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Abstract: Major depressive disorder (MDD) is a global healthcare issue and one of the leading 

causes of disability. Machine learning combined with non-invasive electroencephalography (EEG) 

has recently been shown to have the potential to diagnose MDD. However, most of these studies 

analyzed small samples of participants recruited from a single source, raising serious concerns 

about the generalizability of these results in clinical practice. Thus, it has become critical to re-eval-

uate the efficacy of various common EEG features for MDD detection across large and diverse da-

tasets. To address this issue, we collected resting-state EEG data from 400 participants across four 

medical centers and tested classification performance of four common EEG features: band power 

(BP), coherence, Higuchi’s fractal dimension, and Katz’s fractal dimension. Then, a sequential back-

ward selection (SBS) method was used to determine the optimal subset. To overcome the large data 

variability due to an increased data size and multi-site EEG recordings, we introduced the confor-

mal kernel (CK) transformation to further improve the MDD as compared with the healthy control 

(HC) classification performance of support vector machine (SVM). The results show that (1) coher-

ence features account for 98% of the optimal feature subset; (2) the CK-SVM outperforms other clas-

sifiers such as K-nearest neighbors (K-NN), linear discriminant analysis (LDA), and SVM; (3) the 

combination of the optimal feature subset and CK-SVM achieves a high five-fold cross-validation 

accuracy of 91.07% on the training set (140 MDD and 140 HC) and 84.16% on the independent test 

set (60 MDD and 60 HC). The current results suggest that the coherence-based connectivity is a 

more reliable feature for achieving high and generalizable MDD detection performance in real-life 

clinical practice. 
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1. Introduction 

Major depressive disorder (MDD) is a prevalent mood disorder characterized by per-

sistent sadness, psychomotor retardation, and loss of interest in daily activities [1]. MDD 

is the leading cause of disability [2], with significant implications for the social functioning 

and work productivity of individuals [3,4]. Over 700,000 people kill themselves every year 

as a result of MDD, a disease that affects 320 million people worldwide [5]. In particular, 

the prevalence of MDD in the United States has increased substantially from 7% prior to 

the COVID-19 pandemic to 27% during the first year of the pandemic (April 2020–March 

2021) [6]. Although treatments for MDD are promising, accurate diagnosis may be diffi-

cult due to its heterogeneous etiologies and various psychopathological manifestations 

[7]. Currently, the diagnosis of MDD is still based on clinical interviews and self-reports. 

There is an urgent need to develop complementary diagnostic tools that differentiate 

MDD from healthy persons based on neurophysiological changes. 

1.1. Related Works 

Many studies have tried to apply machine learning (ML) methods to classify resting-

state (e.g., [8–23]) versus task-related (e.g., [21,24,25]) electroencephalography (EEG) sig-

nals between MDD and healthy control (HC) groups. A few studies have also proposed 

multi-model systems that fuse EEG signals and other physiological data (e.g., [26]). 

Various features of EEG signals have been investigated. For example, in a study by 

Bachmann et al. [9], a classification accuracy of 92% on single-electrode EEGs of 26 partic-

ipants was reported based on the use of a combination of spectral features and complexity 

features such as Higuchi’s fractal dimension (HFD) and detrended fluctuation analysis 

(DFA). Hosseinifard et al. [23] reported that EEG alpha and beta power features achieved 

70% and 73% accuracies, respectively, and that the use of complexity features could 

achieve greater that 80% accuracy. A study reported 99.6% accuracy [18] by using a com-

bination of statistical, spectral, function connectivity, and complexity features on a public 

dataset containing 19-channel EEGs from 64 participants. 

The reported MDD-HC classification accuracy based on EEG and ML varies greatly 

across studies (~60–99%). Such variations result from the differences in terms of chosen 

algorithms (features, classifiers, etc.), and also the differences in terms of apparatus set-

ting, EEG collection procedure, and participant demographics. Even though some of pre-

vious studies have reported high classification accuracy, the true generalization perfor-

mance of previous methods is still unknown, because the EEG datasets used in most of 

the previous studies were quite small (ours included [20,21]). 

1.2. Problem Description 

The sample sizes in these ML-based studies [9–24] were all less than 100 (24~90), ex-

cept for two studies by Cai et al. [12,15] in which the subject numbers were 267 and 213, 

respectively (however, they only measured a very low-density EEGs from three electrodes 

at FP1, FP2, and Fz). Previous studies, due to limited data size, have only performed cross 

validation procedures on limited EEG data to estimate the generalization performance of 

their proposed algorithms/models, without using an independent test set of sufficiently 

large size. As a result of this limitation, the cross validation in previous studies often suf-

fered from overfitting due to information and data leakage (more details are explained in 

Section 2). Furthermore, MDD is a highly heterogeneous disorder [27]. Due to the hetero-

geneity, it is difficult for a dataset of limited size to faithfully represent the real-life varia-
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tions in EEG signals. All these factors including the use of small EEG dataset, the overfit-

ting due to the data leakage in the cross validation, and the lack of an independent EEG 

test set, could lead to an overly optimistic or even biased estimate of performance. There-

fore, to develop an EEG-based MDD-HC classification model with high generalizability, 

increasing the size and diversity of EEG datasets by recruiting a large enough group of 

participants is critical, as suggested in a recent review by Čukić et al. [8]. 

Indeed, developing a classification model that is resistant to large data variability due 

to highly diversified data sources is extremely challenging but critical. Aside from indi-

vidual differences, data diversity can also result from differences in study designs, equip-

ment and laboratory settings (EEG amplifier, room condition, etc.), EEG acquisition set-

tings (reference electrode, sampling rate, etc.), and data collection procedures (prepara-

tion, instruction to participants, etc.) [28]. Any inconsistency in any factor across data col-

lection sites will eventually result in higher inter-site data variability. Although it is pos-

sible to control for these factors across recording sites by applying rigorously standard-

ized procedures (e.g., using the same equipment, experimental setting, and sequence of 

data collection), such control is not possible for a few other factors. For example, it is ex-

tremely difficult to maintain consistency in the recording environment (e.g., nature of 

lighting, room temperature, and ambient noise) consistent across hospitals. Another dif-

ficult factor to control is the technician’s skill, which is also a significant factor in signal 

variability. Assume one technician is very skilled in operating an EEG system (including 

applying electric gel to the electrodes) at one location, while another is qualified but not 

so skilled at another location. The time allotted for EEG cap preparation may differ be-

tween the two sites, and as a result, participants may potentially experience fatigue as a 

result of a longer and more uncomfortable preparation [28]. Even if the EEG recording is 

in a resting state, this will have an effect on the participants’ mental states. These inevita-

ble factors of EEG variability have been considered to be a challenge to real-world brain-

computer interface (BCI) [29,30] and EEG-based applications (e.g., seizure detection [31]). 

In this view, most of the previous EEG studies [9–25] have lacked a validation on datasets 

with high diversity (or large EEG variability) because their data were all collected from a 

single site. 

1.3. Proposed Work 

In summary, previous studies on EEG-based MDD detection using the ML approach 

suffer from the common limitation of small data size and diversity, which makes the ef-

fectiveness of the previously used EEG features or classification models in MDD detection 

still inconclusive (e.g., the frontal alpha asymmetry (FAA) [32]). To address this limitation, 

the present study launched a multi-site EEG data collection project. The large-scale EEG 

dataset used in this study contains the high-density (26 electrodes) resting-state EEG sig-

nals recorded from 400 age- and gender-matched participants (200 MDD and 200 HC from 

four different medical centers using the same recording protocols such as equipment, set-

tings, and data collection procedures). As a result, the collected dataset has a relatively 

large data size and high diversity as compared with prior studies which, to the best of our 

knowledge, did not meet the two following criteria: (1) more than 300 participants and (2) 

more than two EEG recording locations. 

