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Abstract: Theoretical study and software simulation on the sensitivity of silicon nanowires (SiNWs)
field effect transistor (FET) sensors in terms of surface-to-volume ratio, depletion ratio, surface state
and lattice quality are carried out. Generally, SiNWs-FET sensors with triangular cross-sections are
more sensitive than sensors with circular or square cross-sections. Two main reasons are discussed
in this article. Firstly, SiNWs-FET sensors with triangular cross-sections have the largest surface-
to-volume ratio and depletion ratio which significantly enhance the sensors’ sensitivity. Secondly,
the manufacturing processes of the electron beam lithography (EBL) and chemical vapor deposition
(CVD) methods seriously affect the surface state and lattice quality, which eventually influence
SiNWs-FET sensors’ sensitivity. In contrast, wet etching and thermal oxidation (WETO) create fewer
surface defects and higher quality lattices. Furthermore, the software simulation confirms that
SiNWs-FET sensors with triangular cross-sections have better sensitivity than the other two types of
SiNWs-FET sensors under the same conditions, consistent with the theoretical analysis. The article
fully proved that SiNWs-FET sensors fabricated by the WETO method produced the best sensitivity
and it will be widely used in the future.

Keywords: silicon nanowires (SiNWs); field effect transistor (FET); sensor; sensitivity; cross-section

1. Introduction

The increasing demand for the detection of biological and chemical molecules, such as
tumor markers [1–3] and volatile organic compounds (VOCs) [4], has become imperative
in the past several years. Ultrahigh sensitivity is essential for the detection of these targets.
Currently, thin film sensors and nanosensors are widely adopted for this mission because
of their advantages in sensitivity [5–7]. Among these sensors, SiNWs-FET sensors have
received increasing attention as they have ultrahigh sensitivity, which is necessary for the
detection of these samples [8–11]. There are many factors, such as debye length [12], surface
binding sites [13] and molecular affinities [14], that affect the sensitivity of SiNWs-FET
sensors. Larger debye length, more surface binding sites and stronger molecular affinities
lead to better sensitivity.

In recent years, a succession of methods have been developed to fabricate various
SiNWs. Generally, the fabrication methods of SiNWs can be divided into three types:
CVD (based on the vapor-liquid-solid (VLS) mechanism) [15,16], EBL (following dry
etching) [17], and wet etching followed by thermal oxidation (WETO) [18–20]. In contrast
to the VLS and EBL methods, SiNWs-FET sensors fabricated by WETO method have
remarkable advantages such as the controllability of the whole process and the capability
of wholesale manufacture [21]. Additionally, the cross-sections of the SiNWs fabricated
by these three methods are circular, square and triangular, respectively, which seriously
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affects the performance of devices [22–27]. Here, we compared the sensitivity of the SiNWs-
FET sensor fabricated by our WETO method with the others by theoretical analysis and
software simulations. Typically, the sensitivity of sensors is defined as: sen = ∆I/I0, and we
compared these three types of SiNWs-FET sensors by analyzing the factors that affect ∆I or
I0. Notably, the surface-to-volume ratio, depletion ratio, surface defects and the quality of
the lattice are selected in this article to discuss the sensitivity of SiNWs-FET sensors. We
found the triangular cross-sectioned SiNWs-FET sensors fabricated by WETO method are
more sensitive than SiNWs-FET sensors fabricated by the other two methods when they
have the same feature size, as shown in Figure 1.
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Figure 1. The sensitivity of three types of SiNWs-FET sensors with circular, square and triangular
cross-sections.

2. Theoretical Analysis

We analyzed the sensitivity of SiNWs-FET sensors with three different cross-sectional
shapes (circle, square and triangle), along the same feature size W. In order to accurately
express the sensitivity of the SiNWs-FET sensors, the derivation process started from the
definition of the current and the expression of sensitivity is described as follows [10]:

sen =
∆I
I0

=
∆n

n0 + n1 + n2
+

∆Ssec

Ssec
+

∆Ssec·∆n
Ssec·∆(n0 + n1 + n2)

(1)

where q is the elementary charge, ∆I is the variation of current, I0 is the reference current,
∆Ssec is depleted area in a cross-section of silicon nanowire, Ssec is the cross-sectional area
of silicon nanowire, ∆n is the variation of carrier concentration, n0 is the initial carrier
concentration, n1 is the carrier concentration brought about by crystal defects and n2 is the
carrier concentration brought about by surface defects, respectively.

