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Abstract: Herein we report the electropolymerization of a scopoletin based molecularly imprinted
polymer (MIP) for the detection of lysozyme (Lyz), an enzymatic marker of several diseases in
mammalian species. Two different approaches have been used for the imprinting of lysozyme based,
respectively, on the use of a monomer-template mixture and on the covalent immobilization of
the enzyme prior to polymer synthesis. In the latter case, a multi-step protocol has been exploited
with preliminary functionalization of gold electrode with amino groups, via 4-aminothiophenol,
followed by reaction with glutaraldehyde, to provide a suitable linker for lysozyme. Each step
of surface electrode modification has been followed by cyclic voltammetry and electrochemical
impedance spectroscopy, which has been also employed to test the electrochemical responses of
the developed MIP. The sensors show good selectivity to Lyz and detect the enzyme at concentrations
up to 292 mg/L (20 µM), but with different performances, depending on the used imprinting
approach. An imprinting factor equal to 7.1 and 2.5 and a limit of detection of 0.9 mg/L (62 nM) and
2.1 mg/L (141 nM) have been estimated for MIPs prepared with and without enzyme immobilization,
respectively. Competitive rebinding experiment results show that this sensing material is selective for
Lyz determination. Tests were performed using synthetic saliva to evaluate the potential application
of the sensors in real matrices for clinical purposes.

Keywords: lysozyme imprinting; polyscopletin; impedimetric detection; MIP electropolymerization;
electrochemical sensors; MIP for protein

1. Introduction

Lysozyme (Lyz) is a small (14.6 kDa) but powerful antimicrobial enzyme commonly
found in nature, able to damage the cell walls of susceptible bacteria, such as Gram-positive
bacteria, by promoting the lysis of peptidoglycans, constituents of the external coating of
these microrganisms [1,2]. Lysozyme shows little activity against Gram-negative bacteria,
and it is inactive towards eukaryotic cell walls, but methods of extending its antimicrobial
spectrum have been employed, including the denaturation, modification by attachment of
other compounds to Lyz and the use of membrane-permeabilizing agents [3,4]. Present
in many plant and animal tissues, in humans, it has also been found in body fluids such
as saliva, tears, sperm secretions, nasal mucus and urine [5]. A rich and easily available
source of lysozyme is the egg white of birds, where it accounts for 3.5% of the total
egg white proteins [4]. For its properties, Lyz is used in the production of various aged
cheeses, beer and wine to control unwanted fermentations [6–9], in ophthalmological
preparations [10] and even as a drug for the treatment of ulcers and infections [4,11]. In
winemaking, lysozyme is widely used as an alternative to sulphites [3,9], but residual
quantities have been found in the final products [3,12]. Similarly, quantities of lysozyme
have also been found in dairy products, when the enzyme is used in the production
cycle [7]. Several studies over the past decade have identified allergic reactions in some
individuals exposed to lysozyme [3,7,12]. Due to the sensitization, some international
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regulations have been introduced, requiring the disclosure on the label of foods when
lysozyme is been added indicating also the maximum allowed quantities [3,4].

In mammalian species, Lyz is naturally expressed by cells of the innate immune system,
especially neutrophils, activated macrophages and by the Paneth cells of the intestine [13].
Lyz is extremely abundant in human tears, with a concentration range of 1200–1500 mg/L,
and high levels were also observed in breast milk and saliva (around 21.5 and 1–7 mg/L, re-
spectively) [14–17]. Lower concentrations have been reported in serum and urine of healthy
people (up to around 3 mg/L and 0.05–0.1 mg/L, respectively) [15,18,19]. Changes in Lyz
levels can be a symptom of a pathological condition. For example, there is an increase in
lysozyme concentrations in case of oral infections, oral squamous cell carcinoma, coronary
artery disease [20], monocytic leukemia [21–24], Crohn’s disease, sarcoidosis and renal
tubular damage [25–27], resulting in elevated saliva, serum and urine levels (reaching, and
in some cases overcoming, 100 mg/L) [14], while a decrease occurs in case of neonatal
septicemia [28]. The control of lysozyme levels allows to differentiate acute myelogenous
or monocytic leukemia from acute lymphatic leukemia and to monitor the response to
the treatments of these pathologies in sick patients [24,26]. Its determination therefore
allows to know the functional state of the monocyte-macrophage system and is a marker
of the presence of phlogistic states [24].

