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Abstract: Toxic organochloride molecules are widely used in industry for various purposes. With
their high volatility, the direct detection of organochlorides in environmental samples is chal-
lenging. Here, a new organochloride detection mechanism using 1,5-diazabicyclo[4.3.0]non-5-ene
(DBN) is introduced to simplify a sensing method with higher detection sensitivity. Three types of
organochloride compounds-trichloroethylene (TCE), dichloromethane (DCM), and dichlorodiphenyl-
trichloroethane (DDT)—were targeted to understand DCM conjugation chemistry by using nuclear
magnetic resonance (NMR) and liquid chromatography with a mass spectrometer (LC-MS). 13C-NMR
spectra and LC-MS data indicated that DBN can be labeled on these organochloride compounds
by chlorine–nitrogen interaction. Furthermore, to demonstrate the organochloride sensing capa-
bility, the labeling yield and limit of detection were determined by a colorimetric assay as well as
micellar electrokinetic chromatography (MEKC). The interaction with DBN was most appreciable
for TCE, among other organochlorides. TCE was detected at picomolar levels, which is two orders
of magnitude lower than the maximum contaminant level set by the United States Environmental
Protection Agency. MEKC, in conjunction with this DBN-labeling method, enables us to develop a
field-deployable sensing platform for detecting toxic organochlorides with high sensitivity.

Keywords: micellar electrokinetic chromatography; capillary zone electrophoresis; organochloride
detection; chlorinated hydrocarbons; halogen bonding; environmental pollution

1. Introduction

Small organochlorine compounds, which are generally used as organic solvents, can
cause neurological damage, endocrine disorders, and cancers [1–4]. Trichloroethylene
(TCE), dichloromethane (DCM), and dichlorodiphenyltrichloroethane (DDT) are com-
monly used solvents in industry for various chemical processes. Due to the high stability
and volatility of organochlorides, these remain intact in water, air, and soil for a long
period of time. According to the United States Environmental Protection Agency (EPA)
regulations, the maximum allowable contaminant levels of typical organochlorines in
drinking water are as low as 5 ppb for TCE, 5 ppb for DCM, and 50 ppb for DDT [5–7].
When organochloride contamination occurs, contaminated sites should be cleaned through
chemical, biological, and/or photolytic degradation processes [8–16]. Rapid assessment
to determine the concentration and origin of organochloride compounds is crucial for
effective remediation processes [17–21].

A variety of analytical methods have been used to detect and quantify organochlorides.
GC/MS (gas chromatography/mass spectrometry) and liquid chromatography (LC) with
a UV absorbance detector have been used as standard analytical methods for the analysis
of organic pollutants in laboratories to obtain proper sensitivity [22,23]. However, these
instruments are bulky and expensive and consume large amounts of organic solvents,
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which is far from being practical for field tests. A colorimetric assay can be an alternative
method to overcome these drawbacks; however, this approach typically requires lengthy
incubation times for chemical complexation with chromophores and shows poor sensitivity
for the detection of small organochlorine compounds [24].

In this study, we developed a fluorescence-based assay for TCE, DCM, and DDT
in an aqueous solution using the formation of organochloride-amidine complexes. We
found that TCE molecules bind to 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) through Cl···N
interactions [25,26]. Typically, this cyclic amidine is used as a base in organic synthesis;
however, it was used as a labeling agent in this study, along with amine-reactive Pacific Blue
(PB) dye. The formation of organochloride-DBN complexes by Cl···N halogen bonding [27]
was characterized and analyzed by 13C-NMR, LC/MS, and a colorimetric assay. With this
labeling method, micellar electrokinetic chromatography (MEKC) [28] was performed using
a portable microfluidic MEKC platform, and a picomolar level of LOD was achieved. This
new labeling chemistry using a portable microfluidic MEKC platform demonstrates high
sensitivity for the detection of organochlorides without bulky analytical instruments [29].