The sensing mechanism of SiNWs-FET sensors during target detection, the equivalent
circuit model for SiNWs-FET sensors and its diagram are depicted in Figure 2a. The
variation of carrier concentration in silicon nanowire is given by [28]

∆n =
QS·Ssur

q·V (2)

where Qs is the density of charge carried by the sensing target on the silicon nanowire
surface, Ssur is the surface area exposed to visual field of silicon nanowire, q is the elemen-
tary charge and V is the volume of the silicon nanowire. Therefore, we can obtain the
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relationship between the sensitivity and the surface-to-volume ratio, so the sensitivity can
be described as

sen ∝ QS·
Ssur

V
(3)

In one case, when the target concentration is extremely low, we can assume that the
magnitude of charge carried by target is far from saturation, namely QR, and the sensitivity
of SiNWs-FET sensors is given by

sen ∝
QR

SsecL
(4)

where L is the length of silicon nanowire. When these three types of silicon nanowires have
same length L, the cross-sectional area of the silicon nanowire is a critical factor. With the
same feature size W, the cross-sectional areas are listed in Table 1.
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Figure 2. (a) The schematic of the sensitive mechanism during the process of target detection and the
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Table 1. The cross-sectional areas of three kinds of SiNWs-FET sensors.

Cross-Sectional Areas Value

Stri
sec

√
3

4 W2

Ssqu
sec W2

Scir
sec

π
4 W2

As described in the Equation (4), if Stri
sec < Scir

sec < Ssqu
sec , the relationship of these three

SiNWs-FET sensors’ sensitivity is sentri > sencir > sensqu. As a result, the SiNWs-FET
sensor with the triangular cross-section has the best sensitivity under this condition.

In the other case, when the target concentration is high, the density of the surface
charge is saturated. We supposed that these three types of SiNWs-FET sensors had the same
density of surface charge Qs. Under the same length and feature size of silicon nanowire,
we calculated the surface-to-volume ratio of these three types of silicon nanowires, and the
results are listed in Table 2.
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Table 2. The surface-to-volume ratio of three types of SiNWs-FET sensors.

The Surface-to-Volume Ratio Value(
Ssur
V

)
tri

4
√

3
w(

Ssur
V

)
squ

4
w(

Ssur
V

)
cir

4
w

As described in the Equation (3), because
(

Ssur
V

)
squ
≤
(

Ssur
V

)
cir

<
(

Ssur
V

)
tri

, sentri >

sencir ≥ sensqu and we obtained the same conclusion as before.
As described in Equation (1), the sensitivity of SiNWs-FET sensors is directly affected

by the depletion ratio and the expression can be simplified as follows:

sen ∝
∆Ssec

Ssec
(5)

As shown in Figure 2b, we assume that the depletion depth is identical among these
three kinds of SiNWs-FET sensors and denoted as h. The depletion ratio can be analyzed
and the results are listed in Table 3.

Table 3. The depletion ratio of three kinds of SiNWs-FET sensors.

Depletion Ratio Value(
∆Ssec
Ssec

)
cir

1− (W−2h)2

W2(
∆Ssec
Ssec

)
squ

1− (W−2h)2

W2(
∆Ssec
Ssec

)
tri

1− (W−2
√

3h)
2

W2

Owing to the fact that the depletion ratio of SiNWs-FET sensors with triangular
cross-section is larger than the others, it has the best sensitivity among these three types
SiNWs-FET sensors.

Different from the surface-to-volume ratio and depletion ratio, which affects SiNWs-
FET sensors’ sensitivity through impact on ∆I, more surface defects and a poor quality
lattice lead to higher background noise, which also have a great influence on the SiNWs-FET
sensors’ sensitivity [29].

Silicon nanowires grown by CVD based on VLS mechanism are usually amorphous
in nature, which means that there exist numerous dangling bonds on the surfaces [30].
The dangling bonds will generate extra carrier concentration n1 (as shown in Equation (1))
and therefore lead to extra current I1 = n1qsv, which makes the dark current higher than
the others. As shown in Figure 3a, there are many chemical groups suspended on the
surface of the silicon nanowire grown by CVD based on VLS mechanism. Next, due to
the characteristics of EBL, SiNWs-FET sensors fabricated by EBL followed by dry etching,
which is shown in Figure 3b, are also less sensitive. This is because the dry etching method
could partially damage the surface of the silicon nanowire [31], which also increases the
dark current by I2 = n2qsv. Therefore, due to the larger density of the surface defects,
SiNWs-FET sensors fabricated by these two methods have higher background signals than
SiNWs-FET sensors fabricated by the WETO method. The probability of electron occupied
surface defects is given by [32–36].

fSD(ESD) =
1

1 + 1
g ·exp

(
ESD−EF

k0T

) (6)
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where ESD is the surface state energy, g is the degeneracy of ground state, EF is Fermi
level, k0 is the Boltzmann’s constant, T is the thermodynamic temperature, respectively.
Therefore, the per unit area number of the surface defects occupied by electrons is given by

n2 =
∫ E′SD

ESD

NSS(E)dE

1 + 1
g ·exp

(
E−EF

k0T

) (7)

where NSS is the per unit area number of surface states in unit-energy interval for the
energy level E, ESD and E′SD are the upper and lower limits of surface states energy level in
band gap, respectively.

