there is more than one solution to satisfy the equations.
Hence, additional information and assumption are required to reach the correct solution.
Optimization-based methods [88–90], born iterative methods [91,92], and Newton-based
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methods [93–95] are mostly exploited to solve the inverse problem in an efficient way in
at iteration mode. At each iteration, the measured field and calculated field with current
dielectric distribution are compared and the error is estimated. The solution is found when
the calculated error is reached to a predefined threshold. This technique requires a priori
information of dielectric properties of investigated domain to achieve reliable results. Torso
microwave tomography is not as a common as breast and head tomography. This is due to
the large size of the human torso, which increases the number of parameters in calculations,
resulting in high computational costs and less probability of a successful convergence of
the solution.

Microwave tomography is utilized to detect and localize lung cancer [96,97] or cre-
ate an image of intact canine or swan heart [23,98]. In [97], the method is applied to
two-dimensional computer-simulated model of the chest with three high contrast inhomo-
geneities which model lung tumors. The location of the tumors is successfully detected
using the tomography approach. In [23], a three-dimensional gradient method is used
to reconstruct a dielectric map of an excited static canine heart at frequency of 2.4 GHz.
The resultant image, presented as 2-D vertical cross sections, reflects the structure com-
plexity of the heart well, (See Figure 27). The reconstructed dielectric properties are close
to the dielectric properties of myocardium and left/right ventricles are obvious in the
reconstructed image.

Figure 27. Reconstructed image of canine heart at 2.4 GHz at two cross-sections using microwave
tomography (a) X = 1.5 cm, (b) Y = 1.5 cm. Reproduced with permission from [23]. Copyright
2000 IEEE.

Three-dimensional microwave tomography has also shown successful results in the
reconstruction image of infracted canine heart [99]. The reconstructed images show both
the shape of the heart and the region of infraction which is highly correlated with anatom-
ical slices. Hence, microwave tomography might have potential for both structural and
functional cardiac imaging.

Capability of the in-body microwave tomography has also been tested using a circular
heterogenous phantom generated by FDTD simulations [100]. The radius of the phantom
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is 13 cm with two more embedded circular cylinders to create inhomogeneity. The 2-D
microwave tomography at 403.5 MHz using Newton-based method showed successful
result in detection and localization of the inhomogeneities within the simulated torso,
(See Figure 28).

Figure 28. (a) Simulated circular inhomogeneous phantom; (b) reconstructed image of the relative
permittivity using microwave tomography. Reproduced with permission from [100]. Copyright
2014 IEEE.

Practicality, computation time, and accuracy of all microwave detection techniques is
compared in Figure 29. Practicality is defined based on the required system configuration
and its pre-requisites. As seen from this figure, there is always a compromise between
practicality, computation time and accuracy of the utilized methods. For instance, tomog-
raphy methods, provide the most accurate detection decision, but they have the most
impractical hardware setup and require the highest computational time. On the contrary,
the detection only methods, such as magnitude/phase monitoring, has the simplest setup,
but also achieves the lowest accuracy. Therefore, depending on the required accuracy and
system cost, a suitable configuration might be selected.

Figure 29. Comparison between EM thoracic scanning techniques based on their complexity, computation time, and
accuracy; (a) 3-D representation; (b) bar graph representation.

6. Conclusions

A comprehensive review of EM torso scanning systems has been presented. Different
data acquisition methods, scanning platforms, antenna types and detection/imaging algo-
rithms are reviewed and categorized. It is shown that the idea of detecting malignancies
inside torso using microwave signals has advanced significantly since its introduction in
1973. The systems have advanced from detecting the malignancy only to mapping its exact
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location and dimension. New detection techniques are developed thanks to significant ad-
vancements in computational capacities and incorporation of different statistical techniques
and machine learning methods. This promises more accurate and real-time detection deci-
sions that can be used as a complementary technique besides conventional imaging devices.
Additionally, it strengthens the confidence in EM torso scanning systems as powerful
tools for monitoring purposes and onsite diagnosis, which are the major limitations of
existing imaging systems. As can be realized from Table 1, the higher accuracy comes with
increased system’s complexity and computational cost. This creates an exciting challenge
and the future research roadmap, where solutions are needed to maintain accuracy of
EM systems while simplifying their design and computational cost. While the future is
unknown, it is guaranteed that only systems that can satisfy these two factors will have the
competing edge in clinical settings.