2. Materials and Methods

All organochlorides (TCE, DCM, and 4,4′-DDT), DBN, dimethyl sulfoxide (DMSO),
sodium tetraborate, and sodium dodecyl sulfate (SDS) were obtained from Sigma-Aldrich
(St. Louis, MO, USA). Pacific Blue succinimidyl ester (PB) was purchased from Thermo
Fisher Scientific (Waltham, MA, USA). Four different concentrations (278 nM, 555 nM,
55.5 µM, and 5.55 mM) of organochlorides and 165 mM of DBN were prepared using DMSO.
To prepare a mixture of organochloride and DBN, nine parts of each organochloride were
mixed with one part of the DBN solution to obtain the final concentrations of 250 nM,
500 nM, 50 µM, and 5 mM for organochlorides and 16.5 mM for DBN. The viscosity and
color of the mixture provide good indicators for estimating the preliminary formation of
the organochloride-DBN complex.

To understand the formation of this complex, 13C-NMR spectra of organochlorides,
DBN, and their mixture were measured by a JEOL ECS 400 MHz NMR spectrometer
(Peabody, MA, USA). These spectra were obtained in a range of 10~180 ppm with 3.4 µs
(30◦) pulse and 2 relaxation delays. For measuring the spectrum of TCE only, 56.8 mM of
TCE was prepared with DMSO (490 µL) and added to 120 µL of D2O to obtain a 45.6 mM
TCE sample. For DBN, 165 mM of DBN was prepared with DMSO (490 µL) and added to
120 µL of D2O to obtain a 133 mM DBN sample. For the mixture of TCE and DBN, 245 µL
of the 45.6 mM TCE and 245 µL of the 133 mM DBN for low TCE concentration and 245 µL
of 182 mM TCE and 245 µL of the 133 mM DBN for high TCE concentration were added to
120 µL of D2O, respectively.

Liquid chromatography (LC)/electrospray ionization mass spectrometry (ESI-MS)
studies were performed by a Dionex ultimate 3000 and a TSQ Vantage mass spectrometer
(Waltham, MA, USA). The solvent for LC was a mixture of acetonitrile (2%) and formic
acid (0.1%) in water. After 5 min, a mixture of 5 mM of each organochloride and 16.5 mM
of DBN was separated by 150 mm × 75 µm Acclaim PepMap RSLC columns (Acclaim C18,
Thermo Fisher Scientific Inc., Waltham, MA, USA) with a flow rate of 350 nL/min. The
mass spectrometer was operated in a positive mode with an ESI voltage of 1500 V, and the
scanned mass-to-charge ratio ranged from m/z 150 to m/z 800. Raw data from LC/ESI-MS
were processed by an Xcalibur Qual Browser (Thermo Fisher Scientific, Waltham, MA,
USA) [30].

As mentioned above, the color of the mixture changes with different concentrations
of organochlorides. For such colorimetric detection of organochloride-DBN complexes,
the concentration of each organochloride solution was adjusted with DI water to 250 nM,
500 nM, 50 µM, and 5 mM, respectively, and 16.5 mM of DBN solution was prepared with
DMSO. After each organochloride and DBN were mixed, absorbance values at 450 nm
were recorded at 0, 12.5, 25, 50, 125, and 250 h using a microplate reader, GENios (TECAN
Group, Männedorf, Switzerland).
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Micellar electrokinetic chromatography (MEKC) was also performed using this la-
beling technique for the highly sensitive detection of each organochloride. A standard
T-shaped microchip from Micralyne with a 50 µm width, 20 µm height, and 8 cm long
separation channel was used [11]. 30 mM of sodium tetraborate at pH 9.2 with 60 mM of
SDS was prepared for the MEKC running buffer. 125 nM, 250 nM, 500 nM, 50 µM, and
5 mM of each organochloride were prepared for the MEKC analysis. For the fluorescence
labeling, amine-reactive PB was prepared at a concentration of 20 mM in DMSO. Five
solutions of different organochloride concentrations (625 pM, 1.25 nM, 2.5 nM, 250 nM,
and 25 µM) were prepared under a fixed concentration of PB (0.1 mM) and DBN (82.5 µM);
the volume ratio used in this preparation was organochloride:PB:buffer:DBN = 1:1:200:1.
After each mixture solution was left for 5 min at room temperature, the mixture was loaded
into the capillary channel through the cross-injector with an applied voltage of 0, 0, −600,
and 0 V to the anode electrode, sample, sample waste, and cathode electrode, respectively.
After 60 s, the above voltage was changed to 0, −1500, −1500, and −8400 V, for separa-
tion of the mixture [28]. A custom-made fluorescence detection system using a 405 nm
diode laser (Thorlab Inc., Newton, NJ, USA) [11] was used to obtain electropherograms of
PB-labeled complexes from each sample. The electropherograms were also measured at 0,
2, 10, and 24 h, and peak areas of these electropherograms were calculated for obtaining
conversion yields.

