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Abstract: Based on the necessity and urgency of detecting infectious disease marker procalcitonin
(PCT), a novel unlabeled photoelectrochemical (PEC) immunosensor was prepared for the rapid
and sensitive detection of PCT. Firstly, SnO2 porous nanoflowers with good photocatalytic perfor-
mance were prepared by combining hydrothermal synthesis and calcining. BiOI nanoflowers were
synthesized by facile ultrasonic mixed reaction. Ag2S quantum dots were deposited on SnO2/BiOI
composites by in situ growth method. The SnO2/BiOI/Ag2S composites with excellent photoelectric
properties were employed as substrate material, which could provide significantly enhanced and
stable signal because of the energy level matching of SnO2, BiOI and Ag2S and the good light absorp-
tion performance. Accordingly, a PEC immunosensor based on SnO2/BiOI/Ag2S was constructed
by using the layered modification method to achieve high sensitivity analysis of PCT. The linear
dynamic range of the detection method was 0.50 pg·mL−1~100 ng·mL−1, and the detection limit
was 0.14 pg·mL−1. In addition, the designed PEC immunosensor exhibited satisfactory sensitivity,
selectivity, stability and repeatability, which opened up a new avenue for the analyzation of PCT and
further provided guidance for antibiotic therapy.

Keywords: photoelectrochemical immunosensor; procalcitonin; SnO2; BiOI; Ag2S

1. Introduction

Due to its high accuracy for the diagnosis of bacterial infections, procalcitonin (PCT)
is an FDA-approved blood infection marker for guiding antibiotic therapy [1,2]. In normal
human serum, the level of PCT is less than 0.1 ng·mL−1 [3]. When the human body suffers
from bacteria, fungi, or parasites and more severe sepsis or multiple organ failure, the level
of PCT increases sharply. When PCT concentration in serum exceeds 0.5 ng·mL−1, the
antibiotic therapy will be strongly recommended [4]. Research shows that elevated serum
PCT is frequently seen in sepsis, severe trauma, heatstroke, necrotizing fasciitis, urinary
tract infection, lower respiratory tract infections, neoplastic diseases and so on [5]. Some
evidence also supports that PCT is also a new biomarker for the cardiologist [6]. In addition,
PCT may be an indicator of disease severity in COVID-19 and may contribute to determine
the severity of patients infected with SARS-CoV-2, thus playing an important role in
COVID-19 antimicrobial stewardship [7,8]. Therefore, exploring an accurate, sensitive,
simple and rapid determination method of PCT level in human blood serum is quite
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important for the early diagnosis of inflammation and other diseases, further guiding the
antibiotic therapy.

Up to now, many detection methods based on immunoassay have been developed
for PCT determination; for instance, enzyme-linked immunosorbent assay [9], chemilumi-
nescence immunoassay [10,11], electrochemical immunoassay [12–14], microfluidics im-
munoassays [15], fluorescence immunoassay [16], lateral flow immunoassays [17], surface
plasma resonance immunoassay [18], photoelectrochemical (PEC) immunosensor [19,20]
and so on. Compared with other methods, PEC immunosensors have excellent features
of high signal-to-noise ratio, simple operation, needlessness of expensive maintenance
and easy miniaturization because of the dual advantages of optical and electrochemical
methods. It is worth mentioning that label-free PEC immunosensors do not need complex
labeling steps for the detected objects, which can save time, improve reproducibility and
maintain the intrinsic characteristics of the objects.

As is known to all, the new photoelectrical sensing material plays an important role
in the construction of the sensor [21,22]. Especially, metal oxide nanomaterials have good
photoelectric and photocatalytic properties, which have been widely used in the field of
PEC immunosensors. Among many oxide semiconductors, stannic oxide (SnO2) is one
of the most representative semiconductor materials because of its unique catalytic and
electrochemical properties, which has been widely applied in various domains including
lithium-ion battery, solar cells, photocatalyst, photodetection and gas sensors [23–27]. A
different morphology of SnO2 can be obtained by different synthesis methods and reaction
conditions, such as nanoparticles, nanorods, nano-microspheres, nanoflowers and other
microstructures. Flowerlike SnO2 is in favor of surface reaction and can enhance the
sensing performances due to its structure configuration. Nonetheless, the wide band gap
of SnO2 (Eg = 3.6 eV) leads to the poor light absorption properties and high electron-hole
recombination. In order to improve the photocurrent conversion efficiency of SnO2, two
basic approaches should be considered: one is to add the active sites of SnO2 by designing
reasonable structure, and another is to build the heterostructure of SnO2 nanocomposites
to promote charge separation effectively.

