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Abstract: The heterogeneous assays of proteases usually require the immobilization of peptide
substrates on the solid surface for enzymatic hydrolysis reactions. However, immobilization of
peptides on the solid surface may cause a steric hindrance to prevent the interaction between the
substrate and the active center of protease, thus limiting the enzymatic cleavage of the peptide.
In this work, we reported a heterogeneous surface plasmon resonance (SPR) method for protease
detection by integration of homogeneous reaction. The sensitivity was enhanced by the signal
amplification of streptavidin (SA)-conjugated immunoglobulin G (SA-IgG). Caspase-3 (Cas-3) was
determined as the model. A peptide labeled with two biotin tags at the N- and C-terminals (bio-
GDEVDGK-bio) was used as the substrate. In the absence of Cas-3, the substrate peptide was
captured by neutravidin (NA)-covered SPR chip to facilitate the attachment of SA-IgG by the avidin-
biotin interaction. However, once the peptide substrate was digested by Cas-3 in the aqueous phase,
the products of bio-GDEVD and GK-bio would compete with the substrate to bond NA on the
chip surface, thus limiting the attachment of SA-IgG. The method integrated the advantages of both
heterogeneous and homogeneous assays and has been used to determine Cas-3 inhibitor and evaluate
cell apoptosis with satisfactory results.

Keywords: surface plasmon resonance; protease; caspase; avidin-biotin interaction

1. Introduction

Proteases play an important role in a wide variety of biological processes, including
protein digestion, wound healing, apoptosis, fertilization, growth differentiation, and
immune system activation [1]. In the human body, at least 1.7% of human genes are
encoded by proteases. The activities of proteases are closely related to many diseases,
such as cancer, cardiovascular disease, Alzheimer’s disease, human immunodeficiency
virus (HIV), thrombosis, and diabetes [2]. Thus, extensive efforts have been made to
screen protease inhibitors as potential drugs. This provides a powerful motivation for the
development of sensitive, selective, and robust methods to detect protease and discover
potential inhibitors.

Until now, many homogeneous and heterogeneous biosensors have been reported for
the detection of proteases and screening of their inhibitors [2,3]. In homogeneous analysis,
the substrate and protease sample are present in the aqueous phase. For instance, in the
fluorescence resonance energy transfer (FRET) assay, the commonly used method for pro-
tease activity detection, the peptides labeled with two different fluorophores at two ends
are digested by protease in the aqueous phase [4]. The activity of protease can be measured
by monitoring the change of fluorescence signal after the cleavage of the peptide. On the
contrary, the peptide substrate is anchored on a solid surface in the heterogeneous assay,
and the enzymatic reaction happens at the solid-liquid interface [5,6]. Both the homoge-
neous and heterogeneous methods have their own advantages and disadvantages. Usually,
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homogeneous biosensors have the advantages of easy operation, rapid response, excellent
sensitivity, and high throughput, but they show poor anti-interference ability and require
large sample volumes and complex sample handling procedures. Conversely, heteroge-
neous assays exhibit the advantages of less sample consumption, ultra-high sensitivity
and selectivity, and low instrument investment. Overall, the heterogeneous biosensors
provide tremendous advantages over conventional homogeneous assays since numerous
peptide substrates are immobilized at a discrete location on the solid interface [2]. However,
immobilization of peptides on the solid surface will cause a steric hindrance to prevent the
interaction between the substrate and the active center of protease [7], thus limiting the
enzymatic cleavage of the peptide. Although the steric hindrance can be reduced by the
use of nanomaterials-modified interface and the well-design of peptide substrate [8–10],
the surface chemistry and coverage of peptide on the solid surface demands laborious opti-
mization. Therefore, it is of importance to integrate the advantages of both heterogeneous
and homogeneous assays for the design of general protease biosensors.