3. Results and Discussion

We observed a substantial change in the color of the organochloride solutions after
mixing with DBN. Figure S1A shows the mixture of various concentrations of organochlo-
rides and DBN in DMSO. The color intensities are proportional to the concentrations
of organochlorides. In particular, TCE showed the most significant change among the
organochlorides as compared with DCM and DDT. Furthermore, the viscosity of the mix-
ture changes noticeably at high concentrations of TCE, as shown in Figure S1B. As the
amount of TCE increases, the mixture turns into a gel-like solution, implying the formation
of a cross-linked structure.

To understand this chemical process, i.e., intermolecular interaction or molecular
decomposition, we first investigated any possible change in the molecular structure of TCE
and DBN using 13C-NMR spectroscopy. Figure 1 shows 13C-NMR spectra of TCE, DBN,
and their mixtures. The mixtures with two molar ratios (1:2.9 and 4:2.9) of TCE to DBN
were prepared for the NMR studies. TCE only in DMSO/D2O shows typical chemical shift
(δ) at 117 ppm and 122 ppm (Figure 1A). The former is associated with the carbon bonded
to the hydrogen atom. However, the δ values of DBN in DMSO/D2O display an indication
of DBN decomposition [31]. The unexpected position of δ at 176 ppm [32], which is far
downfield compared to the C6 carbon of pure DBN at 162 ppm (top structure in Figure 1B),
is attributed to the hydrolyzed DBN [33,34], (3-Aminopropyl)-2-pyrrolidinone (bottom
structure in Figure 1B). Water in the DMSO/D2O likely caused the hydrolysis of DBN [33],
and hydrolysis is the only pathway for DBN decomposition in the experimental condition
described above. The 13C-NMR indicated that the DBN and the hydrolyzed DBN do not
interact with each other in the neutral condition since the chemical shifts represent the
mere mixture of the two compounds. A detailed structure of DBN and NMR assignment
can be found in the literature [31].

Figure 1C,D present 13C-NMR spectra of the mixture of DBN and two different TCE
concentrations. Both spectra show similar chemical shifts. Compared to the NMR spectra
from only TCE or DBN (Figure 1A,B), TCE in the mixture does not show a new peak;
however, DBN in the mixture shows new peaks whereas other major peaks show the same
δ values. Thus, we concluded that there exist intermolecular interactions between TCE and
DBN without any noticeable chemical reactions [35,36]. The most plausible intermolecular
interaction is a chloride–nitrogen interaction. When TCE interacts with DBN by Cl···N
halogen bonding, the C6 carbon of the DBN becomes electron-deficient with the partially
positive charge (δ+) on the nitrogen atom, and this is consistent with the downfield shift of
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δ = 162 ppm to δ = 167 ppm as shown in Figure 1C. Each δ of the TCE carbons at 117 ppm
and 122 ppm splits into a doublet. In addition, the NMR peak in the interaction of TCE with
the hydrolyzed DBN becomes distinct at a high concentration of TCE, which is located on
the downfield side of δ = 176 ppm (Figure 1D). The presence of δ = 172 ppm may be due to
the interaction of the oxygen atom of the hydrolyzed DBN with the hydrogen atom of the
TCE since C6′ carbon should be electron-rich due to hydrogen bonding. Unlike aromaticity
and polarity as the adsorption mechanism of TCE, for example, on biochars [37], Cl···N
halogen bonding was identified as a more detailed type of interaction.
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concentration of TCE. TCE interacts with DBN by Cl···N halogen bonding. C6-TCE: downfield shift
of C6 carbon of DBN by the interaction with TCE. (D) The mixture of DBN and a high concentration
of TCE. The amine group of the hydrolyzed DBN interacts with TCE, and the downfield shift of C6