A dataset with a large size and high diversity may result in a relatively large variation 

in the EEG data distribution. This could further make the MDD-HC classification problem 

even more challenging. To address this issue, selecting a set of discriminative EEG fea-

tures and designing a robust ML classifier with improved generalization ability are crucial 

to detecting MDD with high sensitivity. Because this is the first study to use ML on a large 

EEG dataset, systematically re-examining the classification performance of commonly 

used EEG features is critical for proposing an effective and generalizable solution. To this 

end, in this study, we test the classification performance by using band powers (BP), co-

herence, and two types of fractal dimensions (FDs), i.e., Higuchi’s FD (HFD) and Katz’ FD 

(KFD). We investigate the performance of all possible BP and FD features at all electrodes 
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and all frequency bands (we consider five different bands for BPs) for classifying MDD 

and HC groups. We also examine coherence features from all possible (a) regional inter-

hemispheric, (b) cross-regional inter-hemispheric, and (c) intra-hemispheric electrode 

pairs at various frequency bands. This thorough analysis results in a total of 1859 features. 

Then, we used a wrapper-based feature selection approach, i.e., the sequential backward 

selection (SBS) algorithm [33], to find the optimal feature subset among all of the 1859 

feature candidates for different classifiers, through which we can examine what combina-

tion of the commonly used EEG features would be the most sensitive to the detection of 

MDD. 

Classifier design is also critical for the MDD detection performance. Previous EEG-

based MDD detection studies have used a variety of classifiers, including the basic K-

nearest neighbors (K-NN), linear discriminant analysis (LDA), logistic regression (LR), 

and the more advanced support vector machine (SVM). These classifiers have been exten-

sively tested, and overall, the SVM consistently outperforms others [17,21–23]. However, 

when dealing with a large EEG dataset with a high degree signal variation, implying that 

the pattern distribution between the two classes of MDD and HC is likely to be highly 

non-separable, SVM’s performance might be comprised even if the optimal feature subset 

is used. To overcome this limitation, we use the conformal kernel (CK) technique [34] to 

improve the classification performance of the SVM. The success of CK-SVM has been 

shown in various EEG-based applications (e.g., [21,35]) that used relatively small EEG 

datasets. Because the CK transformation increases the spatial resolution around the SVM’s 

separation hyperplane in a kernel-induced feature space, we expect the CK-SVM can out-

perform the SVM on the larger-size and higher-diversity dataset used in this study. 

Finally, we tested the proposed methods on an independent test set comprised of 

EEG data from 120 participants. We further systematically compare the performance of 

MDD detection using several popular but inconclusive EEG markers, with the goal of 

providing a thorough evaluation and reference of optimal EEG features for developing a 

reliable and effective EEG-based MDD-HC classification. 

2. Cross Validation Used in Previous Works: More Detailed Review and Analysis 

Previous studies [9–25] had a very limited number of participants (see Figure 1 for 

detail). Therefore, it is difficult to partition the available EEG dataset of small sample size 

into a training dataset used for training classifiers and an independent test dataset of suf-

ficient size. Due to this limitation, previous studies have only estimated the efficacy of 

their method in MDD detection by performing a k-fold CV on the entire EEG dataset, 

where k = 10 [10–16,18,19,22,25] or k = number of EEG samples [9,17,23] (i.e., leave-one-

out (LOO)). 

 

Figure 1. Comparison of the number of subjects in previous EEG- and ML-based studies. 
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Directly performing a 10-fold CV on the group of participants (i.e., partitioning the 

entire group into 10 folds, with no EEGs of the same participants appearing in different 

folds at the same time) is nearly impossible due to participant size limitations. As a result, 

the k-fold CV is often performed on the EEG samples rather than participants. As an ex-

ample, Movahed et al. [18] used a public EEG dataset (34 MDD, 30 HC) [36] and, for each 

participant, two EEG episodes of 5 min (eyes open and eyes closed) were collected. Their 

analysis procedure consisted of three steps: (1) data augmentation, in which the two sig-

nals of each participant were segmented into 10 EEG samples with 1 min lengths, resulting 

in a total of 6400 EEG samples at most; (2) data cleaning, in which noisy samples are re-

moved; and (3) evaluation: by performing 10-fold CV on the remaining 510 samples (249 

MDD and 261 HC EEG samples). They did not specify how many samples were saved 

from each participant after the second step. Nevertheless, it is reasonable to conclude that 

different samples of the same participant(s) were likely included in both training and test 

sets at the same time in each iteration of the 10-fold CV. Personal information leakage, 

which can be considered to be a type of data leakage known in the ML community [37], 

often results in the overfitting problem. As a result, such intra-participant EEG models 

often lead to higher classification performance, as emphasized in a recent review by Roy 

et al. [38]. 

To evaluate the participant-independent classification performance, a few studies 

used the leave-one-participant-out CV (LOPO-CV) strategy [20,21,24]. In each iteration of 

the LOPO-CV procedure, the EEG data of one participant were used for testing, while the 

data of remaining participants were used as the training set. Although the LOPO-CV 

avoids participant information leakage, another type of data leakage could occur. Take 

our previous studies [20,21] as examples, where the test data were actually used in the 

grid search-based feature selection and hyperparameter optimization. As a result, the test 

data in each iteration were not truly independent, but rather validation data. All these 

problems point to the same issue, i.e., a lack of an independent test set that meets the 

following two criteria: (1) containing a set of EEGs from a sufficiently large number of 

participants and (2) all these participants have never participated in the model training 

and validation. 

3. Materials and Methods 

3.1. Participants 

A total of 200 individuals with MDD (142 females, 52.85 years old on average and 58 

males, 54.90 years old on average) and 200 age- and gender-matched healthy controls (142 

females, mean age of 49.87 years and 58 males, 54.59 years old on average) were included 

in the study. Individuals with MDD were recruited from four tertiary medical centers: 

National Taiwan University Hospital (NTUH), Taipei Veterans General Hospital (TVGH), 

Chang-Gung Memorial Hospital KeeLung (CGMHKL), and Chang-Gung Memorial Hos-

pital LinKou (CGMHLnK). Healthy controls were recruited from local communities sur-

rounding each medical center. The current study included 64 MDD and 49 HC from 

NTUH, 39 MDD and 38 HC from TVGH, 59 MDD and 54 HC from CGMHKL, and 38 

MDD and 59 HC from CGMHLnK. Figure 2 summarizes the gender distribution and 

mean age of participants from each medical center. All research protocols were reviewed 

and approved by the corresponding Research Ethic Committee from each medical center 

(IRB no: 201908038RSC for NTUH, 2019-09-004C for TVGH, and 201901342A3 for CGMH). 

All participants were informed of the study procedure and signed the consent forms be-

fore evaluations of medical history, family history, and neuropsychological tests. 

The inclusion criteria for individuals with MDD were: (1) Age of 20 years or older, 

(2) with a diagnosis of major depressive disorder by two board-certified psychiatrists us-

ing the DSM-5 [39], (3) without any other psychiatry diagnoses based on evaluation of the 

Mini International Neuropsychiatric Interview (MINI) [40], and (4) the ability to compre-

hend the contents of consent forms. The inclusion criteria for the HC group were: (1) Age 
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of 20 years or older, (2) no history of mental disorder as confirmed by a board-certified 

psychiatrist, and (3) capable of understanding the contents of consent forms. The general 

exclusion criteria for the current study were: (1) Confirmed pregnancy; (2) inability to un-

derstand the contents of consent form; (3) with a diagnosis of other types of mental disor-

der, including schizophrenia, psychotic disorder, bipolar disorder, obsessive and compul-

sive disorder, autism spectrum disorder, neurodevelopmental disorder, substance use 

disorder, neurocognitive disorder; (4) with a diagnosis of neurological disorder, including 

stroke, seizure, neurocognitive diseases, brain tumor; (5) a history of medication with an-

ticonvulsant (e.g., Clonazepam) within 7 days before experiment; (6) severe vision or hear-

ing impairment that leads to inability to perform cognitive tests; (7) a history of sustained 

loss of consciousness due to traumatic brain injury; (8) a history of other diseases that 

produce metabolic encephalopathy. 

 

Figure 2. Gender distribution and mean age of participants from each medical center. 

Each participant was interviewed by a psychiatrist for personal medical history, fam-

ily medical history, and diagnosis. In addition, all participants completed the following 

questionnaires: Patient Health Questionnaire (PHQ-9) [41], Becks Depression Inventory–

II (BDI-II) [42], and Hospital Anxiety and Depression Scale (HADS) [43]. Table 1 summa-

rizes the demographic data and questionnaire scores for all participants. As can be ob-

served, females were the gender majority on both MDD and HC groups. In many epide-

miological studies, women were twice as likely to have depression as men [44]. The female 

predominance in our sample was mainly a result of gender difference in the epidemiolog-

ical nature of MDD. Furthermore, since the gender distribution in the MDD and HC 

groups were similar, gender effect on electrophysiological biomarkers would not affect 

our findings. 