Surface plasmon resonance (SPR) is a simple, label-free technology to monitor the
protein-protein interactions by measuring the refractive index change at the sensor sur-
face [11–14]. The technology can be used to monitor the cleavage of protein or peptide
fixed on the chip surface, providing a label-free detection method for protease analysis
due to the advantages of fast response, real-time detection, high signal-to-noise, and
good compatibility with the microfluidic system. For example, Steinrücke and co-workers
suggested that cleavage of the helical protein with 78 amino acids by protease caused a
detectable SPR signal [15]. However, the cleavage of low molecular weight peptides leads
to a small, undetectable change in the refractive index [16–18]. Thus, it usually requires
a signal amplification strategy to detect protease by labeling the peptide substrate with
nanomaterials or specific groups [19–24]. Biotin is usually used to label peptide substrate
for the design of heterogeneous biosensors. It can interact with avidin or its analogs of
neutravidin (NA) and streptavidin (SA) with a binding coefficient as high as ~1015 M−1.
Such an interaction allows for the immobilization and recognition of peptide substrate at
the solid-liquid interface [25–28]. By integrating the advantages of homogeneous assays,
herein, we proposed a novel SPR method for protease detection by the signal amplification
of SA-conjugated immunoglobulin G (SA-IgG). Caspases, a family of cysteine proteases,
play an important role in apoptosis. To demonstrate the feasibility of the method, caspase-3
(Cas-3) that can specifically recognize and cleave the C-terminal of the peptide with the
DEVD sequence was determined as the model. A peptide labeled with two biotin tags
at the N- and C-terminals (bio-GDEVDGK-bio) was used as the substrate (Scheme 1).
In the absence of Cas-3, the peptide substrate can be captured by the NA-covered chip
through the avidin-biotin interaction (Channel 1). The biotin group at the other end of the
peptide allows for the capture of SA-IgG, thus resulting in a strong SPR signal. When the
peptide substrate was digested by Cas-3 in the aqueous phase, the biotinylated products
(bio-GDEVD and GK-bio) would compete with the substrate to bond NA on the chip
surface (Channel 2). This prevents the attachment of bio-GDEVDGK-bio and the follow-up
capture of SA-IgG by the avidin-biotin interaction. However, when the activity of Cas-3
was suppressed by inhibitor, more bio-GDEVDGK-bio substrates would be anchored on
the chip surface, which facilitating the capture of SA-IgG. The method was used to evaluate
the inhibition efficiency of the inhibitor and monitor the activity of Cas-3 in cell lysates.
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Scheme 1. Schematic representation of SPR method for the detection of Cas-3 using NA-covered
gold chip. The signal was amplified by SA-IgG conjugates.

2. Materials and Methods
2.1. Chemicals and Materials

NA protein was purchased from Thermo Fisher Scientific (Shanghai, China). Cas-3
was obtained from New England BioLabs (Ipswich, MA, USA). Thrombin, beta-secretase,
prostate-specific antigen (PSA), and bovine serum protein (BSA) were acquired from Sigma-
Aldrich (Shanghai, China). SA-IgG and glutathione (GSH) were purchased from Sangon
Biotech (Shanghai, China). Peptides were provided by China Peptide Co., Ltd. (Shanghai,
China). Other reagents were ordered from Aladdin Reagent Co., Ltd. (Shanghai, China).
All aqueous solutions were prepared daily with ultrapure water collected from a Milli-Q
purification system.

2.2. Preparation of SPR Chips

The gold chips were annealed in a hydrogen flame to eliminate the surface contam-
inant. Then, the cleaned gold chips were incubated with 1 µM NA protein in carbonate
buffer (pH 10) for 2 h. NA was capped on the gold surface through the hydrophobic and
Au-S interactions [29]. The unbound NA proteins were removed by rinsing the chip with
the carbonate buffer. The unreacted gold surface were blocked by incubation of the chip
with 10 µM BSA and 100 µM GSH. Finally, the NA-covered chips were thoroughly washed
with the carbonate buffer.

2.3. Procedure for Cas-3 Detection

The peptide bio-GDEVDGK-bio was digested by Cas-3 in the HEPES buffer with the
optimized reaction conditions. The reaction mixture was delivered to the flow cell by a
syringe pump. When the baseline is stable, SA-IgG in phosphate buffer (10 mM, pH 7.4)
was injected into the SPR channel by the pump. The signal was collected by measuring the
change of SPR dip shift on a BI-SPR 3000 system (Biosensing Instrument Inc., Tempe, AZ,
USA).