′

carbon is insignificant (labeled C6
′-TCE). The peak intensity of TCE increases with the increase in

TCE concentration. The (broad) peak around 39 ppm is DMSO.
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In addition to these 13C-NMR analyses, we analyzed the mixture using LC/MS to
clarify the nature of this intermolecular interaction. Figure 2A shows LC chromatograms
of the mixture of 5 mM of organochlorides and 16.5 mM of DBN. The background ref-
erence is DBN in a formic acid solution, and an additional peak is consistent with the
partial hydrolysis of DBN. This acidic condition will produce more protonated forms of
(hydrolyzed) DBN. The peaks at 2 min in Figure 2A are largely due to both pure DBN
and hydrolyzed DBN, whereas the peaks at 10.5 min are mainly due to the hydrolyzed
DBN, and this assignment is in good agreement with a mass analysis, as will be discussed
later. Compared to DBN only, all the chromatograms of the organochloride-DBN mixtures
presented two major changes. First, there are a series of three peaks in the short retention
time indicated in region 1 of Figure 2A, and from the order of retention time, the peaks
could be from DBN, hydrolyzed DBN, and their adduct, by estimating their molecular
size: DBN (124) < hydrolyzed DBN (142) < hydrolyzed DBN-DBN adduct (266). Secondly,
broadened peaks in the long retention time (region 2:10—13 min) were observed, possibly
due to the interaction of the hydrolyzed DBN ammonium with the organochlorides. Hy-
drolyzed DBN molecules can have a positive charge on the protonated amine group, and
this resulted in the appearance at the long retention time. In particular, both the carbonyl
and amine groups of the hydrolyzed DBN interact with TCE (Figure 1D). This strong
interaction of TCE to the (hydrolyzed) DBN molecules produced multiple peaks at the long
retention time, such as TCE—(hydrolyzed) DBN + ion, TCE—(hydrolyzed) DBN-TCE, or
TCE—(hydrolyzed) DBN-TCE—(hydrolyzed) DBN.

Mass spectra coupled with the LC chromatograms were obtained to gain more con-
clusive information on the organochloride-DBN complex. Figure 2B,C show the mass
spectra recorded at the short and long retention times, respectively. The primary mass-
to-charge ratio (m/z) of DBN, TCE, DCM, and DDT is m/z 124, m/z 134, m/z 84.9, and
m/z 354.9, respectively [38]. A mass spectrum of DBN shows several major peaks at
m/z 281.16, m/z 344.79, and m/z 406.31. We did not see molecular ions smaller than
m/z 160, and this was due to the high concentration of the samples. Having excluded
the possible formation of fragment adducts from ammonium (m/z 18) and acetamide
(m/z 45) [39], we interpreted the m/z values as follows: 281 = DBN (124) + [hydrolyzed
DBN] (142) + CH3 (15), 344—281 = 63 = DMSO (78)—CH3 (15), 406 = 2 × ([hydrolyzed
DBN] + CH3COOH + H+) [33,40] = 2× (142 + 61) in the acidic condition. The interpretation
of the mass spectrum was made with the inclusion of the hydrolyzed DBN. Therefore, the
mass analysis indicates that DBN exists in the form of the complexation between pure DBN
and hydrolyzed DBN, i.e., (3-Aminopropyl)-2-pyrrolidinone.