For all these reasons, it is essential to have systems capable of determining lysozyme
in food, pharmaceutical and medical fields.

Several traditional methods have been used for the detection of this enzyme such
as electrophoresis [29–31], chromatography [32,33] and mass spectroscopy [34]. However,
these methods require pre-treatment of the sample, expensive tools, qualified personnel
and long-time analysis. The enzyme-linked immunosorbent assay (ELISA) is also used
to this aim [32,35], but this approach has several disadvantages such as the nonspecific
adsorption of substances generating false positives/negatives [36], the possible matrix
effect on enzyme activity [37] and kit high cost. To overcome these problems, a multi-
tude of sensors for lysozyme have been developed in recent years. Many of them are
based on aptamers [15,38–40] to exploit their specific link with lysozyme. Although these
systems present very high selectivity, the production of aptamers can be complex, time-
consuming [41] and expensive, and furthermore, they can suffer from reproducibility
problems [42].

A solution can be represented by molecular imprinting (MI), a technique to produce
selective binding sites in a polymer matrix [43–49]. In brief, a polymer is first synthesized
around the target molecule, which acts as a template being then removed to obtain cavities
with “molecular memory”, capable of selectively recognizing it [50–52]. The resultant
molecularly imprinted polymer (MIP), compared to the biological recognition systems, is
more stable, easily synthesized at low cost and can be used under harsh and changeable
conditions [44,53,54].

A number of MIPs for lysozyme are reported in literature [55–59] being mainly ap-
plied to the fabrication of polymeric membranes for Lyz extraction/separation from real
matrices as urine, serum and chicken egg white. The use of MIPs for the direct detec-
tion of lysozyme in complex matrices without pretreatment procedures has been scarcely
explored; in particular MIPs for Lyz have been developed to be applied to SPR [60–62],
fluorescence [63,64], piezoelectric [65,66] and chemiluminescence [67,68] detection. In this
context, the electrochemical detection has been only rarely proposed, although related
advantages are widely recognized [44,48,53] relying in low-cost and simple instrumental
setup, miniaturized/portable devices suitable for in situ measurements and use of reduced
volume sample.

In one [69] of few literature reports, an electrochemical sensor for lysozyme is prepared
using a commercially available copolymer, namely poly(ethylene-co-vinyl alcohol). Lyz
detection by cyclic voltammetry is declared by Authors but detection process is not clearly
explained, especially considering the not-electroactive nature of Lyz. Furthermore, relevant
results are not showed, thus preventing the reader to obtain information about claimed Lyz
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electrochemical behavior. In addition, poor results are obtained as selectivity is not tested
and the highest imprinting factor is apparently equal to 2.4. Such sensing performances
could not be significantly improved due to the use of a preformed polymer, poorly suitable
to imprinting especially in the case of protein, being the percentage amount of ethylene in
pre-polymer mixture the only controllable variable.

In another work reporting the assembly of a MIP based electrochemical sensor for
lysozyme [70] satisfactory results in terms of LOD and response stability/repeatability are
reported but, unfortunately, the imprinting effect through the comparison with not im-
printed polymer is not demonstrated. Also, sensor response reproducibility and application
to real samples are not studied.

An interesting application of MIP to the electrochemical detection of lysozyme has
been recently proposed by Liang et al. [71] who obtained good sensing performances but
using a quite complex sensor assembly integrating CuFe2O4 magnetic nanospheres. A very
long-time procedure (about 70 h) is used for sensor development including preparation of
nanoparticles and subsequent MIP chemical polymerization. Moreover, contrarily to MIP
electropolymerization, in such schemes MIP synthesis and integration with the electrode
surface are performed in two distinct steps with subsequent need of separately optimize
each of them.

