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Abstract: Masses are one of the early signs of breast cancer, and the survival rate of women suffering
from breast cancer can be improved if masses can be correctly identified as benign or malignant.
However, their classification is challenging due to the similarity in texture patterns of both types
of mass. The existing methods for this problem have low sensitivity and specificity. Based on
the hypothesis that diverse contextual information of a mass region forms a strong indicator for
discriminating benign and malignant masses and the idea of the ensemble classifier, we introduce
a computer-aided system for this problem. The system uses multiple regions of interest (ROIs)
encompassing a mass region for modeling diverse contextual information, a single ResNet-50 model
(or its density-specific modification) as a backbone for local decisions, and stacking with SVM as a
base model to predict the final decision. A data augmentation technique is introduced for fine-tuning
the backbone model. The system was thoroughly evaluated on the benchmark CBIS-DDSM dataset
using its provided data split protocol, and it achieved a sensitivity of 98.48% and a specificity of
92.31%. Furthermore, it was found that the system gives higher performance if it is trained and
tested using the data from a specific breast density BI-RADS class. The system does not need to
fine-tune/train multiple CNN models; it introduces diverse contextual information by multiple ROIs.
The comparison shows that the method outperforms the state-of-the-art methods for classifying mass
regions into benign and malignant. It will help radiologists reduce their burden and enhance their
sensitivity in the prediction of malignant masses.

Keywords: breast mass classification; mammography; transfer learning; BIRADS; convolutional
neural network (CNN); ensemble classifier

1. Introduction

Breast cancer is one of the deadliest and most common cancers among women. Accord-
ing to a World Health Organization (WHO) report, breast cancer accounts for 2.26 million
of all diagnosed cancers and 685,000 cancer-related deaths worldwide [1]. Mammography
is the dominant screening procedure for the early diagnosis of this cancer; and micro-
calcifications and masses are its early signs [2,3]. As the mammogram images have low
contrast, discrimination of benign and malignant masses is challenging [4]. A CAD system
first identifies the mass regions and then classifies them into benign and malignant. We
focused on the second problem of CAD, i.e., classifying the mass regions into benign or
malignant, which is a very difficult problem to resolve [5]. Recently, medical imaging
researchers used innovative deep learning methods to overcome this problem, but their
performance is low and may not be acceptable for clinical use [6–8]. An ensemble classifier
can be used for better performance because an ensemble classifier strategy achieves a more
promising performance than using a single classifier. However, adopting this method
for deep learning-based classifiers is costly in memory and computing complexity since
training and storing many CNN models is costly. Based on the hypothesis that diverse
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contextual information helps better discriminate benign and malignant masses and the idea
of an ensemble classifier, we introduce a method for automatically classifying mass regions
into benign and malignant. It is computationally efficient, effective, and requires less
memory. Rather than learning different CNN models, it learns only one model and adds
diversity in strategic decisions using different variations of the same unseen pattern. We
validated the system using the Curated Breast Imaging Subset of the Digital Database for
Screening Mammography (CBIS-DDSM) dataset and the INbreast dataset as challenging
datasets. The main contributions of this study are as follows:

• We proposed a system for the classification of masses into benign and malignant using
contextual information. It is based on the idea of an ensemble classifier and uses
ResNet-50 as the backbone CNN model. It introduces diversity in decision-making
using contextual information with multiple ROIs, not using multiple CNN models.

• For the system, we employed two schemes to extract multiple ROIs from a mass
region for modeling diverse contextual information. For fusing the diverse contextual
information from different ROIs, we used different fusing techniques to find the best
one. Stacking gives the best results.

• We employed the ResNet-50 model as a backbone model. To examine the effect of
breast density in the discrimination of benign and malignant masses, we introduced
density-specific modifications of ResNet-50 based on the idea of fusing local and
global features, knowing that when the density-specific model is used, the breast
density must be known. The density-specific models result in better performance than
ResNet-50. Finally, the impact of different BI-RADS types on the classification was
evaluated.

• The mass regions of each type are not enough to fine-tune even a pre-trained model.
We introduced a data augmentation approach for fine-tuning the pre-trained models.

The rest of the paper is structured as follows. Section 1 presents a review of related
literature. Section 2 describes the proposed system for the discrimination of benign and
malignant masses, fine-tuning of backbone CNN models, data augmentation, and evalu-
ation protocols. Experimental results, as well as their interpretation and discussion, are
presented in Sections 3 and 4. Finally, the conclusions and future work are summarized in
Section 5.

Related Work

The problem of classifying the mass region into benign and malignant has attracted
the attention of many researchers, and many methods have been proposed based on hand-
engineered feature-based methods and deep learning-based methods. These methods
have been evaluated using the benchmark datasets such as Digital Database for Screening
Mammography (DDSM), Curated Breast Imaging Subset of DDSM Digital Database for
Screening Mammography (CBIS-DDSM), Mammographic Image Analysis Society (mini-
MIAS), and INBreast. Among these datasets, CBIS-DDSM is the most challenging and
provides a well-defined evaluation split protocol. In the following paragraphs, a brief
review of the published research works is presented, which strictly followed the evaluation
protocol of CBIS-DDSM.

Khan et al. [8] proposed a three-stage CAD system based on Multi-View Feature
Fusion (MVFF), which takes four mammography views as input, extracts CNN features
from four views, fuses them using concatenation, and finally classifies them into nor-
mal/abnormal, or mass/calcification, and benign/malignant. Although this method uses
very rich information as input, its performance (sensitivity of 81.82%, and specificity of
72.02%) for benign and malignant classification is very poor. This is because each view
is rescaled to 128 × 128, which causes it to throw away a lot of discriminative informa-
tion. Li et al. [9] proposed a Dual Path Conditional Residual Network (DUALCORENET),
where the first path learns the texture features, and the second path learns the input-mask
correlation. Finally, features of the dual paths are concatenated for mass classification.
It gave an AUC of 85%. Tsochatzidis et al. [10] compared state-of-the-art CNN models
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to identify the pathology of an ROI. They employed two mechanisms to train a CNN
model: training from scratch and fine-tuning a pre-trained model. They showed that
fine-tuning gives better results, and among different CNN models, ResNet-50 achieved
the best performance (80.40% of AUC and 74.90% of ACC). Duggento et al. [11] developed
an ad hoc random initialization deep neural network to classify mass regions into benign
and malignant without using the pre-trained public models commonly used for transfer
learning. They explored a total of 260 model architectures in a train-validation-test split
to suggest a model selection criterion that may emphasize minimizing false negatives
while still preserving reasonable accuracy. This method achieved an accuracy of 71.19%,
sensitivity of 84.40%, and specificity of 62.44%. Shu et al. [12] designed an end-to-end
CNN architecture inspired by DenseNet to classify the entire mammographic image. Two
different pooling structures have been proposed rather than a common pooling method
to pool the feature map. Alhakeem, and Jang [13] proposed a texture-based approach
that extracts features using an integrated form of a matrix-based local binary pattern (M-
LBP) and a matrix-based histogram of oriented gradients (M-HOG) descriptors based on
global matrix projection and classifies masses using an LSE classifier. M-LBP-HOG and
LBP-HOG achieved accuracies of 64.35% and 62.07%, respectively. Chougrad et al. [14]
developed a CAD system to predict the mass lesions into benign or malignant. They used
deep learning with transfer learning in various convolution neural network models from
different public datasets. The results of the ResNet-50 on the INbreast test set overall 5-fold
cross-validations achieved 95.50% accuracy and 0.97 AUC. Al-antari et al. [15] proposed
a deep learning-based CAD system for detecting, segmenting, and classifying masses
in INbreast datasets. The results of classification verified its performance through four-
cross validation utilizing AlexNet (95.64% of ACC and 94.78% of AUC). Shen et al. [16]
developed an end-to-end residual-aided classification U-Net model (ResCU-Net) for mass
segmentation and classification of mammograms simultaneously. This method achieved
an accuracy of 94.16%, sensitivity of 93.11%, and specificity of 95.02% verified through
three-fold cross-validation. Ghada et al. [17] proposed YOLO based CAD system to detect
masses that may exist in the mammogram. They used Specific CNN models (ResNet
and Inception V3) to classifies masses into benign/malignant. InceptionV3 achieves the
best classification results, with an overall classification accuracy of 95%. Lou et al. [18]
designed an end-to-end multi-level global-guided branch-attention network (MGBN) for
mass classification into benign/malignant. The MGBN based on ResNet-50 provides the
highest AUC value for mass classification, with 0.8375 for the DDSM database and 0.9311
for the INbreast database, respectively.