Table 1. Demographic data and results of questionnaires. 

Variable MDD, n = 200 HC, n = 200 p-Values Effect Size 

Gender 142 F, 58 M 142 F, 58 M 1.000 0 

Age 53.44 (±16.44) 51.24 (±17.85) 0.1969 0.1293 

BDI-II 25.79 (±14.30) 4.18 (±6.74) 5.60 × 10-59 1.9282 

PHQ-9 12.64 (±7.30) 2.09 (±3.73) 4.51 × 10-54 1.8150 

HADS-A 10.46 (±4.91) 3.53 (±3.37) 1.18 × 10-46 1.6425 

HADS-D 10.29 (±5.19) 2.50 (±2.85) 7.91 × 10-56 1.8556 

Note: BDI-II, Becks Depression Inventory–II; PHQ-9, Patient Health Questionnaire; HADS, Hospi-

tal Anxiety and Depression Scale. 
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3.2. Apparatus 

Experimental stimuli were presented on a 24” flat screen monitor. Participants were 

sitting with their eyes 70 cm away from the monitor. The EEG data were recorded with a 

32-channel Quick-cap (NeuroScan Inc., Charlotte, NC, USA) attached to four HNC ampli-

fiers (HippoScreen Neurotech Corp.)with gain 50, A/D resolution 24 bit, and sampling 

rate 500 Hz). Electrodes were made of Al/AgCl material, and the montage was based on 

the extended international 10–20 system (Figure 3). Electrode gel (Quick-Gel by Com-

pumedics Inc., Charlotte, NC, USA) was applied to the electrodes to keep the impedance 

below 10 K Ohm. Specifically for each electrode, we gently rubbed the surface of the scalp 

region while injecting gels so as to reduce the impedance level to be below the designated 

level of 10 k Ohm. EEG signals were on-line referenced to the A2 electrode (right mastoid). 

 

Figure 3. Electrode layout. Electrode positions follow the extended 10–20 international system. Ref-

erence is at A2. The entire scalp region is divided into four regions for analysis: frontal (brown), 

central (green), parietal (blue), and temporal (yellow). 

3.3. Data Collection and Preprocessing 

We recorded 90 s of eyes-open resting-state EEG signals from all participants. A timer 

was used to signal the start of the resting-state recording. Following the presentation of a 

fixation cross, participants were required to maintain a gentle fixation on the fixation cross 

for 90 s with their eyes open. During preprocessing, signals were re-referenced to vertex 

Cz and digitally filtered with a 2–50 Hz bandpass filter. Signals from O1, Oz, and O2 were 

excluded from analyses due to the constant signal instability caused by the cap fitness 

with Asian population (the back of heads of Asians are usually flatter and these electrodes 

were more often detached during recording). Then, an independent component analysis 

(ICA) conducted based on the Picard algorithm [45] was used to remove artifacts caused 

by eye movements and eye blinks [46], which was implemented with MNE-Python. Then, 

the 90 s resting-state EEG data from the remaining 26 electrodes were divided into 15 non-

overlapped 6 s EEG epochs. 

3.4. Feature Extraction 

3.4.1. Band Power (BP) 

The power spectrum density (PSD) of each of the 15 6 s EEG epochs from the same 

electrode was computed using a Fast Fourier Transform (FFT), and the powers of delta 

(2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz) fre-

quency bands were calculated separately. Then, the 15 band powers (BPs) of the same 
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electrode’s 15 EEG epochs were averaged for each band. Given the very large values of 

the calculated BP values, we took the logarithm to the averaged BP value (a log BP). We 

obtained a total of 130 log BP features from each participant’s EEG because there were five 

frequency bands and 26 electrodes. The BPs in the following refer to the log BPs. It should 

be noted that the delta band used in this study is narrower than the commonly used 0.5–

4 Hz. As a result, the delta band in this study refers to the fast delta [47]. 

3.4.2. Coherence 

EEG coherence was also calculated by the FFT method. For each pair of electrodes 

and for each band �, the squared band coherence value between two EEG epochs i and j 

was calculated spectrally as:  

�����
� (�) =

����(�)�
�

���(�)���(�)
 (1) 

where �����(�) is the coherence on band �, ���(�) is the averaged cross-power density, 

and ���(�) and ���(�) are respective averaged auto-power spectral densities across the 

frequency band �. The coherence value lies in the interval [0, 1]. A coherence value that 

is close to 1 corresponds to a strong linear association between the EEG signals. Then, we 

computed the averaged coherence values across 15 epochs (referred to as coherence here-

after). We extracted a total of 1625 coherence features from each participant’s EEG (26 × 

25/2 electrode pairs × 5 bands). 

3.4.3. Higuchi’s Fractal Dimension (HFD) 

Fractal dimensions (FD) have been used to measure complexity of a time series. The 

FD of a time series can be estimated by time domain or phase space domain approaches 

[48]. The former estimates the FD directly in the waveform of a signal, such as the Higuchi 

and Katz’s methods used in the current study. The latter estimates the FD of an attractor 

in the state-space domain. Compared to the phase space domain approach, the time-do-

main approach has the advantage of fast computation. 

In this study, each EEG epoch is a 6-second signal containing 3000 sample points 

(sampling rate = 500 Hz). For such a short-time segment, HFD has been shown to be a 

suitable FD estimator [49,50]. We first reconstruct k new signals from a time series of Ns 

samples (X = [X(1), X(2), …, X(Ns)] as:  

��
� = ��(�), �(� + �), �(� + 2�), … , � �� + ��� �

�� − �

�
� ��� , � = 1,2, … , � (2) 

where m is the initial time point, k is the time interval, and int() denotes integer function. 

Here, we reset the definition of the symbol k from the number of folds in a CV procedure 

to the number of reconstructed signals, in order to be consistent with the symbol used in 

previous HFD studies. For a starting time point m, the length ��(�) of the corresponding 

curve (i.e., reconstructed signal) ��
�  is given by: 

��(�) =
1

�

⎣
⎢
⎢
⎡

�� − 1

��� �
�� − �

�
� �

⎝

⎛ � |�(� + ��) − �(� + (� − 1)�)|

����
����

�
�

���
⎠

⎞

⎦
⎥
⎥
⎤

 (3) 

which represents the normalized sum of absolute values of differences between two con-

secutive points separated by a distance of k. Foreach time interval k, the average curve 

length is then calculated by:  

�(�) =
1

�
� ��(�)

�

���

 (4) 

The HFD value of the time series is the slope of log(L(k)) against log(1/k) within the 

range of k = 1, 2, … , kmax, which can be calculated using a least-squares linear fitting.  
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The HFD value lies within the range between 1 and 2. The HFD value is equal to 1 

for a deterministic signal, and a signal with a higher HFD value corresponds to a higher 

irregularity. The HFD calculation involves one free parameter, the maximum value of k, 

kmax. It has been suggested in a motor imagery study [51] that the setting of kmax = 100 

is appropriate for the detection of change in brain dynamics. Here, we tried three different 

settings (kmax = 50, 100, and 150) to seek for a better solution of the HFD for MDD-HC 

classification. In the present study, for each electrode, we calculated the HFD value of each 

EEG epoch, and then computed the averaged HFD values across 15 epochs. Finally, a total 

of 78 HFD features were extracted from each participant (26 electrodes × 3 parameter val-

ues).  

3.4.4. Katz’s Fractal Dimension (KFD)  

Katz’s method [52] estimates the FD of a time series directly from its waveform by 

��� �
��

�
�

��� �
��

��
� + ��� �

��

�
�

, (5) 

where �� and �� are the total length and the planar extent of the waveform, respec-

tively, and � is the average of the distances between two successive sample points of the 

time series. The value of KFD also lies within the range between 1 and 2. The complexity 

of a time series increases with the KFD value. In this study, the KFDs of the 15 EEG epochs 

from the same electrode were calculated, and then averaged. Therefore, we obtained a 

total of 26 KFD features from each participant. 