Herein, we report the development of a MIP based electrochemical sensor for lysozyme,
prepared by a simple procedure consisting in scopoletin electropolymerization. Scopoletin
has been selected as functional monomer due to its easy polymerization [72], low cost
and solubility in water [73], allowing the use of aqueous solutions instead of toxic and
hazardous solvents. More importantly, starting from the pioneering work of Scheller’s
group [74,75], polyscopoletin revealed to be highly suitable for MIP electrosynthesis, es-
pecially having protein as template. Although excellent results have been obtained with
polyscopoletin based MIPs, such polymer still remains a “niche” material in the imprinting
field, thus leaving many research possibilities open, particularly in MIP electrosynthesis. It
should be highlighted that the use of an electrosynthesised MIP, here proposed and widely
explored in our research group [44,47,50–52,76,77], allows to perform MIP synthesis and
integration with the transducer in a single step, controlling polymer deposition process by
simple monitoring electrochemical parameters as the circulated charge.

Contrarily to detection approaches commonly proposed by Scheller and his collab-
orators, here, imprinted polyscopoletin is applied to impedimetric detection. Only very
recently, a work proposing an impedimetric sensor based on imprinted polyscopoletin
has appeared in literature [78]. Obtained impedimetric data are not rigorously treated and
are not characterized by the expected semicircle feature, thus leaving unclear the way for
estimating the resistance value to be used as analytical signal. Moreover, such value is not
linearly related to the target concentration, as evidenced by low reported determination
coefficient (R2 = 0.840).

The developed impedimetric sensor revealed to be able to investigate a range of
concentration from 2.2 to 292 mg/L, of analytical relevance for clinical-diagnostic pur-
poses and to detect Lyz in saliva without significant matrix interference. Application of
electrochemical MIP-based sensors for Lyz in saliva has not been explored so far.

Two imprinting strategies (Scheme 1) for the electrosynthesis of polyscopoletin based
molecularly imprinted polymers have been used, one based on the use of monomer-
template mixture (Scheme 1a) and the other one exploiting lysozyme anchoring to the elec-
trode surface prior to electropolymerization (Scheme 1b). The comparison of sensing
performances of sensors prepared by two approaches is proposed with the aim to evaluate,
in the specific case of lysozyme imprinting using polyscopoletin, possible advantages and
disadvantages of each of them, not explored so far.
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Scheme 1. Polyscopoletin based MIP for lysozyme prepared using a monomer-template mixture (a) and a preliminary
immobilization of lysozyme on the electrode surface before electropolymerization (b). In both cases, lysozyme removal and
rebinding are shown.

The event of Lyz recognition is followed by monitoring the variation of MIP perme-
ability to a redox probe using electrochemical impedance spectroscopy (EIS), which has
been employed to test and compare the electrochemical performance of the developed
sensors.

2. Materials and Methods
2.1. Reagents and Solutions

All chemicals were of analytical grade and were used as received. The chemical
reagents used included potassium hexacyanoferrate (III), K3[Fe(CN)6], potassium hexa-
cyanoferrate (II) K4[Fe(CN)6], sodium dodecyl sulfate (SDS), glutaraldehyde solution
II grade, 25%, Lysozyme from chicken egg white lyophilized powder (Lyz), human
Hemoglobin (HHb), Bovine Serum Albumin (BSA), obtained from Sigma-Aldrich (St. Louis,
MO, USA). 4-Aminothiophenol, 96% (4-ATP) and scopoletin, 95% were purchased from
Alfa Aesar (Ward Hill, MA, USA). Potassium chloride, potassium hydroxide, sodium chlo-
ride, monosodium phosphate (MSP), NaH2PO4, and disodium phosphate (DSP), Na2HPO4,
were provided from Honeywell Fluka (College Park, GA, USA).

All solutions (except 4-ATP) were prepared in ultra-pure water (conductivity
<0.1 µS/cm). Phosphate buffer saline (PBS) solutions (50 mM, pH 7.4), were prepared by
dissolution of the commercial MSP and DSP in appropriate proportions, adding NaOH
5 M to adjust the final pH. 0.1 M 4-ATP solutions were prepared in ethanol. Scopoletin
solution (0.5 mM) was prepared in 0.1 M NaCl.

Stock solutions of 14.3 mg/mL (1 mM) of Lyz were prepared in PBS and stored
in the refrigerator at 4 ◦C. From this, Lyz standard solutions (concentration from 2.2
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to 292 mg/L). were prepared and used for rebinding experiments. Solutions of human
hemoglobin (HHb), bovine serum albumin (BSA), glucose oxidase (GOx) and cytochrome
C (CytC) (from 13.1 to 292 mg/L) were prepared in PBS.