The most remarkable result in the mass spectra of the organochloride-DBN mixtures
is that the interval of m/z values is 124, which is not a fragment, but the mass of DBN.
For the DBN + TCE mixture, the m/z value increases by 124 three consecutive times from
m/z 307.37 to m/z 697.51 (the other repeated is m/z 142: the mass of the hydrolyzed DBN,
Figure S2). The m/z 307.37 was interpreted as [TCE (134) + H+(1) + TCE (134)] + HCl (38).
In the case of the DCM and DBN mixture, the peak interval between m/z 291.25 and
m/z 415.25 is the same as TCE. Therefore, we hypothesized that one molecule of TCE with
three chlorine atoms can bond with up to three DBN molecules, and one molecule of DCM
with two chlorine atoms bonds mostly with one DBN molecule. This result implies that the
interaction of DBN is the most significant for TCE. With the characteristic molecular ion
of DDT observed at m/z 354.94, the lack of the m/z 124 interval in the DDT-DBN sample
may indicate the weak interaction between DDT and DBN. Scheme 1 illustrates a probable
mechanism of the intermolecular interaction of TCE with DBN through Cl···N halogen
bonding. Note that the resonance form of DBN produces a partial positive charge on the
nitrogen atom [31,32].
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In Figure 2C, the sample of TCE + DBN shows numerous unresolved peaks at m/z
300~600, whereas the samples of DCM + DBN and DDT + DBN show a similar pattern
with DBN only [41]. Thus, the interaction of the hydrolyzed DBN with TCE is much
stronger than that of pure DBN with TCE. This interaction may play a role in the gel-like
formation [42–44], and the hydrolyzed DBN does not interact strongly with DCM or DDT.
In TCE, the difference between m/z 449 and m/z 640 is 191, and this can be assigned
to DBN and its fragment (m/z 124 + m/z 67). Accordingly, m/z 449 was interpreted
as m/z 124 + m/z 134 + ∆m/z 191, which is consistent with the existence of DBN-TCE
complexes. From these mass spectrometry analyses, we were able to determine the possible
molar ratio in the organochloride-DBN complex and to estimate the relative strength of
the organochloride-DBN complex: TCE > DCM >> DDT. This strength of the interaction
shows excellent agreement with the absorption and fluorescence study about complexation
in the following discussions.

We monitored the absorption of the organochloride-DBN complexes at 450 nm upon
the addition of DBN to obtain preliminary information on complexation yield and limit of
detection (LOD). Figure 3 shows the absorption profile of each organochloride versus time
in the presence of DBN. The absorption of TCE-DBN complexes increases remarkably by
two orders of magnitude as the concentration of TCE increases. In the case of DCM and
DDT, however, the increase in absorption is negligible. Therefore, the interaction between
organochlorides and DBN is the most significant for TCE. All the absorption profiles
indicate that most of the organochloride-DBN complexes are formed during the first 50 h.
Based on the absorption versus organochloride concentrations shown in Figure 3D, the
LOD was estimated to be approximately 200 nM. This colorimetric technique enables the
simple and efficient quantification of the organochlorides, although it takes a long time to
complete the detection procedure with relatively low sensitivity.
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To improve the overall sensing time and sensitivity, we analyzed the organochloride-
DBN complex by further labeling it with PB fluorescence dye using a MEKC chromatog-
raphy technique. The fluorescent PB is typically used as an indicator of the presence
of amine molecules with the formation of an amide bond. However, in this study, the
PB has proven to be labeled on the organochloride-DBN complex, likely by intermolec-
ular interaction or possibly in micelles that may form when the concentration of DBN
is high [44]. The mechanistic detail of the interaction is outside the scope of the MEKC
analysis. The electropherograms of the MEKC analyses show that the fluorescence signal
of the organochloride-DBN complex is separated from that of DBN due to the difference
in molecular size and electrical charge [45]. This led us to explore the complex formation
with various reaction times and organochloride concentrations to understand the reaction
kinetics and the detection limit. Figure 4 shows the electropherograms from the mixtures
of each organochloride (25 µM) and DBN (82.5 µM) at different mixing durations. All
mixtures were incubated with PB for 5 min before the MEKC analyses.
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To estimate the limit of detection (LOD) of the organochlorides in the MEKC analyses,
625 pM, 1.25 nM, 2.5 nM, 250 nM, and 25 µM of each organochloride was mixed with
DBN and PB, and then incubated for 24 hrs before loading. As shown in Figure 5 (top
electropherograms), all the reference samples without organochlorides show only the peaks
from DBN and PB. Once organochlorides were added, a peak of the organochloride-DBN
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complex appeared. In Figure 5A, for the DBN and the TCE-DBN complex, as the TCE
concentration increased from 625 pM to 25 µM, the intensity of the TCE-DBN complex
increased. In particular, the TCE-DBN complex was completely dominant over the DBN
at a DBN concentration of 25 µM, where the peak of the trimeric TCE1-DBN3 complex
was dominantly observed. Figure 5C show the electropherograms of DCM and DDT,
which exhibit a similar trend to that of TCE. However, due to the weak interaction of
DCM and DDT with DBN, excess DBN remains such that the complexation has not been
completed. To estimate the overall detection limit, the area of each peak was obtained and
plotted in Figure 5D. Using the standard deviation and sensitivity [29,46], we calculated
approximate LODs of 170 pM for TCE, 100 pM for DCM, and 70 pM for DDT (see SI
for calculation). These picomolar LODs are similar to those from conventional mass
spectrometry methods [47,48].
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In Figure 4A–C, the intensity is proportional to the concentration of PB-conjugated
chemical species. In the case of the sample with a 0 hr mixing duration, four peaks were
observed corresponding to DBN, the organochloride-DBN complex, and two peaks from
PB itself. As the mixing progressed, the peak intensity of DBN gradually decreased while
the concentration of the organochloride-DBN complex increased. The concentrations of
DBN and the TCE-DBN complex were almost completely switched after 24 h, as shown
in Figure 4A, indicating a quantitative conversion to a trimeric TCE1-DBN3 complex. In
the case of DCM and DDT, as shown in Figure 4B,C, however, such conversion was much
less than that of TCE. Peak areas were plotted for each organochloride, as presented in
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Figure 4D. This plot shows the yield of the conversion from DBN to organochloride-DBN
complexes. All the conversion profiles show typical first-order association kinetics. After
24 h, a conversion yield of 95% for TCE, 40% for DCM, and 20% for DDT was achieved,
respectively. These results are consistent with the findings of the 13C-NMR, LC/MS, and
absorption measurements. On account of the trimeric TCE1-DBN3 formed, the process of
TCE-DBN complexation is expectedly the fastest among the three types of organochlorides.