The above overview of the state-of-the-art methods reveals that the classification of a
mass region into benign and malignant needs more research. All the methods discussed
above using a single classifier rather than an ensemble classifier. Ensemble classifier plays
a key role in improving the prediction accuracy of a classification model [19]. Furthermore,
using various data augmentation techniques to increase the amount of training data
available to the CNN allow it to learn more mass characteristics. Previous studies have
based their criteria for training data augmentation on commonly used transformations
such as flipped, rotation, shear, zoom, angle, and so on. Our specific augmented training
dataset includes the common transformation along with contextual information, which has
a significant impact on performance

Shen et al. [20] addressed the false positive reduction problem to identify an ROI
into a mass or normal and employed multi-context information using multi-scale ROIs
around a suspicious region. They have shown that multi-context information results in
significant improvement. We also imply multi-context information to discriminate benign
and malignant masses, but our approach is different.

2. Proposed Method

We introduce a novel ensemble-based system for the classification of mammogram
masses into benign and malignant. A common boosting approach in the design of an
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ensemble is to use a set of weak diverse learners; to induce the diversity in the learners, the
same model is trained with different samples of the data, usually created with bootstrap
sampling. The class of an unknown pattern is predicted by passing it to each learner and
fusing their predictions. This approach results in better classification performance than
using a single classifier [21–26]. However, to adopt this approach for deep learning-based
classifiers is very expensive from the point of view of computational and storage space
complexity because to train many CNN models and store them is very expensive. To
design an ensemble classifier based on CNN, we introduce a different approach, which
is computationally very efficient and needs less storage space. Instead of learning weak
diverse CNN models, we learn only one model and introduce diversity in decision making
by using diverse versions of the same unknown pattern. Another problem is that the CNN
model is suspected of adversarial attack [27]; the deep model may mis-classify the mass
when using only one ROI. The surrounding context of a mass object in a mammogram im-
age forms an important clue for discriminating masses [20,28]. Observing varying contexts
around the same mass object introduces diversity and can better help us understand the
nature of a mass.

Based on this observation, we extract ROIs of the same mass region with different
contexts and pass them to the same CNN model; the predictions of these ROIs are then
fused to take the final decision whether the mass is benign or malignant. The design of
such an ensemble CNN model is shown in Figure 1. It overcomes the two issues stated
above. The development of this classifier involves three key design decisions: (i) which
approach is suitable for extracting ROIs around a mass with varying contexts, (ii) which
CNN model is suitable for this ensemble, and (iii) which fusion technique yields the best
prediction results. In the following subsections, we give the detail about each of these
design decisions.

Figure 1. Proposed mammogram classification system.
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2.1. Modeling the Context Information

We introduce two approaches to crop multiple ROIs with diverse contexts from an
unknown mass region. It is assumed that the mass region has already been segmented,
and the problem is to classify it as benign or malignant. For our experiments, we used
the annotation provided by the CBIS-DDSM database to obtain the segmented mass
regions. To generate ROIs with different contexts from a mass region, the mass region
with varying amounts of surrounding tissues are cropped. Furthermore, we resize each
ROI to (224 × 224) pixels to support the input size of the pre-trained CNN models such as
ResNet-50.

2.1.1. Scale-Based Multi-Context Regions of Interest (ROIs) Extraction

A multi-scale cropping mechanism is used to extract the ROIs with different scales
around a mass region. We expand the bounding box of the mass region by a fixed ratio
5:5 or 10:10 to crop n ROIs that contain a variety of contextual information and allow
a CNN model to pay attention to this information surrounding the mass for decision
making [20,28]. Figure 2 demonstrates this approach. As the ROIs are resized to the fixed
size of 224× 224, the contextual information increases with increasing the scale of cropping.

Figure 2. The regions of interest (ROIs) with different contextual information, modeled using scale-based technique.

2.1.2. Translation-Based Multi-Context ROIs Extraction

In general, a mass region does not have the same dimensions, i.e., the height and
width are not the same. In this case, the anisotropic transformation, used to resize an
ROI to a fixed size of 224 × 224, introduces distortion in the ROI and distorts the texture
patterns. To avoid this problem and extract ROIs with different contexts, we employ a
technique inspired by the method adopted in [29,30]. First, the mass region is rescaled
isotropically so that its smaller side is transformed to the base scale of 256 pixels. This
means that we do scaling so that the aspect ratio is preserved and there is no distortion or
deformation. Then, we crop 4 ROIs, each of size 224 × 224, from the four corners (top-left,
top-right, bottom-left, and bottom-right) of the rescaled mass region and one from its center
to have 5 ROIs with different contexts and of a fixed size of 224 × 224. Finally, we flip them
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horizontally; in this way, we obtain 11 ROIs with different contexts, allowing the CNN
model to make different decisions for different ROIs. Unlike the previous approach, in this
case, the diversity in the contextual detail is introduced without scaling the mass object
into different scales. Figure 3 illustrates this process.

Figure 3. The ROIs with different contextual information, modeled using translation-based technique.

2.2. Preprocessing

The contrast of soft tissues in mammogram images of CBIS-DDSM is low; it must be
enhanced to distinguish mammographic lesions with low visibility and contrast. We apply
histogram equalization followed by un-sharp masking with a sharpening strength of 0.8
to improve the contrast of ROIs. Finally, a median filter with kernel size 3 × 3 is used to
reduce the noise [31]. Figure 4 shows an example of enhanced ROIs. Also, please note
that we did not use any preprocessing for INBreast, because the images already have good
contrast.

Figure 4. Sample of preprocessed mammogram ROI.

2.3. Backbone Convolutional Neural Network (CNN) Model

In this study, motivated by the related work, we adopted ResNet-50 as a backbone
model to classify mammogram mass ROIs as benign or malignant [8,10] and also modified
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it to adapt it to breast density. Its architecture is based on residual theory, which allows
increasing the depth of a CNN model without suffering from degradation problems [32].
Deeper CNN models learn discriminative features and boost the classification performance.
The ResNet-50 model proposed by He et al. [32] serves as the basis for our design. This
model consists of five groups Gi, i = 1, 2, 3, 4, 5 of residual blocks. Let Gi

r denote the rth

residual block of ith group, and Gi
r.c.l represent the lth layer of cth convolutional block of

rth residual block of ith group, and Gi
r.ReLU stands for the ReLU layer of the rth residual

block of ith group, as shown in Figure 5. Table 1 gives an overview of the architecture
of ResNet-50; it is based on bottleneck design, and the basic building block is shown in
Figure 5.

Figure 5. Bottleneck building block.