In total, we extracted a total of 1859 features (130 BPs + 1625 coherences + 78 HFDs + 

26 KFDs) from each participant’s 90 s long, 26-channel EEG signals. In addition, since we 

used a feature averaging strategy across epochs in the feature extraction process, there is 

only one value for each feature eventually. As a result, for example, there is only one 26-

dimensional feature vector (also known as a data or a data point in the following) is ex-

tracted from each participant if all of the alpha BP features from the 26 electrodes are used 

for classification. 

3.5. Classification 

Four different classifiers were compared: K-NN, LDA, SVM, and CK-SVM. Here, we 

briefly introduce the LDA and SVM, and then show how the conformal kernel transfor-

mation improves the conventional SVM’s performance, i.e., CK-SVM. 

3.5.1. K-NN 

K-NN is an instance-based learning method. A test data point is compared to K-near-

est data points in the training set. Then, the class label of the test data point is assigned 

according to majority voting among the classes of the K-nearest training data points. The 

Euclidean metric is used to calculate the distance between data points in this study. 

3.5.2. LDA 

Suppose that � features are used for classification. The LDA classifier finds a hyper-

plane ����
� � + ���� = 0 to separate the two classes of MDD and HC in the original space 

of patterns �� [21], where:  

���� = (���� − ���)�Σ�� (6) 

is the weight vector. 

���� =
1

2
(���� − ���)�Σ��(���� + ���) − �� (

�������

�������

) (7) 
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is the bias of the separating hyperplane; ���� and ���  are the mean vectors of the train-

ing data of MDD and HC classes, respectively; Σ is the covariance matrix of the set con-

taining both classes’ training data; ���� and ��� are penalties assigned to the MDD and 

HC classes, respectively; and ��� and ���� are the a priori probabilities of the HC and 

the MDD classes, respectively. An unseen data � ∈ �� is classified as MDD if ����(�) =

����
� � + ���� > 0; otherwise, it is classified as HC.  

3.5.3. SVM 

An SVM maps the training data �� ∈ ��, � = 1, … , �, into a higher dimensional fea-

ture space � via a nonlinear mapping �: �� → �, and then finds an optimal separating 

hyperplane � = ���(�) + � = 0 that maximizes the margin of separation and minimizes 

the training error. The decision function of SVM is given by: 

����(�) = � ��������,, ��

�� ∈��

+ � (8) 

where 0 ≤ �� ≤ � are Lagrange multipliers; �� ∈ [−1, +1] are class labels of the training 

data; � is the penalty weight that needs to be determined experimentally; SV stands for 

the support vectors, i.e., the training data whose ��′� satisfying the condition 0 < �� ≤ �; 

the bias � is computed using the Kuhn–Tucker conditions of SVM; and �(, ) is the kernel 

function that computes the inner product of two mapped data points. Here, we adopted 

the Gaussian kernel defined by ����,, �� � = ��� �−���� − �� �
�

�, where � is the kernel 

parameter. The class label of an unseen data � is predicted as MDD if ����(�) > 0; oth-

erwise � is classified as the HC group. 

3.5.4. CK-SVM 

A Gaussian kernel-induced feature space � is of infinite dimension, and the Gauss-

ian kernel embeds the original space �� as a Riemannian manifold distributed on the unit 

sphere centered at the origin of the space � (please refer to the author’s study [53] for a 

detailed explanation). Thus, the relationship between a small shift of the Riemannian dis-

tance �� and a small displacement in the original space �� can be described by the Rie-

mannian metric ���(�) as follows: 

��� = � ���(�)

�,�

������ = �
��(�, ��)

������
� �

�����,�

������ (9) 

where �� and �� denote the ith and jth elements of the vector �, respectively. This shows 

that a local volume’s size in �� can be enlarged or shrink in � by conformally transfrom-

ing the mapping as ��(�) = �(�)�(�) and choosing a proper conformal function as [34]: 

�(�) = � ��� �
−‖�(�) − �(��)‖�

1
��

∑ ������ − �(��)�
�

�

�

��∈�

 (10) 

where the term ∑ ������ − �(��)�
�

���  / ��  is the average squared distance from the 

mapped data point �(��) to its �� nearest neighbors �(��). Notice that the expression of 

Equation (10) can be further simplified by kernel tricks, and ����,, ��,� = 1, ∀� in the pre-

sent study, because of the use of Gaussian kernel. The conformal function decreases ex-

ponentially with the distance from �(�) to the image of the set T. By this setting, the spa-

tial resolution is enlarged around the images of �� and contracted elsewhere in the fea-

ture space of F. The inner product of two conformally transformed data points ��(�) and 

����′� further leads to the form of a conformal transform of a kernel: 

��(�, ��) = �(�)�(��)�(�, ��) (11) 

where �� is the so-called conformal kernel (CK). 

The design of the function �(�) is cricual to the performance of the CK method. In 

the original work by Wu and Amari [34], they proposed that the set T should include the 
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support vectors, based on the assumption that most support vectors within the margin of 

separation. By doing so, increasing the spatial resolution around the mapped support vec-

tors is equivalent to enlarging the spatial resolution of the margin of separation in the 

feature space �. This leads to a better class separability, further resulting in increased 

generalization. However, in a highly non-separable case, many support vectors would fall 

outside the margin rather than within it. To remedy this problem, Wu et al. [21] proposed 

that the set T should only include the support vectors within the margin (SVWM): 

SVWM = {��| − 1 ≤ ���(��) + � ≤ 1} (12) 

and that the number of nearest neighbors in the set T can be set as �� = 3.  

In the current study, we use this strategy to increase the spatial resolution around the 

images of the SVWM to further increase the spatial resolution in the vicinity of the SVM’s 

separating hyperplane in the feature space. However, we set �� = 5, for the reason that it 

is expected that the SVWM would be much more in the current study, because of the use 

of a much larger and more diverse EEG dataset. In summary, the CK-SVM has two train-

ing steps, 

Step 1 Train the SVM with a training set and a chosen kernel �(, ), and determine 

the optimal hyperparameter. 

Step 2 Use the conformal kernel ��(, ) calculated by Equation (11) to retrain the SVM 

with the same training set and the same optimal hyperparameter of the SVM. 

It should be noted that using the same training set in Step 2 means that the features 

are also the same as those used in the training set used for the SVM in Step 1. Finally, the 

retrained SVM is called CK-SVM. 

3.6. Hyperparameter Optimization Procedure 

For the K-NN classifier, we set � = 3. In LDA, we assigned the same penalties to 

both MDD and HC classes by setting ����/��� = 1. The SVM involves two free parame-

ters, i.e., the penalty weight C and the kernel parameter �. The two parameters were op-

timized using a 5-fold CV procedure combined with a grid search. Initially, we searched 

for the suboptimal value of � within a wide range with a rough grid, and then searched 

the optimal solution with smaller parameter grids in the set {(�, �)|� = 1000, 10000;  � =

0.0001: 0.0001: 0.01} containing a total of 200 girds. Given a training set S, the entire hy-

perparameter optimization consists of two steps: (1) For every grid, the 5-fold CV is per-

formed once on S and (2) the optimal grid is the one giving the highest 5-fold CV classifi-

cation accuracy. 

3.7. Determine the Optimal Feature Subset Using Sequential Backward Selection 

The total number of features in the current study is quite large. The best combination 

of features for classification must be determined. In this case, wrapper methods are pref-

erable to filter methods (e.g., ranking each feature by Fisher’s criterion [54]) for feature 

selection. The wrapper approach is classifier specific, which determines the optimal fea-

ture combination directly by using the generalization performance (e.g., cross-validation 

accuracy) as the evaluation criterion. As a result, the wrapper approach often outperforms 

the filter approach in terms of feature selection [55]. Therefore, we adopted a popular 

wrapper method, i.e., the sequential backward selection (SBS) [33], to select the optimal 

feature set from the 1859 candidates. 

SBS is a heuristic search method. Let N represent the number of feature candidates. 

Initially, a 5-fold CV is performed on the dataset with all the N features. Following that, 

each feature is removed, one at a time. The 5-fold CV is applied to all N-1 features subsets. 