2.2. Electrochemical Apparatus

Electrochemical characterization was performed with a portable potentiostat/galvanostat,
PalmSens, EmStat4 Blue, integrating an EIS analyzer module. This device was controlled
by the PSTrace 5.8 software (PalmSens, Houten, Netherlands). The software automatically
gathered and stored the outputs of the developed sensors.

A single compartment glass cell was used in static mode, containing three electrodes:
a saturated calomel electrode (SCE) as reference electrode, an auxiliary electrode consisting
of a platinum wire and a commercial gold electrode of 2 mm in diameter as working
electrode. All electrodes were purchased from CH Instruments (Tennison Hill Drive,
AU, USA). All electrochemical measurements were performed without the deaeration of
the solutions.

2.3. Molecularly Imprinted Polymers Electrosynthesis

Molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs) were
prepared by electrosynthesis of scopoletin monomer on gold surface electrode. Before
their preparation, the electrode is mechanically cleaned with alumina slurry (1.0, 0.3,
and 0.05 µm); then, it is rinsed thoroughly with water and treated in ultrasonic bath with
a solution water/ethanol (1:1) for 2 min. Afterwards, an electrochemical treatment, reported
in literature [79] and partially modified, is carried out. In brief, a cyclic voltammetry (CV) in
H2SO4 0.5 M is performed, in a potential range from −0.30 to 1.55 V vs. SCE, for 1 cycle, at
a scan rate of 4 Vs−1 and sampling interval of 1 mV. Subsequently, CVs in a potential range
between −0.2 and 1.2 V vs. SCE, at scan rate of 0.1 Vs−1 in H2SO4 0.5 M are performed,
until typical Au redox processes are observed in the voltammograms. The electrode is then
abundantly rinsed with water.

2.3.1. Synthesis of Molecularly Imprinted Polymers by Simple Polymerization of
Monomer Solution

The approach (a) (Scheme 1a) used for MIP synthesis involves the formation of the pre-
polymerization complex by simply dissolving lysozyme in scopoletin monomer solution
and subsequently electropolymerizing polyscopoletin on the gold surface electrode. From
now on, this molecularly imprinted polymer will be referred to as MIP1.

The polymerization solution was prepared by mixing 0.5 mM scopoletin and 10 µM
lysozyme in 0.1 M NaCl. MIP layer was synthesized via electropolymerization by multistep
amperometry technique [80,81], applying 50 pulse pairs, starting with 0 V for 5 s and
followed by 0.9 V for 1 s. After polymerization, the polymeric film was rinsed with PBS
and ultra-pure water, to remove unreacted monomer residues and/or non-specifically
adsorbed enzyme. To obtain lysozyme-imprinted cavities, the template molecules were
removed from the polymer matrix dipping the electrode consecutively in different aqueous
solutions (5 mL) under stirring (200 rpm):

(i) 50 mM NaOH for 15 min.
(ii) SDS/acetic acid, 2.5% (w/v) and 5% (v/v) respectively, for 10 min.
(iii) ultra-pure water for 5 min.

NIP films were prepared in the same way but without the template in polymerization
mixture (NIP1).

2.3.2. Synthesis of Molecularly Imprinted Polymer after Enzyme Immobilization

The second approach (b) (Scheme 1b) for MIP synthesis is based on the preliminary
immobilization of lysozyme through a self-assembled anchor layer on the electrode surface
and subsequent electropolymerization of scopoletin. As prepared MIP is denoted as MIP2.
This synthesis proceeds in five sequential stages described below:
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(1) 4-ATP layer self-assembly at the gold electrode surface.
(2) Treatment with GA solution to provide a suitable linker for Lyz.
(3) Incubation of the functionalized gold electrode with Lyz solution to promote the pro-

tein adsorption.
(4) Polyscopoletin thin film formation.
(5) Lyz removal by washing to obtain imprinted cavities in the polymeric matrix.