Table 1. Summary of available torso scanning systems.

Ref. System Configuration Antenna Algorithm Advantages Disadvantages

[34]
Linear array of

antenna in multi-static
data acquisition mode

Unidirectional wideband
free space 3-D

loop-monopole antenna

Fast
frequency
imaging

•High accuracy of
detection and localization

•High practicality
•Medium

computation time

•Requirement of healthy
symmetrical reference

•Requirement of
average permittivity of tissues

•Medium penetration

[26,35]
Linear array of

antenna in mono-static
data acquisition mode

Unidirectional wideband
free space folded antenna Radargram

•High practicality
•Medium

computation time

•Requirement of healthy
symmetrical reference

•Requirement of
average permittivity of tissues

•Not suitable for deep
target detection

•Medium penetration

[27] Mono-static data
acquisition mode

Unidirectional wideband
on-body matched

waveguide antenna

Machine
learning

•Low computation time
after training

•Simple structure

•Requirement of training
•Low practicality

•Not suitable for deep
target detection

[29]
Circular array of

antenna in multi-static
data acquisition mode

Unidirectional wideband
free space

metamaterial unit-cell
loaded Yagi-antenna

Fast
frequency
imaging

•High accuracy of
detection and
localization

•High practicality
Medium

computation time

•Requirement of
average permittivity of tissues

•Medium penetratio

[31,32,70] Bi-static data
acquisition mode

Omni directional
narrowband on-body

matched
antenna

Phase/Mag
changes

•High practicality
•Low computation time •Low accuracy

•Low penetration

[33]
Circular array of

antenna in multi-static
data acquisition mode

Unidirectional wideband
free space resonance-based

reflector antenna

Fast
frequency
imaging

•High accuracy of
•High practicality

•Medium
computation time

•Requirement of
average permittivity of tissues

•Medium penetration
•Complex setup

[36]
Circular array of

antenna in mono-static
data acquisition mode

Unidirectional wideband
free space loop-
dipole antenna

Fast
frequency
imaging

•High accuracy
•High practicality

•Medium
computation time

•Requirement of
average permittivity of tissues

•Medium penetration
•Not suitable for deep

target detection

[38,59,87]
Quasi-circular antenna

in mono-static data
acquisition mode

Unidirectional wideband
free space pattern

reconfigurable metasurface
antenna

Fast
frequency
imaging

•High accuracy
•High practicality

•Medium
computation time
•High penetration

•Requirement of
average permittivity of tissues

[24]
Circular antenna in

multi-static data
acquisition mode

Unidirectional wideband
on-body matched

loop-dipole antenna

Statistical
analyses

•Medium practicality
•Medium

computation time

•Requirement of a symmetric
healthy part

•Low-medium accuracy
•Requirement of healthy threshold

•Medium penetration

[86]
Circular antenna in

multi-static data
acquisition mode

Unidirectional wideband
free space loop-dipole

antenna

Permittivity
estimation

•Medium
practicality

•Low computation time
•Suitable for

enhancing radar-based
imaging

•Requirement of training
•Low-medium accuracy
•Medium penetration
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Table 1. Cont.

Ref. System Configuration Antenna Algorithm Advantages Disadvantages

[21,56]
Linear scanning
monostatic data

acquisition mode

Unidirectional wideband
free space Vivaldi antenna Radargram •High practicality

•Low computation time

•Not suitable for deep target
detection

•Medium penetration

[21]
Linear scanning
mono-static data
acquisition mode

UWB Antenna
Free Space Antenna

Confocal
imaging

•High practicality
•Low computation time

•Low accuracy
•Requirement of

average permittivity of tissues
•Not suitable for deep target

detection
•Low penetration

[23,98,101]
Quasi-circular antenna

in multi-static data
acquisition mode

Dielectric Loaded
Waveguide Tomography •High accuracy

•High penetration
•Low practicality

•Very high computation time
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