2.4. Inhibitor Detection and Cell Lysate Analysis

For the detection of Cas-3 inhibitor, DEVD-FMK at different concentrations was mixed
with a given concentration of Cas-3 for 10 min. Then, the resultant solution was incubated
with the peptide substrate. For real sample assays, HeLa cells were cultured and the cell
lysates were extracted with our reported procedures [30,31]. Then, the peptide substrate
was incubated with the diluted cell lysates to react for 2 h. Finally, the reaction mixture was
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delivered to the flow cell, followed by injection of SA-IgG to the channel after the baseline
stable was attained.

3. Results and Discussion
3.1. Feasibility of the Strategy

Based on the avidin-biotin interactions, NA or SA-modified magnetic beads, chro-
matography columns and solid surfaces have been widely used for the immobilization and
separation of biotinylated biomolecules. In this work, an NA-covered gold chip was used to
capture the biotinylated peptide. Figure 1 depicts the SPR responses when injecting SA-IgG,
SA, and IgG to the sensor channel. A negligible change in the dip shift was observed after
injecting SA-IgG conjugate to the NA-covered chip (curve a), demonstrating that SA-IgG
showed no interaction with the sensor chip. Interestingly, the SPR dip shift reached 207 mD
when injecting the conjugate to the chip treated by bio-GDEVDGK-bio (curve b). No
significant change was observed when injecting IgG onto the bio-GDEVDGK-bio treated
channel (curve c) and a smaller SPR dip shift (59 mD) was attained when injecting SA
onto the channel (curve d). Thus, the change in curve b should be attributed to the avidin-
biotin interaction and the signal was greatly amplified by IgG due to its large molecular
weight (~150000 Da). We also found that the signal was intensified with the increase in
bio-GDEVDGK-bioconcentration from 0.01 to 20 nM and began to level off beyond 5 nM.
To attain higher sensitivity and a wider linear range, 5 nM bio-GDEVDGK-bio was used as
the substrate for the assays of Cas-3.
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Figure 1. SPR sensorgrams when injecting 0.1 mg/mL SA-IgG to the fluidic channel wherein the
NA-covered chip had been treated by blank buffer (curve a) and 20 nM bio-GDEVDGK-bio (curve
b). Curves c and d were acquired when injecting 0.1 mg/mL IgG and 0.05 mg/mL SA onto the
NA-covered chip treated by bio-GDEVDGK-bio.

3.2. Detection of Cas-3 and Its Inhibitor

The analytical performances were first investigated by determining different con-
centrations of Cas-3. In Figure 2A, the SPR signal decreased gradually with the increase
in Cas-3 concentration in the range of 0~2000 pg/mL. The plateau beyond 1000 pg/mL
is indicative of the completion of the enzymatic hydrolysis (Figure 2B). The signal did
not decrease to the background value, indicating that not all the substrate peptides were
cleaved by Cas-3 even at a higher concentration with a very long reaction time. The
detection limit was estimated to be 0.5 pg/mL by measuring the sensor response to a
dilution series and determining the smallest target concentration at which the signal was
clearly distinguishable from the response to the blank solution. The value is lower than
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that attained by the homogeneous methods, such as fluorescence (128 pg/mL) [32], col-
orimetric assay (5 ng/mL) [33], differential pulse voltammetry (27.4 ng/mL) [34], and
mass spectrometry (3.02 ng/mL) [35]. The value is comparable to or even lower than that
achieved by heterogeneous methods based on the signal amplification of enzymes and
nanomaterials (Table 1). The high sensitivity of the method should be attributed to the
“immobilization-free” hydrolysis reaction and the large molecular weight of SA-IgG.
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Table 1. An overview of heterogeneous methods for Cas-3 detection based on the signal amplification
of enzymes and nanomaterials.

Method Signal Label Linear Range Detection Limit Ref.