Then, the worst feature is discarded. Here, the worst feature means that without it, the 

subset with the remaining N-1 features gives the highest cross-validation accuracy among 

all the N-1 subsets. In the next round, each of the N-1 features is deleted one at a time, and 

the worst feature is discarded, using the same logic. A subset with N-2 features is formed. 
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This procedure is repeated until none of the N features is left. Finally, the optimal feature 

subset is the one that produces the highest 5-fold CV accuracy. It should be noted that if 

the chosen classifier is SVM, the SBS-based feature selection must be performed together 

with the classifier’s hyperparameter optimization procedure. 

4. Results 

To provide a reliable result with high generalizability, the collected dataset (Table 1) 

was divided into a training set and a test set. The training set included the EEG data of 

280 participants (140 MDD and 140 HC), while the test set included the EEG data of the 

remaining 120 participants (60 MDD and 60 HC). The training set was used for feature 

selection as well as classifier training and validation. The test set was used to see how well 

the trained and optimized methods generalized to another independent group of 120 par-

ticipants. Tables 2 and 3 summarize the demographic data of the training and the test sets, 

respectively.  

Table 2. Demographic data and scores of questionnaires for participants in the training set. 

Variable MDD (n = 140) HC (n = 140) p-Values Effect Size 

Gender 100 F, 40 M 97 F, 43 M 0.7935 0.0474 

Age 53.06 (±16.31) 50.83 (±17.64) 0.2734 0.1312 

BDI-II 25.82 (±14.23) 3.69 (±5.98) 1.43 × 10-44 2.0201 

PHQ-9 12.85 (±7.31) 2.00 (±3.52) 1.77 × 10-40 1.8855 

HADS-A 10.52 (±4.97) 3.19 (±3.05) 4.85 × 10-37 1.7720 

HADS-D 10.29 (±5.24) 2.32 (±2.71) 4.63 × 10-41 1.9046 

Table 3. Demographic data and scores of questionnaires for participants in the test set. 

Variable MDD (n = 60) HC (n = 60) p-Values Effect Size 

Gender 42 F, 18 M 45 F, 15 M 0.6826 0.1091 

Age 54.32 (±16.70) 52.18 (±17.40) 0.4983 0.1240 

BDI-II 25.70 (±14.46) 5.30 (±8.41) 4.22 × 10-16 1.7237 

PHQ-9 12.13 (±7.25) 2.30 (±4.18) 4.05 × 10-15 1.6475 

HADS-A 10.32 (±4.76) 4.32 (±3.91) 1.42 × 10-11 1.3662 

HADS-D 10.27 (±5.08) 2.90 (±3.12) 3.16 × 10-16 1.7334 

4.1. Electrode- and Region-Specific Comparison of 5-Fold CV Classification Accuracy Between 

Features Using LDA Classifier 

Here, we compare the 5-fold CV-based MDD-HC classification accuracy (referred to 

simply as accuracy in this subsection) between commonly used features in terms of dif-

ferent scalp regions (region level) and different electrodes (electrode level). Prior to using 

a nonlinear classifier such as SVM, first, we use an LDA classifier to examine whether the 

features in different scalp regions can be well separated by the linear decision boundary 

learned from LDA to examine the linear class separability of the features in different elec-

trodes and scalp regions. 

Here, we use the standard accuracy as the performance metric: 

�������� =  (�� + ��)/(�� + �� + �� + ��) 

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false 

negative, respectively. Because both the training and test sets have equal numbers of MDD 

and HC data, the classification accuracy would not result in biased classifier performance. 

Moreover, because the dataset is balanced, the accuracy identical to the average of sensi-

tivity (true positive rate) and specificity (true negative rate), which are two measures in 

clinical evaluation of medical devices. 
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Figure 4 shows the topoplots that depict the electrode-specific results. Overall, for all 

bands, the classification accuracy based on each electrode’s BP feature was below 60%. 

The HFD and KFD features yielded the same results. The best accuracy for a single elec-

trode was 59.29% (beta BP at F7). For coherence, a few electrode pairs provided accuracies 

slightly higher than 60%. The best accuracy of 61.71% was obtained from the alpha-band 

coherence feature of the F8-FT7 pair, which is only slightly higher than the chance level of 

50%. Table 4 shows the scalp-region-specific results. Take the beta BP of the frontal region 

as an example, the seven beta-band BP features from seven frontal electrodes (Figure 3) 

were all fed into the LDA classifier without feature selection and the accuracy was 56.07%. 

In the same frontal region, the accuracy increased slightly (61.07%) when the best two 

beta-band BP features (FP1 and FP2) determined by the SFS algorithm. The results under 

the “ALL” category were based on features extracted from the 26 electrodes or 26 × 25/2 

electrode pairs in the frontal, central, parietal, and temporal regions.  

Table 4. Comparison of 5-fold cross validation accuracies among different features, frequency bands, and scalp regions 

using LDA (in %). In each grid of this table, the numbers inside and outside the brackets denote the accuracies obtained 

from the features with and without the SBS-based feature selection. 

EEG Features Frontal Central Temporal Parietal ALL 

BP 

δ 
49.53 ± 6.80 

(55.82 ± 3.19) 

56.35 ± 4.24 

(60.77 ± 4.71) 

53.86 ± 3.50 

(61.19 ± 5.49) 

51.80 ± 3.81 

(58.09 ± 5.30) 

48.80 ± 6.76 

(63.07 ± 3.11) 

θ 
49.63 ± 11.93 

(58.91 ± 4.74) 

51.24 ± 6.88 

(55.26 ± 2.08) 

52.62 ± 7.25 

(57.25 ± 5.37) 

45.83 ± 4.57 

(55.44 ± 4.97) 

52.58 ± 8.61 

(59.82 ± 9.68) 

α 
47.06 ± 7.21 

(56.28 ± 3.85) 

51.67 ± 7.20 

(54.01 ± 1.82) 

44.49 ± 7.36 

(49.16 ± 2.90) 

46.16 ± 6.84 

(54.93 ± 3.19) 

42.09 ± 9.95 

(57.65 ± 4.32) 

β 
52.53 ± 5.36 

(58.61 ± 5.71) 

55.00 ± 7.35 

(55.42 ± 3.64) 

53.87 ± 6.51 

(56.29 ± 3.11) 

50.76 ± 7.64 

(53.96 ± 2.62) 

51.74 ± 9.00 

(64.21 ± 4.43) 

γ 
48.28 ± 7.21 

(54.63 ± 4.43) 

55.51 ± 2.19 

(56.88 ± 4.13) 

46.62 ± 8.46 

(51.61 ± 3.64) 

43.94 ± 6.00 

(53.13 ± 5.46) 

44.15 ± 11.66 

(60.29 ± 3.81) 

COH 

δ 
53.44 ± 8.04 

(61.94 ± 2.53) 

54.38 ± 5.86 

(59.88 ± 9.68) 

46.70 ± 5.95 

(59.08 ± 4.32) 

52.85 ± 3.23 

(62.83 ± 3.57) 

52.49 ± 4.85 

(81.27 ± 3.64) 

θ 
56.30 ± 7.58 

(64.24 ± 6.83) 

58.64 ± 7.65 

(61.49 ± 5.30) 

51.86 ± 5.64 

(61.53 ± 5.60) 

52.47 ± 10.46 

(63.58 ± 4.43) 

49.16 ± 9.78 

(75.36 ± 3.46) 

α 
52.67 ± 8.48 

(66.11 ± 6.43) 

56.08 ± 4.45 

(62.44 ± 3.11) 

56.36 ± 8.28 

(65.28 ± 2.62) 

52.34 ± 13.05 

(63.25 ± 6.64) 

51.32 ± 6.17 

(79.06 ± 6.25) 

β 
55.43 ± 6.91 

(66.28 ± 4.60) 

58.68 ± 2.92 

(62.97 ± 5.30) 

55.78 ± 7.18 

(64.49 ± 1.96) 

53.15 ± 6.28 

(64.17 ± 6.53) 

53.37 ± 7.41 

(85.65 ± 10.68) 

γ 
50.05 ± 6.86 

(62.17 ± 6.74) 

58.60 ± 8.13 

(63.82 ± 4.29) 