4. Conclusions

In this study, we demonstrated that the Cl···N interaction can be used in the prepara-
tion of samples of organochlorides by adding DBN as a complexation agent. With TCE,
DCM, and DDT mixed with DBN, various analytical analyses have been demonstrated
for the occurrence of such halogen bonding. 13C-NMR and LC/MS data indicated the
formation of organochloride-DBN complexes and the hydrolysis of DBN molecules in an
aqueous solution. Interestingly, the complexation process from the interaction induced no-
ticeable color and viscosity changes. By using this simple analytical method, a colorimetric
assay has been performed with a limit of detection (LOD) of 200 nM for organochlorides
after 240 h. To overcome the drawbacks of a long incubation period, a portable microfluidic
MEKC analyzer was used with Pacific Blue fluorescence. This platform enables us to
detect organochlorides with high sensitivity (LOD: 170 pM for TCE, 106 pM for DCM, and
72 pM for DDT). These LODs are two orders of magnitude lower than those suggested
by the United States EPA. In future work, we will seek to further understand the role of
the hydrolyzed DBN in the complexation and understand how PB interacts with DBN-
organochloride complexes. Although DBN-based detection of organochlorides with MEKC
analysis may not be readily applicable to all the chlorinated hydrocarbons due to structural
selectivity, we expect that this complexation method will provide an efficient analytical
route for the detection of environmental contaminants such as pesticides and chlorinated
organic solvents.

In addition, a portable microfluidic MEKC platform with a laser-induced fluorescence
detector requires the use of fluorescence tags to label the organochloride-DBN complexes,
and this limits the operating detection wavelengths to longer than 430 nm. To expand
the wavelength range, the sensing platform can be altered to include a UV detector. This
may enable the use of additional types of labeling agents such as hydroxycoumarin, which
could interact with targets via Cl···O bonding.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11110413/s1, Photograph of the mixtures of organochloride (TCE, DCM, and DDT) and
DBN; mass spectrum of the mixture of TCE and DBN; calculation for LOD values.
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