EIS Biotin-FNP
network 1–125 pg/mL 1 pg/mL [30]

EIS SA-peptide
network 0–50 pg/mL 0.2 pg/mL [36]

DPV Methylene
blue/GO 0.1–100 pg/mL 0.06 pg/mL [37]

DPV Calixarene-rGO 10–100 pg/mL 0.0167 pg/mL [38]

DPV AuNPs-
MCM/MB-HRP 10 fM–10 nM 5 fM [39]

LSV CB(8)-capped
AgNPs 1–10 ng/mL 24.62 pg/mL [40]

SWV MB/HRP 0.1–1 nM 56 pM [41]
ECL Ru@SiO2 0.2–200 pg/mL 0.07 pg/mL [42]
ECL HRP-SA-MB 0.5–100 fM 0.5 fM [43]

Abbreviations: DPV, differential pulse voltammetry; LSV, linear sweep voltammetry;
SWV, square wave voltammetry; EIS, electrochemical impedance spectroscopy; ECL,
electrochemiluminescence; GO, graphene oxide; rGO, reduced graphene oxide; AuNPs-
MCM, gold nanoparticle-coated silica-based mesoporous materials; MB, magnetic bead;
HRP, horseradish peroxidase; AgNPs, silver nanoparticles; FNP, self-assembled biotin-
phenylalanine nanoparticle.

As a proof-of-concept experimental for evaluation of Cas-3 activity, the inhibitor
DEVD-FMK at different concentrations was incubated with 500 pg/mL Cas-3. The inset in
Figure 2B shows the dependence of SPR dip shift on the concentration of inhibitor. The
increase in inhibitor concentration induced the enhancement in the SPR signal, indicating
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that DEVD-FMK is an effective Cas-3 inhibitor. The half-maximal inhibitory concentration
(IC50) was estimated to be 98 nM, which is in agreement with that measured by other
methods [30,36]. Thus, the method has bright prospects for the screening of protease
inhibitors.

3.3. Selectivity

To evaluate the specificity of the method, the method was first challenged by de-
termining other proteases (e.g., thrombin, beta-secretase, and PSA) to replace Cas-3. As
shown in Figure 3, the tested proteases did not induce a significant decrease in the SPR
dip shift, suggesting that the method shows high selectivity toward Cas-3 (cf. curves 1~4).
However, trace biotin or other molecules in real samples may interact with biotin, thereby
limiting the practical application of the technique. For this consideration, the interferences
from avidin and biotinylated biomolecule such as bio-GLRRASLG were examined. As
envisaged, both avidin and bio-GLRRASLG caused a significant decrease in the SPR signal
(curves 5~6). The result is understandable as avidin can bind to the peptide substrate
(bio-GDEVDGK-bio) and the biotinylated peptide can compete with the substrate to bind
NA on the chip surface, thus preventing the attachment of bio-GDEVDGK-bio on the chip.
To resolve this problem, a certain amount of biotin was added to the sample in advance
to eliminate the interference of avidin. The free biotin or biotinylated peptide was then
removed by the commercial SA-modified magnetic beads. As a result, the interferences
from avidin and biotinylated peptide have been well eliminated (curves 7~8).
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5 ng/mL, 5 ng/mL, 5 ng/mL, 500 pg/mL, 200 ng/mL, 12.5 nM, and 5 nM, respectively.

3.4. Evaluation of Cell Apoptosis

Apoptosis is a highly regulated physiological process, which is of great significance
in the life cycle of organisms. However, the imbalance of apoptosis may directly lead to
the occurrence of many diseases. Therefore, the death caused by apoptosis has attracted
extensive attention from experts in pathology, pharmacology, and toxicology. Among
various types of caspases, Cas-3 is the central molecule to mediate the apoptotic path-
way inside and outside cells. Therefore, Cas-3 has been regarded as the biomarker and
therapeutic target for the diagnosis and treatment of apoptosis-related diseases. To verify
the feasibility of this method for monitoring cell apoptosis, HeLa cells were used as the
models. As shown in Figure 4A, when the peptide substrates were incubated with the cell
lysates extracted from normal HeLa cells, the SPR signals were high and no significant
changes were observed with the increase in cell number. However, when the cells were
treated by STS (a common apoptosis inducer), the SPR signals decreased gradually with
the increase in cell number. This indicated that the apoptosis was triggered by STS and
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the activity of Cas-3 was activated during apoptosis. STS-induced apoptosis was also
confirmed by characterizing the cell morphology with a microscope (Figure 4B). The result
is consistent with that obtained by other methods, indicating that the method can be used
for the evaluation of apoptosis by monitoring the Cas-3 activity.
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