2.4. Fine-Tuned ResNet-50

As the first choice for the backbone model, we employed the original ResNet-50 model
pre-trained on ImageNet [33] with transfer learning. We replaced the last classification
layer of ResNet-50 with a new FC layer with two neurons because there are two classes,
benign and malignant, and fine-tuned it, using training data consisting of all density types.

2.5. Density Specific Modification of ResNet-50–DResNet-50

We modified the ResNet-50 model to develop a breast density-specific mass classifi-
cation system. Fusing both local (low-level) and global (high-level, semantics) features, a
CNN model is capable of learning more discriminative information. Specifically, the global
features pay more attention to the semantics of masses, while the local features capture
mass-specific-fine details [34–36]. Inspired by the fully convolutional network (FCN) [37],
we fused local and global features by adding projection shortcuts, which provide access
to the activations of previous layers, making it possible to reuse low-level features [38]
to improve network performance. We explored four different settings for designing the
density-specific deep convolutional neural networks; we observed that the filters in the
branches concentrate on particular low-level features and help boost the extraction of fea-
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tures specific to different breast densities [39]. Moreover, the fusion between global average
and global max pooling activations contributes to the learning of mass and texture-level
features [40]. Keeping in view these observations, we constructed the density-specific
model for each density type.

Table 1. ResNet-50 architecture for ImageNet.

Group OUTPUT SIZE 50-Layer

G1 112 × 112 7 × 7, 64, stride 2

G2 56 × 56
3 × 3 max pool, stride 2 1× 1, 64

3× 3, 64
1× 1, 256

× 3

G3 28 × 28

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

G4 14 × 14

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

G5 7 × 7

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

1 × 1 average pool, 1000-d fc, SoftMax

2.5.1. DIResNet-50 for BI-RADS I

To adapt the model for the density class BI-RADS I, we made modifications, keeping
in view the motivations described above, and after trying different options, we called
this DIResNet-50. First, we removed the Conv Block G5

3.3, the ReLU layer G5
3.ReLU and

the shortcut of G5
3 (as shown in Figure 6) so that the output feature map of G5

3 consisted
of 512 channels. Then, we added a global average pool (GAP) layer in parallel to global
max pool (GMP) after the Conv Block G5

3.2, and a concatenation layer, as shown in Figure
6. After that, we added a projection shortcut from the ReLU layer G5

1.ReLU of G5
1 to the

concatenation layer; it consisted of a 1 × 1 Conv Block with 1024 filters followed by a 7 × 7
max-pooling layer, as shown in Figure 6. The modification was done so that the number
of channels in the output feature map of the concatenation layer was 2048, which was the
original number of channels. Finally, a fully connected layer (FC) with two neurons was
introduced after the concatenation layer.

2.5.2. DIIResNet-50 for BI-RADS II

The model DIIResNet-50 is adapted for the density class BI-RADS II. First, we replace
the Conv Block G5

3.3 consisting of 2048 filters with the Conv Block ´G5
3.3 having 1024 filters

and remove the shortcut of G5
3 (as shown in Figure 7). Then, we add a projection block

consisting of a 1 × 1 Conv Block with 1024 filters and a 7 × 7 max pool layer after ´G5
3.3

and parallel to the GAP layer. Afterward, to concatenate the activations of GAP and the
projection block, we add a concatenation layer. Finally, an FC layer with two neurons is
incorporated, as shown in Figure 7. The modifications are done so that the number of
channels in the output feature map of the concatenation layer is 2048, which is the original
number of channels.
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Figure 6. DIResNet-50 model.

2.5.3. DIIIResNet-50 for BI-RADS III

To adapt the model for the density class BI-RADS III, we made modifications and call
it DIIIResNet-50. First, we replace the Conv Block G5

3.3 having 2048 filters with the Conv
Block ´G5

3.3 consisting of 512 filters and removed the shortcut of G5
3 . Then, we added a GMP

layer in parallel to the GAP after the Conv Block ´G5
3.3, and a concatenation layer, as shown

in Figure 8. After that, we add a projection shortcut from the ReLU layer G4
6.ReLU of G4

6
to the concatenation layer; it consists of a 1 × 1 Conv Block with 1024 filters followed by
a 14 × 14 max-pooling layer, as shown in Figure 8. The modification is done so that the
number of channels in the output feature map of the concatenation layer is 2048, which
is the original number of channels. Finally, a FC with two neurons is introduced after the
concatenation layer.

2.5.4. DIVResNet-50 for BI-RADS IV

To adapt the model for the density class BI-RADS IV, we made modifications to
ResNet-50 and call it DIVResNet-50. First, we replaced the Conv Block G5

3.3 consisting of
2048 filters with the Conv Block ´G5

3.3 having 1024 filters and removed the shortcut of G5
3

(as shown in Figure 9). Then, we added a GMP layer in parallel to GAP after the ReLU
layer G5

3.3.3 of G5
3 , and a concatenation layer, as shown in Figure 9. The modification was

done so that the number of channels in the output feature map of the concatenation layer
was 2048, which was the original number of channels. Finally, a FC with two neurons was
introduced after the concatenation layer.
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Figure 7. DIIResNet-50 model.

Figure 8. DIIIResNet-50 model.
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Figure 9. DIVResNet-50 model.

2.6. Fusion Techniques

The next important task in the system was to fuse the predictions of multiple ROIs
corresponding to a mass region. We adapt some well-known techniques.

2.6.1. Majority of the Decisions

In this fusion technique, the class labels of multiple ROIs that correspond to a
mass region are calculated using a backbone CNN model, and the predicted label (be-
nign/malignant) of the mass region is the one that has maximum votes. To overcome the
issue of a tie, we generate an odd number of ROIs. Let there are n ROIs {P1, P2, . . . ., Pn},
extracted from a mass region. Their predicted labels from model M are {l1, l2, . . . , ln}, the
predicted label l of the mass region is computed using majority vote as follows [41]:

l= majority of {l1, l2, . . . , ln}

2.6.2. Soft Voting

In this technique, the predicted probabilities of each class are averaged over all ROIs,
and the final predicted class of the mass region is the one for which the average predicted
probability is larger. To be precise, let the predicted probabilities of n ROIs with the model

M be
{(

p1
1, p1

2
)
,
(

p2
1, p2

2
)
,
(

p3
1, p3

2
)

. . . , (pn
1 , pn

2 )
}

, and p1 =
∑n

i=1(pi
1)

n , p2 = ∑n
i=1(pi

2)
n , then, the

predicted label l of the region is computed as follows [41]:

l =
{

1 (benign) i f p1 > p2
2(malig) otherwise

2.6.3. Max Voting

In this technique, the maximum of predicted probabilities of each class are calcu-
lated over all ROIs, and the final predicted class of a mass region is the one for which
the maximum predicted probability is greater. To be precise, let the predicted prob-
abilities of n ROIs with the model M be

{(
p1

1, p1
2
)
,
(

p2
1, p2

2
)
,
(

p3
1, p3

2
)

. . . , pn
1 , pn

2 )
}

, and
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p1 = max(p1
1, p2

1, p3
1, . . . , pn

1 ); p2 = max(p1
2, p2

2, p3
2, . . . , pn

2 ), then, the predicted label l of
the ROI is computed as follows [41]:

l =
{

1 (benign) i f p1 > p2
2(malig) otherwise

2.6.4. Stacking

All the techniques discussed above make final decisions based on the predictions/labels
only and do not consider the weights of ROIs. One technique that takes into account the
weights of ROIs is stacking [42]. In this technique, the predictions of the ROIs are calculated
using a backbone CNN model and stacked into a vector, which is passed to a classifier
for predicting the label of the region, as shown in Figure 10. We can use any classifier
since it is a two-class problem; we used SVM with different kernels. The design of SVM is
based on a large margin theory and gives very good results in many binary classification
problems [43–46]. The SVM model is trained using the predictions of the training and the
validation datasets.