46.13 ± 5.57 

(63.26 ± 8.07) 

55.66 ± 5.33 

(59.42 ± 4.43) 

49.70 ± 5.41 

(78.11 ± 4.71) 

HFD 

kmax = 50 
51.28 ± 6.06 

(59.01 ± 8.10) 

57.38 ± 3.30 

(59.47 ± 4.07) 

52.23 ± 7.21 

(60.09 ± 5.82) 

48.52 ± 6.25 

(55.50 ± 4.97) 

50.25 ± 6.29 

(62.08 ± 5.91) 

kmax = 100 
52.93 ± 6.93 

(59.46 ± 6.02) 

59.42 ± 3.90 

(60.10 ± 2.42) 

55.31 ± 5.98 

(60.17 ± 4.92) 

51.47 ± 3.54 

(57.35 ± 4.92) 

54.33 ± 4.38 

(63.81 ± 6.39) 

kmax = 150 
52.93 ± 6.93 

(59.24 ± 4.60) 

58.93 ± 3.86 

(60.66 ± 3.75) 

54.14 ± 8.45 

(60.21 ± 3.64) 

50.56 ± 5.60 

(58.04 ± 5.71) 

54.04 ± 4.73 

(64.96 ± 6.04) 

KFD 
44.60 ± 8.37 

(58.36 ± 4.60) 

41.05 ± 10.18 

(63.01 ± 2.90) 

35.65 ± 9.99 

(58.23 ± 5.58) 

50.75 ± 10.15 

(54.41 ± 6.87) 

46.38 ± 8.46 

(61.89 ± 4.87) 
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Figure 4. Topoplots of 5-fold CV classification accuracies in BP, coherence (COH), HFD, and KFD features. The accuracy 

distribution shown around the occipital area should be ignored, because the EEGs from O1, O2, and Oz were not analyzed 

in the present study. 

Table 4 shows that in the condition of “without feature selection”, all the combina-

tions of features and regions do not show any discriminative ability (<60%). For most of 

the combinations, the accuracy improves after feature selection. However, the improve-

ment is limited (slightly greater than 60%) for all intra-regional and the ALL-regional fea-

tures, with the exception of the ALL-scalp coherence. The results show that after feature 

selection, the accuracy of using the coherence features was greater than 80% for all bands 

except for the beta coherence features. On the one hand, a set of optimal theta-band co-

herence features extracted from the entire scalp’s electrode pairs, in particular, achieved 

the highest accuracy of 83.21%. BP and FD (including KFD and HFD) features, on the other 

hand, did not perform well even when using their corresponding optimal feature subsets 

for each scalp region. 

4.2. Feature Fusion and Feature Selection Results 

Next, we ran the SBS feature selection on all 1859 feature candidates composed of all 

BP, coherence, HFD, and KFD features, to examine if the feature fusion and selection strat-

egy could achieve high 5-fold CV accuracy on the training set and satisfactory accuracy 

on the test set. This procedure was performed separately for the three classifiers, i.e., K-

NN, LDA, and SVM, because this wrapper approach of SBS is classifier specific. Figure 5 

shows the results. For each classifier, a 5-fold CV classification accuracy was obtained for 

a given number of features. As a result, the range of the number of features, ��, was sup-

posed to be between 1 and 1859. However, it would be unnecessary to show the change 

in the accuracy with respect to all possible numbers of features from 1859 to 1, because, 
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for the three classifiers, their corresponding numbers of best features were all less than 70. 

As a result, in Figure 5, we only show the accuracy curves within the range of �� ∈ [1, 99], 

so that the subtle variation of accuracy within this range can be seen more clearly. Note 

that the number of features �� is in fact identical to the dimension � of an input data 

described in Section 3.5.2 (LDA) and Section 3.5.3 (SVM). 

 

Figure 5. Plots of classification accuracy (vertical) versus the number of features determined by the SBS-based feature 

selection procedure (horizontal). The solid curves represent the MDD-HC classification accuracy obtained by performing 

the 5-fold cross validation on the training set using different classifiers. The dotted curves represent the classification 

accuracy on the test set. 

There are four observations shown in Figure 5. (1) In terms of 5-fold CV classification 

accuracy performed on the training set, the best accuracy of the K-NN, LDA, and SVM 

classifiers are 66.43%, 88.21%, and 87.50%, respectively. Furthermore, the best numbers of 

features for the three classifiers are 33, 63, and 62, respectively. LDA achieved the highest 

CV classification accuracy. (2) However, when applying the trained models (the classifiers 

trained with the corresponding optimal feature subsets) to the test set of 120 independent 

participants (each misclassified participant results in a 0.83% = 100/120 accuracy drop), 

on the one hand, the LDA classifier’s performance dropped significantly from 88.21% to 

69.71%, indicating poor generalization. SVM, on the other hand, outperformed the others 

and can maintain an MDD-HC classification accuracy close to 80% (77.5%) on the test set. 

K-NN performed the worst of the three classifiers, with a testing accuracy of 48.33%. (3) 

The feature subset achieving the highest 5-fold SV classification accuracy does not neces-

sarily guarantee the best performance when confronted with unseen data. For example, 

as �� = 51, although SVM’s 5-fold CV training accuracy of 86.07% was not the best, it 

achieved the highest classification accuracy of 80.83% on the unseen test set (i.e., 97 out of 

the 120 participants in the test set were correctly classified). (4) According to the 5-fold CV 

accuracy on the training set, the SVM’s optimal feature subset determined by the SBS 

search consists of 62 features, which are all coherence features except one beta-band BP 

feature of the Pz electrode. Figure 6 depicts the 61 optimal coherence features in various 

bands, suggesting that the functional connectivity in all bands is critical in classifying 

MDD and HC groups when the SVM is used as a classifier. Furthermore, coherence fea-

tures make up the majorities of the 33 and 63 optimal features for K-NN and LDA classi-

fiers (see Figures A1, A2, and A3 for a detailed feature performance ranking of the optimal 

features for the three classifiers in Appendix A). Table 5 shows the numbers and the per-

centages of BP, COH, HFD, and KFD in the optimal feature subset for each classifier. It 
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can be concluded, here, that the coherence features contribute the most to the highest 5-

fold CV performances for all the three classifiers. 

 

Figure 6. Plots of the 61 optimal coherence features of SVM determined by the SBS-based feature selection procedure. 

Electrodes at the left and right hemispheres are marked in red and blue, respectively. It is noted that the line connected 

between an electrode pair does not represent that the coherence between the two electrodes is higher than a threshold, but 

shows that the coherence feature of the electrode pair is one of the 61 optimal coherence features. 

Table 5. The numbers and the percentages of BP, COH, HFD, and KFD in the optimal feature sub-

set for each classifier. 

 K-NN LDA SVM 

BP 3.03% (1) 4.76% (3) 1.61% (1) 

COH 96.97% (32) 95.24% (60) 98.39% (61) 

HFD 0 (0) 0 (0) 0 (0) 

KFD 0 (0) 0 (0) 0 (0) 

In addition, Figure 5 shows that there is a performance drop on the test set. The 5-

fold CV was used in conjunction with feature selection (for all three classifiers) and the 

hyperparameter optimization of SVM classifier. Therefore, the data leakage described in 

Section 2 did occur, leading to overfitting. It is, however, unavoidable. Fortunately, the 

highest accuracy of SVM classifier on the test set achieve 80.83%. 

4.3. Comparison of Classification Accuracy between the CK-SVM and Other Classifiers 

This section compares the classification performance of CK-SVM with that of K-NN, 

LDA, and SVM in terms of both the 5-fold CV and testing classification accuracies. For 

comparison, the results of two SVM in the cases of �� = 51 and �� = 62 shown in Figure 

5 were used, because the former achieved the best classification accuracy on the test set 

and the latter achieved the best 5-fold CV accuracy on the training set. The optimal SVM 

hyperparameters (�, �)  for the two cases are (10000, 0.0004)  and (10000, 0.0003) , re-

spectively. It is worth noting that CK-SVM does not need to find its optimal hyperparam-

eter with a grid search again. As long as the optimal hyperparameters of SVM are found, 

we can, then, retrain SVM with a conformal kernel using the same parameters and the 

same features. As a result, the same hyperparameters were used to train the CK-SVMs in 

the cases of �� = 51 and �� = 62. 