The clean electrode was immersed in 0.1 M 4-aminothiophenol solution, prepared in
ethanol and then left at room temperature for 12 h to form a self-assembled monolayer
(SAM) [82] (step 1). The formation of strong interaction between the SH groups and gold is
well documented, which allows the formation of a compact and stable monolayer, useful for
anchoring biomolecules on surfaces [83]. The modified electrode is then rinsed with ethanol
and water, in sequence, to remove unreacted excess. Therefore, the electrode is immersed
in a glutaraldehyde solution (5% (v/v) in PBS at pH 7.4) and kept in dark environment for
2 h, to activate the amino-ends of 4-ATP and to allow the formation of a covalent imine
bond with GA (step 2) [82]. GA were employed as the linker to immobilize Lyz on Au
surface by forming a reversible imine bond [84,85]. To this aim, 50 µL of lysozyme solution
(1 mg/mL) are added by drop-casting on the modified surface electrode, which is left in
the dark environment for 3 h (step 3). It is then rinsed with water to remove the adsorbed
enzyme in a non-specific way.

After lysozyme immobilization, the electrosynthesis of polyscopoletin is carried out
through multistep amperometry, under the conditions described above (par. 2.3.1), using
a solution of scopoletin 0.5 mM in NaCl 0.1 M. Subsequently, in order to obtain specific
binding sites for Lyz, it is washed off from the polymeric matrix dipping the electrode
consecutively in different aqueous solutions (5 mL) under stirring (200 rpm):

(i) 50 mM NaOH for 15 min.
(ii) SDS/acetic acid, 2.5% (w/v) and 5% (v/v) respectively, for 10 min.
(iii) ultra-pure water for 5 min.

In this case, NIP synthesis (NIP2) is carried out through scopoletin electropolymeriza-
tion, using a solution without lysozyme, on a gold electrode previously functionalize with
4-ATP and GA.

2.3.3. Electrochemical Characterization

All electrochemical assays were made in triplicates. The changes in the electrical
properties of the sensing surface were monitored by the response to the redox probe
ferri/ferrocyanide, [Fe(CN)6]3−/4−. For this purpose, cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) were performed in a solution of 5 mM
[Fe(CN)6]3−/4− prepared in 50 mM phosphate-buffered saline (PBS) solution (pH 7.4),
containing 0.1 M KCl.

CV and EIS were employed to monitor the functionalization steps [86] of the electrode
and to test the electrochemical response of the developed sensors.

The potential in CV measurements was scanned between −0.2 V and +0.5 V at a scan
rate of 50 mVs−1. EIS assays were performed at direct potential (DC) of 0.18 V and an al-
ternating potential (AC) of 5 mV, with 50 data points acquisition, logarithmically dis-
tributed over 0.1–10.000 Hz frequency range. The EIS data were acquired by Nyquist plots,
that is, a graphical representation of the real part (Z’) and the imaginary part (−Z”) of
the impedance over a specified frequency range. All EIS data were fitted to an equivalent
circuit, using the PSTrace 5.8 software, for obtaining the charge-transfer resistance (Rct),
used as analytical parameter.

The equivalent circuit proposed is the Randles cell [87,88], shown in Figure 1, where
Rsol is the resistance of the solution, ZW is the Warburg element, and it describes the dif-
fusion phenomena that occur in redox reaction at the electrode-solution interface. The
capacitive element is represented by a constant phase element (CPE). CPE is used to
represent the interfacial processes, such as double-layer charging, in non-ideal condition
(electrode surface heterogeneity, impurity adsorption, oxide layers, etc.) [89,90], and in this
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case, a depressed arc appears in the Nyquist diagram [90]. Rct is the charge-transfer resis-
tance associated to the process by which electrons are exchanged at the solution-electrode
interface. This parameter is affected by surface changes that enhance or hinder the electron
transfer, so it can be used to monitor the ongoing redox processes. In the Nyquist plot
(Figure 1), Rct equals to the diameter of the semicircle portion of the curve; therefore,
an increase in its value leads to an increase in the observed diameter. Rct values were used
as analytical signal for the calibration curves being collected after exposing MIP and NIP
sensors to lysozyme.
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2.3.4. Rebinding Experiments

For rebinding experiments, electrodes functionalized with MIPs and NIPs were im-
mersed in 50 mM PBS solutions at pH 7.4, containing Lyz at increasing concentrations
(2.2 to 292 mg/L) for 30 min under stirring (200 rpm). Later, the electrodes were placed
in PBS and rinsed under stirring to remove the nonspecifically proteins adsorbed, and
then, they were dipped into 5 mM 1:1 Fe(II)/Fe(III) solution in PBS, pH 7.4, for impedance
measurements.