Figure 10. Stacked generalization method.

2.7. Training of CNN Models
2.7.1. Datasets

To demonstrate the effectiveness and robustness of the proposed system, we used two
public benchmark mammographic datasets:

1. CBIS-DDSM [47]. The Curated Breast Imaging Subset of DDSM (CBIS-DDSM) is a
challenging dataset that contains digitized film images of 753 calcifications and 891
masses converted to Digital Imaging and Communications in Medicine (DICOM) for-
mat. This dataset has the updated annotations of mass regions on mediolateral oblique
(MLO) and bilateral craniocaudal (CC) views. The database size and ground truth
verification make the DDSM a useful tool in developing and testing support systems
without any bias. Using the annotations, we extracted benign and malignant mass
regions. We only considered the mass abnormality with breast density. For evaluation,
we used the protocol provided for this dataset; the dataset is separated into train and
test datasets, as shown in Table 2. In the sequel, DT, D1T, D2T, D3T, D4T stand for
the complete training data set (D1T∪D2T∪D3T∪D4T), and the training datasets for
BI-RADS.I, BI-RADS.II, BI-RADS.III, BI-RADS.IV, respectively. Similarly, DTs, D1Ts,
D2Ts, D3Ts, D4Ts represent the complete test data set (D1Ts∪D2Ts∪D3Ts∪D4Ts), and
the test datasets for BI-RADS.I, BI-RADS.II, BI-RADS.III, BI-RADS.IV, respectively.

2. INbreast [48]. It is the largest public dataset that contains 410 full-field digital mam-
mographic (FFDM) images provided in Digital Imaging and Communications in
Medicine (DICOM) format. Each case consists of mediolateral oblique (MLO) and
bilateral craniocaudal (CC) views. According to the database size and ground truth
verification, the INbreast provides useful data for building and testing support sys-
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tems without bias. According to the annotation, the statistics of this dataset are given
in Table 3.

Table 2. Number of Curated Breast Imaging Subset of the Digital Database for Screening Mammog-
raphy (CBIS-DDSM) mass ROI images.

Dataset Dataset Set Pathology Train Test

D1 (BI-RADS.I)
Benign 103 24

Malignant 128 21

D2 (BI-RADS.II)
Benign 257 74

Malignant 248 70

D3 (BI-RADS.III)
Benign 145 63

Malignant 125 29

D4 (BI-RADS.IV)
Benign 53 21

Malignant 38 12

D (D1+D2+D3+D4)
Benign 558 182

Malignant 539 132

Table 3. Number of INbreast mass ROI images.

Dataset Dataset Set Pathology Number of Masses

D1 (BI-RADS.I)
Benign 12

Malignant 30

D2 (BI-RADS.II)
Benign 6

Malignant 32

D3 (BI-RADS.III)
Benign 13

Malignant 8

D4 (BI-RADS.IV)
Benign 6

Malignant 1

D (D1+D2+D3+D4)
Benign 37

Malignant 71

2.7.2. Data Augmentation

Training a CNN model on a large number of training examples usually works well and
provides high-performance values. However, Tables 2 and 3 indicate that the number of
training examples is small, so data augmentation is essential [49]. Also, the augmentation
helps overcome the data imbalance problem. To simulate a large number of mass regions,
we create multi-context, multi-orientation, and multi-scale ROIs from a mass region, as
shown in Figure 11, Figure 12, Figure 13. A window of fixed size slides with 10 pixels stride
to extract multi-context ROIs from a mass region so that the whole mass is inscribed in the
window. For extracting multi-orientation ROIs, a mammogram image is rotated clockwise
through θ, where θ∈{0◦,90◦,180◦, 270◦}, and ROIs are extracted and flipped. For extracting
multi-scale ROIs, the bounding box of the mass region expanded by a fixed ratio of 5:5 or
10:10. Finally, the extracted ROIs are resized to (224 × 224).
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Figure 11. Extracted ROI with different contexts.

Figure 12. Extracted ROI with different orientations.

2.7.3. Fine-Tuning the Backbone Models

After modifications in the base pre-trained ResNet-50, each backbone CNN model is
fine-tuned using the augmented training data. We fine-tuned the models with stochastic
gradient descent with a momentum of 0.9 and a learning rate of 1 × 10−4. The mini-batch
size was set to 64.
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Figure 13. Extracted ROI with different scales.

3. Evaluation Protocol

For the evaluation of the proposed system and fair comparison with the state-of-art
methods:

• We used the evaluation protocol provided for CBIS-DDSM. The training set was used
to fine-tune the backbone models; it was divided into training and validation sets with
a ratio of 90:10. The new training set was utilized to fit the model independently, and
the validation set was employed to control the training process. After completing a
model’s training, its performance was evaluated on the test set of CBIS-DDSM without
bias.

• For INbreast the cases are randomly divided into 80% for training,10% for validation,
and 10% for testing, which allows us to run five-fold cross-validation. Cross-validation
provides a less biased estimate of the model’s ability for unseen data.

The performance of the system was evaluated using the following well-known evalu-
ation metrics [50,51]:

Sensitivity (Sen. ) = TP
TP+FN Accuracy (Acc. ) = TP+TN

TP+FN+TN+FP

Specificity (Spe. ) = TN
TN+FP F1 Score = 2× Sensitivity×Specificity

Sensitivity+Specificity

Kappa = (Po−Pe)
(1−Pe)

Pe =
(TP+FN)×(TP+FP)+(FP+TN)×(FN+TN)

(TP+TN+FP+FN)2 ; Po =
TP+TN

TP+TN+FP+FN

In addition, the area under the receiver operating characteristics curve (AUC) is also
used to measure the performance.

The system was implemented, and all experiments were performed in MATLAB
R2020a with a deep learning toolbox on an ASUS desktop with Intel Core i7-6800K CPU@3.4
32 GB RAM and GeForce RTX 2080Ti 12GB.
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4. Result

This section presents the experimental results with different options for the backbone
model, the scheme for modeling diverse contextual information, and the fusion technique.

4.1. Why ResNet-50 as a Backbone Model?

The question arises as to which CNN model is suitable as the backbone model for
the system. We performed experiments with four state-of-the-art CNN models on the
CBIS-DDSM dataset; the results are shown in Table 4. The results revealed that ResNet-50
outperforms the other models. The difference in the performance of the examined CNN
models is attributed to the difference in their design strategies. In view of this, we employed
ResNet-50.

Table 4. The performance comparison on the CBIS-DDSM dataset using different convolutional
neural networks (CNN).

Model Sen (%) SP (%) ACC (%) Kappa (%) F1-Score

ResNet-50 [32] 99.24 87.36 92.36 84.70 91.61
DensNet-201 [52] 81.01 97.44 89.17 78.40 88.28

InceptionResNetV2 [53] 81.53 97.45 89.49 79 88.58
NasNetLarge [54] 81.25 98.70 89.81 79.70 89.04

4.2. The Effect of Multi-Scale and Multi-Context Schemes for a Test Region

To incorporate diverse context information in the system’s decision-making process,
we introduced two schemes: multi-scale and multi-context ROIs, in Section 2.1. We per-
formed experiments on the CBIS-DDSM dataset to see which is better. In these experiments,
we used the whole training data for fine-tuning the backbone model, and the whole test
data was used for evaluation. Also, we employed ResNet-50 as a backbone model and
SVM with the polynomial kernel as a fusion method.