Environmentally friendly bismuth-based materials have attracted people’s great atten-
tion because of their special layered structure and excellent photocatalytic performance [28].
Among these materials, bismuth oxyiodide (BiOI) is a well-known layered p-type semicon-
ductor (Eg = 1.7~1.9 eV), which has been widely used in the field of photocatalysis and
pharmaceutical materials recently [29–31]. BiOI has strong absorption in the visible region
and the alternates [Bi2O2]2+ layer and double I-layer can promote separation efficiency
of photo-induced electrons and holes [32,33]. Through construction SnO2/BiOI hetero-
junction, excellent photocatalytic activity and efficient sunlight-harvesting nature can be
realized. In addition, Ag2S nanoparticles with a narrower band gap (~1.0 eV) have also
attracted great interests in the field of photocatalysis because of their excellent properties
such as excellent stability, good electron transfer efficiency and prominent absorption
coefficient, which are commonly employed in PEC fields [34]. With its good sensitization,
Ag2S can be modified on the SnO2/BiOI electrode to further improve the photoelectric
properties of the substrate material.

Herein, based on SnO2/BiOI/Ag2S nanocomposites, an ultrasensitive PEC immunosen-
sor was developed for detection of PCT. Firstly, SnO2/BiOI/Ag2S composites were modi-
fied onto the ITO electrode, which can improve the sensitivity because of the high initial
signal. SnO2 and BiOI can form N-P heterojunction with good photoactivity, and with
the sensitization of Ag2S nanoparticles, the photocurrent response enhanced significantly.
Secondly, anti-PCT and PCT were immobilized on the modified electrode by the reaction
between carbonyl and amino groups and antibody–antigen specific recognition, respec-
tively. Anti-PCT and PCT can generate a hydrophobic and insulating layer on the electrode
surface, resulting in decrease of electron transfer and photocurrent intensity. According to
the relationship between PCT concentration and photoelectric signal, the content of PCT in
the unknown sample can be calculated.
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2. Materials and Methods
2.1. Materials

PCT and anti-PCT were purchased from Linc-Bio Science Co., Ltd. (Shanghai, China).
Indium tin oxide (ITO) glasses were obtained from Zhuhai Kaivo Electronic Components
Co., Ltd. (Zhuhai, China) and cut into small pieces with a size of 2.5 × 1.0 cm2. ITO glasses
were successively washed in acetone, ultrapure water, ethanol and ultrapure water under
ultrasound before being used as working electrode. Other materials and instruments used
are described in detail in the support materials.

2.2. Synthesis of SnO2

Flowerlike SnO2 was prepared by the reported method [35]. Briefly, 0.016 g of thioac-
etamide and 7 µL of anhydrous SnCl4 were added into a stainless-steel high-pressure
reactor containing 10 mL of isopropanol. The mixture was ultrasonicated until completely
dissolved. Then, the mixture was heated at 180 ◦C for 24 h and cooled naturally. Then,
the products SnS2 were rinsed and dried and then calcined at 500 ◦C for 2 h in a muffle to
obtain mesoporous SnO2.

2.3. Synthesis of BiOI

According to the literature [33], 1.0 mmol of KI was dissolved in 60 mL ultrapure
water under stirring for 40 min. Then, 1.0 mmol of Bi(NO3)3·5H2O were added slowly drop
by drop and treated with ultrasonic for at least 15 min. Subsequently, the mixtures were
continuously stirred for about 3 h to obtain orange yellow powder. Finally, after washing
and purification, the product BiOI was dried at 60 ◦C.