The density of the surface states of the silicon nanowire fabricated by CVD based on
the VLS mechanism or EBL and dry etching is larger than the density of the silicon nanowire
fabricated by WETO [37], thus we can obtain the relationship between the density of the
surface states of the three types of silicon nanowires as follows: NSS(triangle) < NSS(square)
and NSS(triangle) < NSS(circle). Therefore, SiNWs-FET sensors with triangular cross-section
have fewer surface states and lower dark current.

In contrast, EBL and dry etching give rise to partly damaged surfaces of silicon
nanowire, thus the SiNWs-FET sensors have poor sensitivity. Additionally, due to bad
lattice quality, silicon nanowires grown by the CVD method also have worse sensitivity,
which is affected by the chemical groups on the sensor surface. In summary, SiNWs-FET
sensors with triangular cross-section fabricated by WETO brings fewer surface defects and
thus exhibits better sensitivity.
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Figure 3. Three types of SiNWs-FET sensors and diagrammatic sketch of surface states and lattice
quality with their cross-sections being (a) circle, (b) square, (c) triangle, respectively under the same
feature size W.

3. Simulation Verification

Next, we used Sentaurus TCAD to simulate these three types cross-sectional SiNWs-
FET sensors to verify our theoretical derivation. Charged target binding to a SiNWs-FET
sensor will change its own threshold voltage. In Equation (2), the charge density Qs can be
calculated by: ∆QS = Ceq·∆VTH . Therefore, the offset of the threshold voltage, obtained
from the result of the simulation, can be used to support our theoretical analysis. We
created three models of SiNWs-FET sensors with different cross-sections in Sentaurus
TCAD, and set the lattice quality and the density of the interface state in turn. The value of
the charge density was 1 × 1012, then 5 × 1012, and finally 1 × 1013, with the results of the
simulation being recorded. The simulation results of SiNWs sensors with circular, square
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and triangular cross-sections are shown in Figure 4a,c,e, and the results of corresponding
threshold voltage offset are shown in Figure 4b,d,f.
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It is easy to obtain the equivalent transformation function of SiNWs-FET sensors’
sensitivity, which is given by

sen ∝
∆n

n0 + n1 + n2
=

Ceq
q ·∆VT ·

Ssur f
V

n0 + n1 + n2
(8)

The variation of carriers’ concentration is directly proportional to the drift of threshold
voltage and surface-to-volume ratio. The surface-to-volume ratios of those three types of
SiNWs-FET sensors are completely consistent with the results calculated from the geometric
structure of SiNWs-FET sensor in Table 2. The offset of the threshold voltage is fully noted
in Table 4.
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Table 4. The offset of threshold voltage of three types of SiNWs-FET sensors.

The Offset of Threshold Voltage Value

∆VTH-tri 0.7 V
∆VTH-squ 0.97 V
∆VTH-cir 1.07 V

Thus, we can obtain the following conclusion that sentri > sencir > sensqu using data
in Tables 2 and 4. To sum up, SiNWs-FET sensors with triangular cross-sections are more
sensitive than the other two types of SiNWs-FET sensors when they have the same feature
size. Moreover, the result calculated from Debye volume [38] is also in agreement with our
analysis.

4. Conclusions

In this article, we proposed that the sensitivity of SiNWs-FET sensors is affected by
several important factors, such as surface-to-volume ratio, depletion ratio, surface defects
and quality of lattice. The sensitivity is given by:

sen =
∆I
I0

=

(
1 + ∆S

S0

)
·
(

QS· Ssur
V

)
n0 + n1 +

∫ E′SD
ESD

NSS(E)dE

1+ 1
g ·exp

(
E−EF

k0T

) +
∆S
S0

(9)

Both the surface-to-volume ratio and the depletion ratio affect ∆I. The larger the
surface-to-volume ratio and the larger the depletion ratio, the higher the sensitivity. Besides,
both surface defects and lattice quality also have an impact on I0; the fewer the surface
defects and the better quality of the lattice, the higher the sensitivity.

Our analysis indicates that many factors play important roles in the sensitivity of
SiNWs-FET sensors. Under the same feature size, SiNWs-FET sensors fabricated by WETO
with triangular cross-section are more sensitive than those sensors with circular or square
cross-sections fabricated by other methods. Both the geometrical effect and the man-
ufacturing process are extremely important factors for the performance of SiNWs-FET
sensors.
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