For the multi-scale scheme, we performed experiments with a single ROI and three
different options, of multi-scale ROIs; the results are shown in Table 5. Among different
multi-scale choices, {50,60,70,80,100} is the best choice; it gave an accuracy of 88.54%, which
is approximately 15% higher than that of a single ROI. Similarly, the sensitivity, specificity,
kappa, and F1 scores are significantly higher than those of a single ROI.

Table 5. The effect of multi-scale ROIs on the CBIS-DDSM test performance.

Scheme Sen (%) SP (%) ACC (%) Kappa (%) F1-Score

single 67.42 78.02 73.57 45.60 68.20
{5,10,15,20,25}-MS1 81.06 91.76 87.26 73.60 84.25

{10,20,30,40,50}-MS2 82.58 90.66 87.26 73.70 84.50
{50,60,70,80,100}-MS3 83.33 92.31 88.54 76.30 85.94

For the multi-context scheme, we considered three different choices, as shown in Table
6. The results in Table 5 show that “256 with five contexts” is the best choice; it achieved
the best accuracy of 91.08%, a sensitivity of 87.12%, a specificity of 93.96%, kappa of 81.60%,
and F1 score of 89.15%, are way better than those of single ROI. The multi-context choice
“256 with 5 contexts” is the best of all; in onward experiments, we will use it. A comparison
indicates that a multi-context scheme is better than a multi-scale scheme. It is probably due
to the reason that the multi-context scheme encodes more diverse contextual information
whereas the multi-scale scheme focuses more on scales. As in both cases, the performance
is much better than a single ROI, it validates our hypothesis which is the basis for the
design of the system.
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Table 6. The effect of the multi-context of the CBIS-DDSM test ROI.

Scheme Sen (%) SP (%) ACC (%) Kappa (%) F1-Score

single 67.42 78.02 73.57 45.60 68.20
256 with 3 contexts-MC1 73.48 86.26 80.89 60.40 76.38
256 with 5 contexts-MC2 87.12 93.96 91.08 81.60 89.15

4.3. The Effect of Different Fusion Techniques

To assess the impact of various fusion techniques described in Section 2.6, we per-
formed experiments using the complete mass test dataset of CBIS-DDSM for evaluation
with ResNet-50, fine-tuned using the complete mass training dataset of CBIS-DDSM, and
the multi-context choice “256 with five contexts”. The results are presented in Table 7. The
overall best technique is SVM with RBF kernel, which has an accuracy of 92.36%, a sensitiv-
ity of 99.24%, a specificity of 87.36%, Kappa of 84.70%, and F1-score of 91.61%. Although
SVM with polynomial kernel and random forest give better specificities, their sensitivities
are low; and sensitivity is more important. The results indicate that the stacking technique
is better than other fusion techniques. This is due to the reason that stacking associates the
weights to the predictions of multi-context ROIs according to their importance, learned
from the data, whereas other techniques assign equal weights (i.e., 1) to the predictions.

Table 7. The effect of different fusion techniques on the CBIS-DDSM dataset.

Fusion Technique Sen (%) SP (%) Acc (%) Kappa (%) F1-Score

Stacking

Random Forest 87.88 93.96 91.40 82.30 89.59
SVM with RBF 99.24 87.36 92.36 84.70 91.61

SVM with Linear 92.42 92.31 92.36 84.40 91.04
SVM with Polynomial 87.12 93.96 91.08 81.60 89.15

Majority voting 77.27 83.52 80.89 60.80 77.27
Soft Voting 78.79 84.62 82.17 63.10 78.79
Max voting 81.06 84.07 82.80 64.40 79.85

4.4. The Effect of Density-Specific Models

We adapted ResNet-50 to make it density specific; the detail is given in Section 2.5.
Each density-specific model was fine-tuned with the training set of the same density on
the CBIS-DDSM dataset. We performed experiments using the density-specific models as
backbone models in two different scenarios: Sc1—a density-specific model was tested on
the test set of the same density (notation D*RresNet-50_D*Ts in Table 8), Sc2—a density
specific model was tested on the entire test set (notation D*ResNet-50 _DTs in Table 9). In
all these cases, we used stacking (SVM with RBF kernel) as the fusion technique. Table 8
shows the comparative results on the density-specific models with ResNet-50. It can be
observed that the density-specific models achieved overall higher performance than the
original fine-tuned ResNet-50 model in both scenarios.

Table 9 shows the results of the density-specific models for scenario Sc2 and the
ResNet-50. Overall, the density-specific models yield better performance. In the CBIS-
DDSM dataset, the density-specific model DIRresNet-50 gives the highest performance
in terms of accuracy, kappa, and F1-score; it stands second in terms of sensitivity and
specificity with a sensitivity of 98.4% and specificity of 92.31%. It indicates the model
specific to density BI-RADS.I results in the overall best performance because the breast
with BI-RADS.I is fatty, and patterns to discriminate benign and malignant masses are
more apparent. The model learns these patterns and gains the potential to discern them
in even dense breast areas. In the case of model DIVRresNet-50, sensitivity is very low;
this is probably because in this case (BI-RADS.IV) the breast is dense, and it is difficult
to discern the patterns of malignant masses. In the INbreast dataset, the density-specific
model DIIRresNet-50 gives the highest performance in terms of accuracy, kappa, and
F1-score; it stands first in terms of sensitivity and specificity with a sensitivity of 100% and
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specificity of 100%. Figures 14 and 15 show the receiver operating characteristic (ROC)
curve with the area under ROC (AUC) of all models, as presented in Table 10.

Table 8. The comparison between density-specific models ResNet-50; D*RresNet-50_D*Ts means the
ResNet-50 model adapted for density type “*”, fine-tuned with the training CBIS-DDSM dataset D*T

and was tested on test dataset D*TS.

Models Sen (%) SP (%) ACC (%) Kappa (%) F1-Score

DIRresNet-50_D1T_D1Ts 100 91.67 95.56 91.12 95.45
DII RresNet-50_D2T_D2Ts 92.86 87.84 90.28 80.57 90.28
DIII RresNet-50D3T_D3Ts 96.55 96.83 96.74 92.50 94.92
DIVRresNet-50_D4T_D4Ts 91.67 100 96.97 93.30 95.65

ResNet-50_D1T _D1Ts 90.48 87.50 88.89 77.70 88.37
ResNet-50_D2T _D2Ts 90 75.68 82.64 65.40 83.44
ResNet-50_D3T _D3Ts 82.76 84.13 83.70 63.90 76.19
ResNet-50_D4T _ D4Ts 66.67 100 87.88 71.80 80

Table 9. The effect of density specific models, D*RresNet-50_D*Ts means the ResNet-50 model adapted for density type “*”,
Fine-tuned with the training dataset D*T and was tested on test dataset D*TS.

Datasets Models Sen (%) SP (%) ACC (%) Kappa (%) F1-Score

CBIS-DDSM

DIRresNet-50_ DT_DTs 98.48 92.31 94.90 89.65 94.20
DIIRresNet-50_DT_DTs 96.97 92.31 94.27 88.36 93.43
DIIIRresNet-50_DT_DTs 97.73 91.21 93.95 87.75 93.14
DIVRresNet-50_DT_DTs 91.67 96.70 94.59 88.83 93.44

RresNet-50_DT_ DTs 99.24 87.36 92.36 84.67 91.61

INbreast

DIRresNet-50_ DT_DTs 100 97.5 99.09 98.07 99.31
DIIRresNet-50_DT_DTs 100 100 100 100 100
DIIIRresNet-50_DT_DTs 97.14 97.5 97.19 94.31 97.77
DIVRresNet-50_DT_DTs 100 97.14 99 97.73 99.26

RresNet-50_DT_ DTs 98.57 97.5 98.18 96.14 98.61

Figure 14. CBIS-DDSM ROC curve for the effect of density-specific models and ResNet50.
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Figure 15. INbreast ROC curve for the effect of density-specific models and ResNet50.