Table 6 summarizes the classification accuracies of the 5-fold CV and testing proce-

dures for various classifiers. First, the CK-SVM performed the best among all the classifi-

ers, while the K-NN classifier performed the worst. The highest CV classification accuracy 

of 91.07% was achieved by the CK-SVM when its 51 optimal features were used. Using 

this optimal subset, it also achieved the best MDD-HC classification accuracy of 84.16% 

on the test set. In other words, 101 out of the 120 participants in the test set were correctly 

classified by the CK-SVM, with the sensitivity 88.33% (53 out of the 60 testing MDD par-

ticipants were successfully detected) and specificity of 80% (48 out of the 60 HC partici-

pants were correctly classified). Second, with both training and testing sets, the CK-SVM 
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outperformed conventional SVM in the MDD-HC classification. For example, in the case 

of 5-fold CV performed on the training set, the CK-SVM outperformed the SVM in both 

conditions of �� = 51 and �� = 62 by 5% (91.07–86.07%) and 1.78% (89.28–87.50%), re-

spectively. 

Table 6. Comparison of training and testing classification accuracy among different classifiers (in 

%). 

Classifier (number 

of Features) 

Training Set Test Set 

5-Fold CV Accuracy (Accuracy Sensitivity Specificity) 

K-NN (�� = 33) 66.43 ± 7.79 48.33 48.33 48.33 

LDA (�� = 63) 88.21 ± 5.60 69.17 75.00 63.33 

SVM (�� = 51) 86.07 ± 4.71 80.83 86.67 75.00 

SVM (�� = 62) 87.50 ± 4.92 77.50 85.00 70.00 

CK-SVM (�� = 51) 91.07 ± 3.43 84.16 88.33 80.00 

CK-SVM (�� = 62) 89.28 ± 3.29 80.83 88.33 73.33 

4.4. Comparison with Previous Literature: Statistical Analysis on Frontal Alpha Asymmetry 

(FAA) and HFD Complexity 

Finally, we compared our results to previous research using two commonly used 

features: the frontal alpha asymmetry (FAA) and HFD complexity. Specifically, we used 

a Student’s t-test to statistically test for group differences in FAA and HFD complexity of 

EEG from all electrodes (mean of 26 electrodes’ HFD) on the 400 participants. Figure 7 

shows that the average FAA in the MDD group (0.0124 ± 0.1123) was higher than that in 

the HC group (0.0083 ± 0.064), but the difference was not statistically significant (p = 0.66). 

There was also no significant difference in HFD-based EEG complexity between groups 

(MDD, 1.7688 ± 0.0522 and HC: 1.7596, p = 0.07). 

 

Figure 7. Means and 95% error bars (standard error of the mean) for MDD and HC participants. 

Left: frontal alpha asymmetry (FAA) calculated by the ratio (F4 − F3)/(F4 + F3) of alpha power. Right: 

EEG complexity represented by the HFD with kmax = 50. There were no significant differences in 

FAA (p = 0.66) and HFD-based complexity (p = 0.07) between the MDD and HC groups. 

5. Discussion 

In this section, we compare our results with previous studies in terms of the four EEG 

markers: FAA, HFD-based complexity, BP, and coherence features. It should be noted that 

a direct comparison between previous findings and ours could be a bit unfair, because 

there are many differences in terms of EEG protocols and, particularly, the nature of EEG 
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datasets. Nevertheless, such comparison can still provide important insight into some 

worthwhile discussion issues. 

FAA. Several studies have suggested that the FAA of resting-state EEG could be a 

neurosignature for the diagnosis of MDD. For example, Debener et al., 2000 (15 MDD, 22 

HC) [56] and Roh et al., 2020 (67 MDD, 60 HC) [57] reported a significant difference in 

FAA between the MDD and HC groups. Our result is inconsistent with theirs, but is con-

sistent with the findings of Knott et al., 2001 (69 MDD, 23 HC) [32], Vinne et al., 2017 (1008 

MDD, 336 HC) [58], and Smith et al., 2018 (143 MDD, 163 HC) [59]. However, some vari-

ables may influence the FAA, such as the severity of depression. In the study by Roh et al. 

[57], 23 of the 67 patients with MDD had suicidal ideation, which has been shown to be a 

clinically important moderator of FAA in patients with MDD. 

Complexity of EEG Activity. There is substantial evidence showing that increased com-

plexity of resting-state EEG activity can be measured in MDD (e.g., [23,60,61], see [62] for 

a review on the EEG complexity in MDD detection). In addition, the EEG HFD complexity 

has also been shown to be capable of producing a high MDD-HC classification [61]. Alt-

hough our results also show increased HFD values of individuals with MDD as compared 

with HC (no statistical significance), the HFD feature did not provide satisfactory classifi-

cation performance (maximum 62.86% based on LDA, see Table 4) in the current study. 

This low and inconsistent (as compared with previous works) accuracy level could be due 

to a number of factors. One possible factor is the condition of data collection; our EEG 

data were collected during the eye-open resting-state, whereas previous studies [23,61] 

collected EEGs during the eye-closed resting-state. For example, using HFD as features, a 

study by Hosseinifard et al. [23] showed a LOO-CV accuracy of 73.3% with the LDA clas-

sifier, whereas a study by Čukić et al. [61] showed an average accuracy of 89.90% across 

different classifiers (multilayer perception, logistic regression, SVM, decision tree, ran-

dom forest, and Naïve Bayes). Other factors such as differences in the EEG amplifiers (dB, 

gain, and input noise specifications) and the signal preprocessing methods (band-pass fil-

tering, artifact removal, signal epoch length, etc.) may also affect the signal-to-noise ratio 

of EEG signals. As a result, due to these possible factors and the fact that HFD is sensitive 

to noise [48], the effectiveness of HFD in detecting MDD may differ. More importantly, 

the current study collected EEG data from four different medical centers, whereas previ-

ous studies only collected EEG data from a single location. The high diversity of the cur-

rent EEG dataset may result in highly variable noise levels. 

BP. A few previous studies have suggested that alpha BP could be an MDD indicator. 

Our previous work [20] showed a nearly 70% (68.98%) classification accuracy using all-

electrode alpha BP features and a K-NN classifier. However, in the current study, the all-

electrode alpha BP (without feature selection) could only achieve an accuracy of 47.50% 

(Table 4). Another study applied an LDA-based classifier to the alpha BP features at C3, 

P3, O1, O2, and F7 [23] and reported a classification accuracy of 73%. In our study, the 

accuracy of the alpha BP remained below 60% (58.21%) even after feature selection. A 

discrepancy in alpha BP’s ability to classify appears to exist between studies. The empiri-

cal results of this study suggested that including the BP feature in the EEG protocols alone 

may not be an accurate and reliable way to detect MDD. 

Intra-participant variability in EEG amplitudes could contribute to the inconsistent 

results in the classification performance of BP. Often, every EEG study would keep the 

impendence of every electrode below a desired level before recordings. However, in prac-

tice, maintaining impendence stability throughout the recording period is quite challeng-

ing. The slight loss of an electrode could cause the impendence to change, resulting in 

changes in EEG amplitudes. Note that in some studies, noisy EEG segments were often 

removed from analyses (e.g., [18]). In the current study, however, we did not adopt this 

data cleaning strategy because, for the current study, an important objective was to verify 

the effectiveness of a feature in MDD detection, and also the robustness of a feature that 

could overcome the technical instability that may occur in real-world applications. More-

over, maintaining a stable impedance/signal quality across multiple recording sites is even 
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more challenging [28]. As a result, both intra-subject and inter-site EEG variabilities could 

have contributed to the poor performance of the BP feature. 

In the experiments, we did not perform any EEG normalization because, as previ-

ously noted, the aim was to test the performance of the commonly used EEG features in 

previous MDD studies and, for example, the band powers in those studies are absolute 

powers without any normalization. However, it is worthwhile to investigate whether per-

forming an EEG normalization can affect the BP performance. To this end, we normalize 

the power of each channel by subtracting the average power of the 26 channels in each 

frequency band, which can be viewed as a BP-based common average referencing (CAR). 