2.4. Fabrication of the PEC Immunosensor

Typically, 6 µL of SnO2 was dropped onto a piece of clean ITO and dried at room
temperature. Then, 6 µL of BiOI aqueous solution with the concentration of 5 mg·mL−1 was
coated on the surface of the ITO/SnO2. After being dried, the as-prepared ITO/SnO2/BiOI
electrode was successively soaked 3 min for each step in 0.1 mol·L−1 AgNO3 solution
in alcohol and 0.1 mol·L−1 Na2S in methanol aqueous solution (V/V = 1:1). Through
this process, Ag2S was deposited on SnO2/BiOI composites by in situ growth method.
Thereafter, 4 µL of thioglycolic acid (TGA) (3 mmol·L−1) was added on its surface, and then
6 µL of anti-PCT solution (1 µg·mL−1) was attached to the modified electrode. Subsequently,
4 µL of 0.1% BSA was used to block the unbound sites. At last, 6 µL of PCT solution with
different concentrations was dropped onto the electrode and incubated with anti-PCT. The
fabrication process of the immunosensor is shown in Figure 1.
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2.5. PEC Detection of PCT

In this experiment, PEC detection was performed in PBS solution containing ascorbic
acid (AA) and the light source used was LED lamp (working voltage was 36 V and operating
current was 0~3.5 A). According to the relationship between the photocurrent intensity
and the concentration of PCT, the quantitative PCT detection can be realized.

3. Results and Discussion
3.1. Characteristic Description of the Materials

The morphology of SnO2, BiOI, SnO2/BiOI and SnO2/BiOI/Ag2S was characterized
by scanning electron microscopy (SEM). According to Figure 2A,B, it can be seen that
both SnO2 and BiOI showed a flower structure composed of thin nanosheets with a
size of about 2~3 µm, which could provide a large surface area for loading of more
excellent performance of nanoparticles. Although both were flower-like structures, the
pieces that make up the flower were not the same. In addition, in the atomic number
contrast image, regions with large average atomic numbers were brighter than regions
with small atomic numbers. According to the contrast of the sample with different atomic
number, the morphology of the two samples can be clearly distinguished (Figure 2C). After
SnO2/BiOI composites were successfully coated on the ITO electrode, Ag2S nanoparticles
were uniformly deposited on its surface as sensitizer, which is shown in Figure 2D. We can
see that the lamellar structure that made up the flower became thick due to the deposition
of Ag2S. The element composition of the composites was measured with EDS spectrum,
as shown in Figure S1. It can be seen that Sn, O, Bi, I, S and Ag elements were clearly
observed, which further proved Ag2S was successfully fixed on the surface of SnO2/BiOI
to obtain SnO2/BiOI/Ag2S composites. Furthermore, the EDS mapping images further
confirmed the homogenous distribution.
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Figure 2. SEM images of SnO2 (A), BiOI (B), SnO2/BiOI (C), SnO2/BiOI/Ag2S (D).

Figure S2 shows the absorption of ultraviolet and visible light by the as-prepared SnO2,
SnO2/BiOI and SnO2/BiOI/Ag2S composites. The absorption wavelength of SnO2 was
less in the visible region, which was ascribed to its wide band gap. However, SnO2 could be
coupled with BiOI, which resulted in the absorption peak shifting red, and the absorption
peak became wider with strong absorption at 400~600 nm. Then, modification of Ag2S
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on the above electrode could improve the broad absorption in visible light obviously,
further noticeably enhancing the photocurrent effect as expected. Observed from Figure S3,
the photocurrent of SnO2/BiOI/Ag2S can be up to 93 µA, while SnO2, BiOI, SnO2/BiOI,
SnO2/Ag2S, BiOI/Ag2S was 0.6 µA, 4 µA, 60 µA, 50 µA and 5 µA, respectively. Therefore,
we selected SnO2/BiOI/Ag2S composites as the substrate material because of its excellent
photoelectric property in this study. About the electron transfer mechanism, we suspected
that SnO2, BiOI and Ag2S could form cascade band-edge levels because their energy bands
were well matched (Figure 3), which promoted the separation of photogenic electrons
and photogenic holes, resulting in ultrafast transfer of charge. In addition, the composite
material has better light absorption in the visible region, resulting in a favorable utilization
rate of solar energy.
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3.2. Characterization of the PEC Immunosensor