Table 10. The comparison with different state-of-the-art methods.

References Models\Descriptors Sen (%) SP (%) AUC (%) ACC (%)

CBIS-DDSM

Khan et el. [8]
ResNet-50 75.46 62.75 69.10 69.98

MVFF 81.82 72.02 76.90 77.66

Tsochatzidis et al. [10]
ResNet-50 from scratch - - 80.40 74.90
Fine-tuning ResNet-50 - - 63.70 62.70

Duggento et al. [11] AlexNet 84.40 62.44 - 71.19

AL Hakeem and
Jang [13] LBP-HOG - - - 64.35

Li et al. [9] Dual-core Net - - 85 -

Shu et al. [12]
Region-based Group-max Pooling - - 83.3 76.2

Global Group-max Pooling - - 82.3 76.7

Proposed system

Multi-context ResNet-50 99.24 87.36 97.17 92.36
Multi-context DIRresNet-50 98.48 92.31 94.38 94.90
Multi-context DIIRresNet-50 96.97 92.31 93.59 94.27
Multi-context DIIIRresNet-50 97.73 91.21 96.55 93.95
Multi-context DIVRresNet-50 91.67 96.70 94.83 94.59

INbreast

Chougrad et al. [14] Resnet-50 - - - 92.50

Al-antari et al. [15] Alex Net 97.14 92.41 94.78 95.64

Shen et al. [16] ResCU-Net - - 96.16 94.12

Ghada et al. [17]
ResNet - - - 90

Inception - - - 95

Lou et al. [18]
ResNet-50 69.23 74 84.96 72.37
MGBN-50 77.16 88.24 93.11 84.50

Proposed system

Multi-context ResNet-50 98.57 97.500 99.02 98.18
Multi-context DIRresNet-50 100 97.5 99.64 99.09
Multi-context DIIRresNet-50 100 100 100 100
Multi-context DIIIRresNet-50 97.14 97.50 97.35 97.19
Multi-context DIVRresNet-50 100 97.14 99.56 99
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4.5. Comparison with State-of-the-Art Methods

For comparison, we selected similar state-of-the-art methods, which strictly followed
the evaluation protocol of the CBIS-DDSM dataset. Table 10 summarizes the comparative
results; the proposed method significantly outperforms the state-of-the-art methods. We
selected the methods by Khan et al. [8] and Tsochatzidis et al. [10] for comparison on the
CBIS-DDSM and those by Chougrad et al. [14], Ghada et al. [17], and Lou et al. [18] on
the INbreast because they also employed ResNet-50. The performance of the proposed
method is much better because we used the idea of the fusion of multi-context information
extracted using ResNet-50 or its density-specific adaptations as backbone models. In
addition, we used a novel augmentation approach for increasing the amount of data for
fine-tuning the backbone models. Our proposed method achieved the highest accuracy of
94.90%, approximately 14% higher than the best method, on the CBIS-DDSM and 100%,
approximately 5% higher than the best method. The method’s sensitivity is 99.24%, 100%
on the CBIS-DDSM and INbreast respectively when ResNet-50 is used as a backbone
model; it is much higher than those of the existing methods. The proposed method gives
the overall best performance when density-specific model DIRresNet-50 and DIIRresNet-50
are used as a backbone model on the CBIS-DDSM and INbreast respectively.

5. Discussion

Leveraging the multi-context information, we developed a system to classify whether
a breast mass region is benign or malignant and evaluated it on a benchmark dataset
CBIS-DDSM and INbreast. A CNN model is used as a backbone model in the system; we
evaluated some well-known CNN models (ResNet-50, DensNet-201, InceptionResNetV2,
NasNetLarge) and found that ResNet-50 is the most appropriate model for the system.
An important decision is about extracting contextual information; we evaluated two
methods (multi-scale and multi-context ROIs) and found that multi-context ROIs represent
the diverse contextual information in a better way and helps in better discrimination of
benign and malignant mass regions. Multi-scale ROIs contain redundancy and include less
diversity because a small ROI is fully contained in all larger scale ROIs, and due to this
the performance of the system is not better than when multi-context ROIs are used. The
multi-context ROI scheme MC2 (256 with 5 contexts) results in the best performance.

Another important factor that affects the performance of the system is the fusion
technique. We applied different voting techniques (the majority of the decisions, soft
voting, max voting) and stacking. The stacking yields better performance than the voting
techniques. This is because the voting techniques give the same importance to all ROIs. In
contrast, stacking assigns weights to the ROIs based on their contribution in discriminating
benign and malignant masses; the weights are learned from the training data. We tried
different base classifiers for stacking and found that SVM with RBF kernel is the best choice.
The reason that SVM gives better performance is that it is based on the large margin theory.

Breast density is an important clinical feature used for assessing the risk for breast
cancer. We made density-specific modifications (DIResNet-50, DIIResNet-50, DIIIResNet-
50, DIVResNet-50) in ResNet-50 based on the idea of fusing local and global features
and found that the system gives overall better performance on the CBIS-DDSM dataset
(sensitivity of 98.48%, specificity of 92.31%, AUC of 94.38%, accuracy of 94.90%) when
the density-specific model DIResNet-50 is used as a backbone model. Moreover, in the
INbreast dataset (sensitivity of 100%, specificity of 100%, AUC of 100%, accuracy of 100%)
when the density-specific model DIIResNet-50 is used as a backbone model. Furthermore,
when the density-specific models are trained and tested on the same density type datasets,
they classify the benign and malignant masses from the same breast density type in a
better way. Also, their performance is better than ResNet-50, fine-tuned, and tested on
density-specific datasets.

We compared the system with the state-of-the-art works that used the same CBIS-
DDSM database split protocol. Khan et al. [8] employed the ResNet-50 model to extract
features from a single view and then fused multi-view features. In [10], the authors tested
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the ResNet-50 model with two training scenarios. However, integrating different predic-
tions of diverse multi-context ROIs from a single CNN model yields better classification
results than using multiple CNN models with a single ROI, as in [9,11–13] also, as in [14–
18] on the INbreast. This observation supports our hypothesis that different contexts
surrounding the same mass object introduce diversity and lead to a better understanding
of the nature of a mass. The key benefit of our method is robustness. It is computationally
effective and needs less storage space.

As with the majority of studies, the design of the current study is subject to limitations:

• The system uses ResNet-50 and its modified versions as the backbone model. It
would be better if a new data-dependent model is designed which is adaptive to
mammogram images.

• The method fails when the mass appears in extremely dense breast tissue because
the characteristic similarity between the dense tissue and masses makes breast mass
classification difficult. Figure 16 shows mass regions of test images that are difficult to
classify accurately.

Figure 16. Example of mass regions, which are in dense surroundings, and it is difficult for the models to predict them
correctly; (a) benign mass that is misclassified as a malignant mass; (b) malignant mass that is misclassified as a benign
mass.