Table 7 summarizes the findings. As compared with the BP performance listed in Table 4 

(the best performance is 64.64% without normalization), the normalized BP achieved com-

parable performance (the best is 63.57%). This comparison shows that there is almost no 

difference after using the CAR normalization method. One possible reason is as follows. 

Table 7. Five-fold cross validation accuracies among different frequency bands and scalp regions using a normalized BP 

and a LDA classifier (in %). The numbers inside and outside the brackets denote the accuracies obtained from the features 

with and without the SBS-based feature selection. 

EEG Features Frontal Central Temporal Parietal ALL 

Normalized BP 

δ 52.14 (56.43) 57.14 (58.57) 53.35 (58.21) 42.86 (51.43) 50.00 (63.57) 

θ 53.93 (58.21) 52.86 (54.64) 57.14 (58.21) 43.93 (54.64) 54.29 (60.36) 

α 51.43 (58.57) 51.43 (52.86) 46.43 (53.93) 46.43 (53.93) 49.29 (57.50) 

β 54.29 (56.07) 56.43 (57.86) 56.07 (57.86) 51.43 (55.00) 52.50 (62.86) 

γ 54.29 (58.21) 59.29 (59.29) 50.00 (56.43) 46.79 (55.00) 48.21 (63.21) 

The topographical BP distribution of EEG signals are mainly determined by the rel-

ative differences in BP between channels. Although the BP-based CAR normalization may 

reduce the variability caused by possible baseline BP differences between subjects, it does 

not affect the EEG BP distribution over the scalp for each individual because the average 

power is subtracted equally from all channels. This was nicely depicted as the effect of the 

rising or receding water levels of a lake in a mountainous area, which changed the location 

of the zero water level mark, but not the landscape [63]. For example, in the situation 

where one electrode’s impendence changes during the EEG recording process, the BP will 

still vary even if such normalization is performed afterwards. Unfortunately, this happens 

in real-world applications, as mentioned above. 

Coherence. The coherence (more precisely, the spectral coherence) has long been pro-

posed as a fundamental mechanism for communication within brains [64] and is not af-

fected by the amplitude changes of EEG oscillations [65], and therefore this property plays 

a key role in improving classification in the dataset with large intra-participant and inter-

site EEG variability [66]. This could explain why 61 of the 62 optimal features selected 

from all 1859 feature candidates are all coherence features in the current study. 

Previous literature has shown that MDD affects the functional connectivity of the 

brain in the resting state, but these findings were still inconclusive. For example, both 

functional MRI [67] and EEG [68] studies showed that MDD participants had increased 

connectivity in different brain regions, whereas some EEG studies [69,70] reported that a 

decreased functional connectivity was found in patients with MDD. This study combined 

all these coherence features as a feature vector for the MDD-HC classification, and there-

fore we did not further test whether each coherence had a significant difference between 

the two groups (MDD versus HC). Recently, Peng et al. [17] classified MDD and HC using 

the EEG connectivity features from four different bands (delta, theta, alpha, and beta). 

They concluded that the connectivity features of the four frequency bands are all crucial 

to the high-performance classification. Their results also suggested that depression affects 

the connectivity across the whole brain, as nearly all electrode pairs were involved in the 

connectivity-based classification. Our findings are in line with theirs, as evidenced by the 
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61 optimal coherence features summarized in Figure 8. There are three main findings. 

First, all 26 electrodes were used in the 61 optimal features. Second, all of the frequency 

bands contributed to the optimal coherence feature set. Third, the intra-hemispheric co-

herence features make up the majority of the optimal coherence feature set. 

 

Figure 8. Characteristics of the 61 optimal coherence features selected by the SBS and SVM classifier. Upper-left: The 

occurring times of each electrode in the 61 features. Bottom-left: Proportion of each band in the 61 features. Remaining: 

Proportions of the intra-hemispheric (Intra) and inter-hemispheric (Inter) coherence features in each band. The gray part 

represents the regional connectivity of the electrode pair of FCz and Pz. 

Feature Selection. In the current study, we applied the wrapper approach, i.e., the SBS, 

to identify the optimal feature subset among the 1859 feature candidates. However, there 

is a limitation of the SBS algorithm. It is unable to re-evaluate the utility of the features 

that have been discarded. In other words, the optimal feature subset selected by the SBS 

algorithm may not really be the optimal. Other greedy and randomized feature selection 

methods, such as the genetic algorithm (GA), can be used to overcome this limitation. It 

should also be noted that the optimal feature subset determined by SBS may differ from 

those identified by other methods like GA. 

As previously noted, the aim of the current study is to identify the best features 

among the 1859 feature candidates. The obtained 62 optimal features are explainable, 

which have already been able to provide a useful reference for researchers looking to in-

vestigate the relationship between them and the pathological mechanism of the brain in 

the future. If a dimension reduction method is further applied to the 62 features to obtain 

a lower-dimensional feature representation, not only can the data be visualized, but also 

the classification accuracy can be improved. A variety of advanced methods, including 

principal component analysis (PCA) and its nonlinear version, i.e., the kernel PCA, man-

ifold learning approaches: the locally linear embedding (LLE), t-distributed stochastic 

neighbor embedding (t-SNE), the uniform manifold approximation and projection 

(UMAP), and neural network approaches such as autoencoders and self-organizing map 

(SOM). Although such research is beyond the scope of this study, it is definitely a worth-

while topic for future research. 
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6. Conclusions 

The main goal of the current study was to provide a systematic validation of the ef-

ficacy of common and standard EEG features used in previous ML-based MDD-HC clas-

sification studies on a relatively large and diverse dataset. To this end, we thoroughly and 

systematically analyzed these features at the electrode, region, and optimal feature subset 

levels. Our results revealed that the coherence feature is the most reliable, effective and 

generalizable solution for the EEG-based MDD detection in real-world applications, 

where there might be high data variability caused by uncontrollable or unavoidable con-

ditions. We also showed that the CK-SVM, a variant of SVM, was able to improve the 

performance generalization of the challenging MDD-HC classification, achieving a high 

“individual-level” classification accuracy of 84% on a large and independent dataset. Ac-

cording to the promising results obtained on a large dataset across multiple EEG record-

ing sites, we have demonstrated the effectiveness and applicability of the EEG- and ML-

based computer-aided diagnosis (CADx) for MDD.  

Several critical issues remain to be solved. One issue is the establishment of an age-

optimized MDD-HC classification model. Since MDD and mild cognitive impairment 

(MCI) or early dementia share some behavior signs in their early stage (i.e., cognitive dec-

lination), diagnosis of geriatric MDD has been a challenging task in clinical practice. 

Therefore, to develop an age-optimized CADx that is sensitive to MDD symptoms and 

disregards potential signal contamination from aging-related changes will be the next 

challenge. In summary, our results provide a reliable and valuable reference for future 

research to develop a more accurate and efficient CADx system. 
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Appendix A 

Here, we provide the feature performance ranking results of the features in the opti-

mal feature subsets for the K-NN (33 optimal features), LDA (63 optimal features), and 

SVM (62 optimal features) classifiers in Figures A1–A3, respectively, where the accuracies 

are the same as those shown in Figure 5 (Section 4.2). For example, as the total 33 optimal 

features are used, the 5-fold CV accuracy (66.43) for the K-NN classifier is exactly the same 

as the one shown in Figure 5. It should also be noted that the feature performance ranking 

does not refer to the individual feature ranking, because the SBS algorithm is a wrapper 

feature selection approach, which does not rank each feature but evaluates the classifica-

tion performance of a group of features. For example, in the case of the K-NN classifier, 

the accuracy associated with the second feature Coh (CP3-FC3, gamma) is the accuracy 
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obtained by using the top two features together, i.e., Coh (F4-FC4, gamma) and Coh (CP3-

FC3, gamma). 

 

Figure A1. Features of the K-NN classifier. Among the 33 features, 32 are coherence features and the remaining one feature 

is the delta BP feature at TP7. 

 

Figure A2. Features of the LDA classifier. Among the 63 features, 60 are coherence features and the remaining three are 

all BP features. 

 

FigureA3. Features of the SVM classifier. Among the 62 features, 61 are coherence features and the remaining one is the 

beta BP feature at Pz. 
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