The photocurrent variation trends of the modified electrodes are shown in Figure 4A,
and the enlarged view of curve a and b is shown in Figure S4. After layer-by-layer modi-
fication, the photocurrent signal generated by the SnO2/BiOI/Ag2S modified electrode
was significantly increased up to 104 µA (curve d), which was much higher than that
of SnO2 and SnO2/BiOI (0.6 µA of SnO2 and 60 µA of SnO2/BiOI, curve b and c). This
further confirmed the successful modification of Ag2S nanocomposites on the electrode
surface. After the incubation of anti-PCT (curve g) and PCT (curve i) were modified onto
the electrode in sequence, the photocurrents reduced from 45 µA to 20 µA. Part of the
reason is that bioactive substances such as PCT, BSA and anti-PCT were insulating. Besides
this, the increase in steric hindrance would block part of electron transfer to the photoactive
substrate, leading to a gradual decline of photocurrent.

Electrochemical impedance spectroscopy (EIS) was applied to further analyze the
interfacial properties of the proposed immunosensor, as shown in Figure 4B. The electron-
transfer resistance (Ret) value of ITO was small on account of the low electron transfer
resistance (curve a). After the stepwise modification with SnO2 (curve b), BiOI (curve c),
Ag2S (curve d), anti-PTC (curve g), BSA (curve h) and PCT (curve i), the Ret value changed
significantly, which clearly verified the successful assembly process of the PEC immunosen-
sor for PCT determination.
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Figure 4. Photocurrent responses (A) and Nyquist plots of EIS (B). Different lines represent different
materials to modify the electrode surface layer by layer: ITO electrode (a), after SnO2 modified
(b), after BiOI modified (c), after Ag2S deposited (d), after carboxylation of TGA (e), after drops
of EDC/NHS (f), after anti-PCT immobilization (g), after BSA blocking (h), after incubation with
0.1 ng·mL−1 of PCT (i).

3.3. Optimal Conditions for PCT Detection

The concentration of substrate material (SnO2, BiOI and AgNO3), the pH value, the
concentration of AA and the light intensity are some essential experimental influence
factors. From Figure 5A, we can see that when the concentration of SnO2 was too high,
it probably blocked some of the electron transport. Hence, the SnO2 concentration of
3.0 mg·mL−1 was used in this study. Similarly, the optimal concentration of BiOI and
AgNO3 was 5.0 mg·mL−1 and 0.10 mol·L−1 (Figure 5B,C). As shown in Figure 5D, pH
7.4 was selected as the best concentration. At this condition, the immobilized protein had
the greatest activity. According to Figure 5E, when the concentration of AA was too low,
fewer holes will be captured and there will be more electron-hole complexes in the system,
so the photocurrent signal was small. However, when the concentration of AA in the
solution was too high, the light intensity reaching the electrode surface decreased due to
the absorption of the light intensity itself, making the excitation efficiency of Ag2S decrease,
thus reducing the photocurrent signal of the whole system [36]. Therefore, 0.12 mol·L−1

of AA was chosen as the appropriate concentration in this system. Last but not the least,
the photocurrent intensity increased with the increasing of the light intensity and reached
a platform when the working current of LED lights was 3.0 A, which was selected as the
optimal light intensity current in this experiment, as shown in Figure 5F.
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3.4. PCT Detection

Under the above optimal experimental conditions, the detection of PCT was real-
ized on the change of photocurrent intensity of the substrate materials, which attributed
to the immunoreactions between PCT and anti-PCT and the changes of PCT concentra-
tion. According to Figure 6A, the photocurrent density and the logarithmic values of
concentration of PCT had a good linear relationship with the range from 0.50 pg·mL−1 to
100 ng·mL−1. The linear equation was I = 17.65–6.02 lg cPCT with a correlation coefficient
of 0.9921 (Figure 6B). The limit of detection for PCT concentration was calculated to be
0.14 pg·mL−1 (S/N = 3). As shown in Table S1, the PEC immunosensor we constructed
had a lower detection limit and a wider linear range than some other reported methods for
the detection of PCT, for example, chemiluminescence immunoassay, electrochemical im-
munosensor, immunochromatographic assay, immunosorbent assay, time-resolved digital
immunoassay and electrochemical paper-based analysis, but it was slightly inferior to elec-
trochemiluminescence immunosensor. Compared with other existing PEC immunosensors,
the as-prepared immunosensor still showed a satisfying performance in sensitivity and
linear range.
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the PEC immunosensor at different PCT concentrations. The concentrations of PCT were 0.0005 (a),
0.001 (b), 0.005 (c), 0.01 (d), 0.1 (e), 1 (f), 10 (g), 50 (h), 100 (i) ng·mL−1; Error bars = SD (n = 5).