6. Conclusions

We addressed the challenging problem of discriminating benign and malignant masses
and, leveraging the advances in deep learning, introduced a computer-aided system for this
problem based on the hypothesis that multi-context information helps better differentiate
benign and malignant masses. We evaluated the system thoroughly using the benchmark
CBIS-DDSM and INbreast dataset and found that the system outperforms the state-of-the-
art methods. For modeling the diverse contextual information, multi-context ROIs is the
best scheme. For fusing the multi-context information extracted from multi-context ROIs,
stacking is the best approach, and in stacking, SVM with RBF kernel serves as the best
base model. Furthermore, ResNet-50 is the best backbone model for the system, and its
density-specific modifications are even better than this model. Moreover, when ResNet-50
is adapted for a specific breast density type and fine-tuned on the dataset of the same
density type, its density-specific modifications result in better discrimination of benign and
malignant masses from the same breast density type. In the discrimination of benign and
malignant masses, micro-texture patterns and the shapes of the mass regions play a key
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role. The proposed system implicitly exploits this information; an interesting future work
will be to explicitly employ this information and adversarial learning to develop a more
robust system.

Author Contributions: Conceptualization, M.B. and M.H.; Data curation, M.B.; Formal analysis,
M.B.; Funding acquisition, F.-e.-A.; Methodology, M.B. and M.H.; Project administration, M.H.;
Resources, M.H.; Software, M.B.; Supervision, M.H. and H.A.A.; Validation, M.B.; Visualization, M.B.;
Writing—original draft, M.B.; Writing—review and editing, M.H. and F.-e.-A. All authors have read
and agreed to the published version of the manuscript.

Funding: This project was funded by the National Plan for Science, Technology, and Innovation
(MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Grant
No. (5-18-03-001-0007).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The CBIS-DDSM dataset is available at: https://wiki.cancerimagingarchive.
net/display/Public/CBIS-DDSM (accessed on 5 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 5

October 2021).
2. Coleman, C. Early Detection and Screening for Breast Cancer. Semin. Oncol. Nurs. 2017, 33, 141–155. [CrossRef]
3. Autier, P.; Boniol, M. Mammography screening: A major issue in medicine. Eur. J. Cancer 2018, 90, 34–62. [CrossRef]
4. Chaira, T. Intuitionistic fuzzy approach for enhancement of low contrast mammogram images. Int. J. Imaging Syst. Technol. 2020,

30, 1162–1172. [CrossRef]
5. Qiu, Y.; Yan, S.; Gundreddy, R.R.; Wang, Y.; Cheng, S.; Liu, H.; Bin Zheng, B. A new approach to develop computer-aided

diagnosis scheme of breast mass classification using deep learning technology. J. X-ray Sci. Technol. 2017, 25, 751–763. [CrossRef]
6. Falconí, L.G.; Pérez, M.; Aguilar, W.G. Transfer Learning in Breast Mammogram Abnormalities Classification with Mobilenet and

Nasnet. In Proceedings of the 2019 International Conference on Systems, Signals, and Image Processing (IWSSIP), Osijek, Croatia,
5–7 June, 2019; pp. 109–114.

7. Perre, A.C.; Alexandre, L.A.; Freire, L.C. Lesion Classification in Mammograms Using Convolutional Neural Networks and
Transfer Learning. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2019, 7, 550–556. [CrossRef]

8. Khan, H.N.; Shahid, A.R.; Raza, B.; Dar, A.H.; Alquhayz, H. Multi-View Feature Fusion Based Four Views Model for Mammogram
Classification Using Convolutional Neural Network. IEEE Access 2019, 7, 165724–165733. [CrossRef]

9. Li, H.; Chen, D.; Nailon, W.H.; Davies, M.E.; Laurenson, D. A Deep Dual-path Network for Improved Mammogram Image
Processing. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal, Processing
(ICASSP), Brighton, UK, 12–17 May 2019; pp. 1224–1228.

10. Tsochatzidis, L.; Costaridou, L.; Pratikakis, I. Deep Learning for Breast Cancer Diagnosis from Mammograms—A Comparative
Study. J. Imaging 2019, 5, 37. [CrossRef] [PubMed]

11. Duggento, A.; Aiello, M.; Cavaliere, C.; Cascella, G.L.; Cascella, D.; Conte, G.; Guerrisi, M.; Toschi, N. An Ad Hoc Random
Initialization Deep Neural Network Architecture for Discriminating Malignant Breast Cancer Lesions in Mammographic Images.
Contrast Media Mol. Imaging 2019, 2019, 5982834. [CrossRef]

12. Shu, X.; Zhang, L.; Wang, Z.; Lv, Q.; Yi, Z. Deep Neural Networks with Region-Based Pooling Structures for Mammographic
Image Classification. IEEE Trans. Med. Imaging 2020, 39, 2246–2255. [CrossRef]

13. Alhakeem, Z.; Jang, S.I. LBP-HOG Descriptor Based on Matrix Projection for Mammogram Classification. arXiv 2021,
arXiv:1904.00187.

14. Chougrad, H.; Zouaki, H.; Alheyane, O. Deep Convolutional Neural Networks for Breast Cancer Screening. Comput. Methods
Programs Biomed. 2018, 157, 19–30. [CrossRef] [PubMed]

15. Al-Antari, M.A.; Al-Masni, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S. A Fully Integrated Computer-Aided Diagnosis System for
Digital X-Ray Mammograms via Deep Learning Detection, Segmentation, and Classification. Int. J. Med. Inform. 2018, 117, 44–54.
[CrossRef] [PubMed]

16. Shen, T.; Gou, C.; Wang, J.; Wang, F.-Y. Simultaneous Segmentation and Classification of Mass Region from Mammograms Using
a Mixed-Supervision Guided Deep Model. IEEE Signal Process. Lett. 2019, 27, 196–200. [CrossRef]

17. Aly, G.H.; Marey, M.A.E.-R.; Amin, S.E.-S.; Tolba, M.F. YOLO V3 and YOLO V4 for Masses Detection in Mammograms with
ResNet and Inception for Masses Classification. In Proceedings of the International Conference on Advanced Machine Learning
Technologies and Applications, Cairo, Egypt, 20–22 March 2021; pp. 145–153. [CrossRef]

https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://www.who.int/news-room/fact-sheets/detail/cancer
http://doi.org/10.1016/j.soncn.2017.02.009
http://doi.org/10.1016/j.ejca.2017.11.002
http://doi.org/10.1002/ima.22437
http://doi.org/10.3233/XST-16226
http://doi.org/10.1080/21681163.2018.1498392
http://doi.org/10.1109/ACCESS.2019.2953318
http://doi.org/10.3390/jimaging5030037
http://www.ncbi.nlm.nih.gov/pubmed/34460465
http://doi.org/10.1155/2019/5982834
http://doi.org/10.1109/TMI.2020.2968397
http://doi.org/10.1016/j.cmpb.2018.01.011
http://www.ncbi.nlm.nih.gov/pubmed/29477427
http://doi.org/10.1016/j.ijmedinf.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/30032964
http://doi.org/10.1109/LSP.2019.2963151
http://doi.org/10.1007/978-3-030-69717-4_15


Biosensors 2021, 11, 419 23 of 24

18. Lou, M.; Wang, R.; Qi, Y.; Zhao, W.; Xu, C.; Meng, J.; Deng, X.; Ma, Y. MGBN: Convolutional neural networks for automated
benign and malignant breast masses classification. Multimedia Tools Appl. 2021, 80, 1–20. [CrossRef]

19. Polikar, R. Ensemble Machine Learning; Springer: Boston, MA, USA, 2012; pp. 1–34.
20. Shen, R.; Zhou, K.; Yan, K.; Tian, K.; Zhang, J. Multi-Context Multi-Task Learning Networks for Mass Detection in Mammogram.