3.5. Repeatability, Stability, Specificity and Application of the PEC Immunosensor

The repeatability, stability and specificity of biosensors are important indexes to
measure the actual performance of biosensors.

The excellent repeatability is a prerequisite for accuracy. From Table S2, we can see
that the relative standard deviation (RSD) of eleven parallel measurements was in the
range of 2.2~8.4%, which demonstrated good repeatability.

The stability is critical to sensors. From Figure S5A, the photocurrent intensity was
recorded with 16 light on/off cycles of incubation with 0.1 ng·mL−1 of PCT. There was no
distinct change of photocurrent intensity value, indicating the prepared PEC immunosensor
possessed the satisfactory stability for PCT detection.

To evaluate the specificity of the immunosensor for PCT, 100 ng·mL−1 of two typical
interfering antigens, carcinoembryonic antigen (CEA) and prostatic specific antigen (PSA),
were selected for interference test by mixing with 1.0 ng·mL−1 of PCT. According to Figure
S5B, there was no obvious change of the photocurrent response in the case of the addition
of CEA and PSA, which indicated that the satisfactory specificity.

To verify the viability of the PEC immunosensor for PCT detection in practical blood
samples, the recovery experiments were carried out through adding different PCT standard
solution to human serum samples. According to Table S2, we can see that the recoveries of
the samples were in the range of 98.8~103%, and the RSD was in the range of 2.2~8.4%,
which indicated the promising potential for the analyzation of PCT in the human blood
serum samples.

4. Conclusions

In this study, based on the good photoelectric performance of SnO2/BiOI/Ag2S
composites, a novel unlabeled PEC immunosensor was successfully constructed for PCT
detection. The application of SnO2 in immunosensing analysis is still less, and SnO2 was
a perfect substrate for PEC immunosensors due to its good stability on ITO electrode.
Through construction SnO2/BiOI heterojunction, excellent photocatalytic activity and
efficient sunlight-harvesting nature can be realized, and flower-like SnO2 and BiOI can
provide large surface area for the loading of Ag2S and further sensitize to the photocurrent
response. Under the optimal experimental detection conditions, the proposed immunosen-
sor had a detection limit of 0.14 pg·mL−1 for PCT detection, and the linear range was
0.50 pg·mL−1~100 ng·mL−1, which showed a satisfying performance compared with some
other reported methods. It is worth mentioning that SnO2/BiOI/Ag2S composites had
some advantages such as convenient synthesis, low cost, excellent photoelectric perfor-
mance and environmental friendliness, which have potential applications in the field of
photoelectrocatalysis, photoelectric device research and so on.
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Figure S3: Time-based photocurrent response curves of SnO2(a), BiOI(b), SnO2/BiOI(c), SnO2/Ag2S(d),
BiOI/Ag2S(e) and SnO2/BiOI/Ag2S(f); Figure S4: Time-based photocurrent response curves of ITO
electrode (a) and ITO/SnO2 (b); Figure S5: Stability curve of chronocurrent (A); Selectivity of the
PEC immunosensor for detecting PCT (B): (a) Blank, (b) Blank + 100 ng·mL−1 CEA, (c) Blank +
100 ng·mL−1 PSA, (d) 1.0 ng·mL−1 PCT, (f) 1.0 ng·mL−1 PCT + 100 ng·mL−1 CEA, (g) 1.0 ng·mL−1

PCT + 100 ng·mL−1 PSA. The applied potential was 0 V. Error bars = SD (n = 5); Table S1: Comparison
of the performance of the proposed PEC immunosensor for PCT detection and those of other reports;
Table S2: The results of the PCT determination in human serum samples.
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