In Medical Physics; Springer: Boston, MA, USA, 2019.
21. Luo, S.; Cheng, B. Diagnosing Breast Masses in Digital Mammography Using Feature Selection and Ensemble Methods. J. Med.

Syst. 2010, 36, 569–577. [CrossRef] [PubMed]
22. Dietterich, T.G. Ensemble Methods in Machine Learning. In Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany,

2000.
23. Nguyen, Q.H.; Do, T.T.T.; Wang, Y.; Heng, S.S.; Chen, K.; Ang, W.H.M.; Philip, C.E.; Singh, M.; Pham, H.N.; Nguyen, B.P.; et al.

Breast Cancer Prediction using Feature Selection and Ensemble Voting. In Proceedings of the 2019 International Conference on
System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019; pp. 250–254.

24. Swiderski, B.; Osowski, S.; Kurek, J.; Kruk, M.; Lugowska, I.; Rutkowski, P.; Barhoumi, W. Novel methods of image description
and ensemble of classifiers in application to mammogram analysis. Expert Syst. Appl. 2017, 81, 67–78. [CrossRef]

25. Tang, X.; Zhang, L.; Zhang, W.; Huang, X.; Iosifidis, V.; Liu, Z.; Zhang, M.; Messina, E.; Zhang, J. Using Machine Learning to
Automate Mammogram Images Analysis. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Seoul, South Korea, 16–19 December 2020; pp. 757–764.

26. Arora, R.; Rai, P.K.; Raman, B. Deep feature–based automatic classification of mammograms. Med. Biol. Eng. Comput. 2020, 58,
1199–1211. [CrossRef]

27. Fezza, S.A.; Bakhti, Y.; Hamidouche, W.; Deforges, O. Perceptual Evaluation of Adversarial Attacks for CNN-based Image
Classification. In Proceedings of the 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX),
Berlin, Germany, 5–7 June 2019; pp. 1–6.

28. Savelli, B.; Bria, A.; Molinara, M.; Marrocco, C.; Tortorella, F. A multi-context CNN ensemble for small lesion detection. Artif.
Intell. Med. 2020, 103, 101749. [CrossRef]

29. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
31. Abdelhafiz, D.; Yang, C.; Ammar, R.; Nabavi, S. Deep convolutional neural networks for mammography: Advances, challenges

and applications. BMC Bioinform. 2019, 20, 1–20. [CrossRef]
32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
33. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
34. Jiao, Z.; Gao, X.; Wang, Y.; Li, J. A deep feature based framework for breast masses classification. Neurocomputing 2016, 197,

221–231. [CrossRef]
35. Kabbai, L.; Abdellaoui, M.; Douik, A. Image Classification by Combining Local and Global Features. Vis. Comput. 2019, 35,

679–693. [CrossRef]
36. Zou, J.; Li, W.; Chen, C.; Du, Q. Scene classification using local and global features with collaborative representation fusion. Inf.

Sci. 2016, 348, 209–226. [CrossRef]
37. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 2016, 39, 640–651. [CrossRef]
38. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

39. Chu, B.; Yang, D.; Tadinada, R. Visualizing Residual Networks. arXiv 2017, arXiv:1701.02362.
40. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Piscataway, NJ, USA, 2016.
41. Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2009, 33, 1–39. [CrossRef]
42. Wolpert, D.H. Stacked Generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
43. Aroef, C.; Rivan, Y.; Rustam, Z. Comparing random forest and support vector machines for breast cancer classification. Telkomnika

Telecommun. Comput. Electron. Control. 2020, 18, 815–821. [CrossRef]
44. Sarosa, S.J.A.; Utaminingrum, F.; Bachtiar, F.A. Mammogram Breast Cancer Classification Using Gray-Level Co-Occurrence

Matrix and Support Vector Machine. In Proceedings of the 2018 International Conference on Sustainable Information Engineering
and Technology (SIET), Malang, Indonesia, 10–12 November 2018; pp. 54–59.

45. Gunn, S. Support Vector Machines for Classification and Regression. ISIS Tech. Rep. 1998, 14, 5–16.
46. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge

University Press: Cambridge, UK, 2000.
47. Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D. A curated mammography data set for use in computer-

aided detection and diagnosis research. Sci. Data 2017, 4, 1–9. [CrossRef]

http://doi.org/10.1007/s11042-021-10929-6
http://doi.org/10.1007/s10916-010-9518-8
http://www.ncbi.nlm.nih.gov/pubmed/20703679
http://doi.org/10.1016/j.eswa.2017.03.031
http://doi.org/10.1007/s11517-020-02150-8
http://doi.org/10.1016/j.artmed.2019.101749
http://doi.org/10.1145/3065386
http://doi.org/10.1186/s12859-019-2823-4
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1016/j.neucom.2016.02.060
http://doi.org/10.1007/s00371-018-1503-0
http://doi.org/10.1016/j.ins.2016.02.021
http://doi.org/10.1109/TPAMI.2016.2572683
http://doi.org/10.1007/s10462-009-9124-7
http://doi.org/10.1016/S0893-6080(05)80023-1
http://doi.org/10.12928/telkomnika.v18i2.14785
http://doi.org/10.1038/sdata.2017.177


Biosensors 2021, 11, 419 24 of 24

48. Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J. INbreast: Toward a Full-field Digital Mammo-
graphic Database. Acad. Radiol. 2012, 19, 236–248. [CrossRef] [PubMed]

49. Wong, S.; Gatt, A.; Stamatescu, V.; McDonnell, M.D. Understanding Data Augmentation for Classification: When to Warp? In
Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold
Coast, QLD, Australia, 30 November–2 December 2016; pp. 1–6.

50. Ranganathan, P.; Pramesh, C.S.; Aggarwal, R. Common pitfalls in statistical analysis: Measures of agreement. Perspect. Clin. Res.
2017, 8, 187–191. [CrossRef]

51. Zhu, W.; Zeng, N.; Wang, N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS
implementations. NESUGProc. Health Care Life Sci. Baltim. Md. 2010, 19, 67.

52. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

53. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-Resnet and the Impact of Residual Connections on
Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017.

54. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 8697–8710.

http://doi.org/10.1016/j.acra.2011.09.014
http://www.ncbi.nlm.nih.gov/pubmed/22078258
http://doi.org/10.4103/picr.PICR_123_17

	Introduction 
	Proposed Method 
	Modeling the Context Information 
	Scale-Based Multi-Context Regions of Interest (ROIs) Extraction 
	Translation-Based Multi-Context ROIs Extraction 

	Preprocessing 
	Backbone Convolutional Neural Network (CNN) Model 
	Fine-Tuned ResNet-50 
	Density Specific Modification of ResNet-50–DResNet-50 
	DIResNet-50 for BI-RADS I 
	DIIResNet-50 for BI-RADS II 
	DIIIResNet-50 for BI-RADS III 
	DIVResNet-50 for BI-RADS IV 

	Fusion Techniques 
	Majority of the Decisions 
	Soft Voting 
	Max Voting 
	Stacking 

	Training of CNN Models 
	Datasets 
	Data Augmentation 
	Fine-Tuning the Backbone Models 


	Evaluation Protocol 
	Result 
	Why ResNet-50 as a Backbone Model? 
	The Effect of Multi-Scale and Multi-Context Schemes for a Test Region 
	The Effect of Different Fusion Techniques 
	The Effect of Density-Specific Models 
	Comparison with State-of-the-Art Methods 

	Discussion 
	Conclusions 
	References