2.3.5. Selectivity Experiments

MIPs selectivity was evaluated by testing their responses to four interfering molecules
solutions: human hemoglobin (HHb), bovine serum albumin (BSA), glucose oxidase (GOx),
cytocrome C (CytC) under the same conditions used for lysozyme using a freshly prepared
sensor for each interference experiment.

2.3.6. Repeatability and Stability

To investigate sensor response repeatability, EIS experiments were performed in
triplicate using the same sensor. Before a new experiment, MIP was regenerated through
the washing procedure described above (par. 2.3.1).

The stability of the sensor was evaluated by monitoring its impedimetric response at
different time intervals: after 1, 7, 15 and 30 days, upon storage in PBS pH 7.4.

2.3.7. Lysozyme Detection in Artificial Saliva

The synthetic saliva used in this work was produced through a protocol according
to the AFNOR NF S91-141 standard [91] consisting of a solution containing Na2HPO4
(1 mM), KH2PO4 (1.5 mM), NaCl (115 mM) and KCl (16 mM), NaHCO3 (18 mM), KSCN
(3 mM). Lysozyme (from 2.2 to 13.1 mg/mL) was added to artificial saliva for rebinding
experiments, performed under the same conditions used for calibration experiments in
PBS (par. 2.3.4).
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3. Results and Discussion
3.1. Preparation of Polyscopoletin Imprinted Sensor

Polyscopoletin film has been electrochemically synthesized by multistep amperome-
try technique, applying 50 pulse pairs, starting with 0 V (5 s) and followed by 0.9 V (1 s).
Such potential program allows monomer oxidation leading to polymerization according
to the hypothesized mechanism reported in Scheme 2 [72]. Scopoletin polymerization
reaction proceeds through cation radical formation, dimerization and further chain pro-
longation until the growing oligomer precipitates at the electrode surface. Amperometric
polymerization curves (data not shown) with and without template molecule are very
similar, exhibiting only a slight current decrease in the presence of lysozyme due to its
not electroactive nature. It can be assumed that scopoletin interacts with lysozyme by
hydrogen bonding and π–π interaction thus not modifying polymerization pattern.
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Scheme 2. Possible reaction mechanism of scopoletin electropolymerization.

Two molecularly imprinted polymers were obtained, one by simple polymerization
of a solution containing scopoletin and the target (MIP1) and the other one by anchoring
the target enzyme prior to deposition of the polymer film (MIP2). In both cases, cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS) curves before and
after template removal have been compared to gain information about successful template
extraction from polymer matrix.

Results obtained for MIP1 are reported in Figure 2. It can be easily observed that after
polyscopoletin deposition, a dramatic current decrease is recorded in CV curve (Figure 2a)
due to the non-conductive nature of the polymeric film. The remarkable current increase
after washing treatment suggests the effective template removal with subsequent formation
of imprinted cavities within the polymer allowing the access of electrochemical probe from
solution to electrode surface. EIS results (Figure 2b) are in great agreement with CV ones
showing a significant increase of Rct after scopoletin electropolymerization followed by
an appreciable decrease after template removal.

In the case of MIP2, CV and EIS have been used also for monitoring the electrode
functionalization steps, as shown in Figure 3.

CV curves (Figure 3a) show discernible changes after each functionalization step in
preparation of MIP2. A significant decrease of both anodic and cathodic peak currents
with a simultaneous increase of peak separation is evidently observed when passing
from bare to polyscopoletin functionalized electrode. In particular, a remarkable current
decrease is registered, as expected, after Lyz anchoring due to the not electroactive nature
of the enzyme. A further high current decrease occurs after polyscopoletin film deposition,
evidencing that the polymer acts as an insulating layer. The current increase after lysozyme
removal from the polymer matrix suggests the formation of the imprinted cavities allowing
the diffusion of redox probe from the solution to the electrode surface.

EIS technique was also used to check the fabrication process of MIP2 sensors (Figure 3b)
monitoring changes of Rct after electrode surface modifications. Coherently with CV data,
a particularly remarkable increase of Rct values is observed after both lysozyme anchoring
and polyscopoletin film formation, further confirming the presence of blocking layers on
the electrode surface hindering redox probe access. Moreover, in this case, after extraction
of Lyz template from the polymeric matrix, a significant decrease of impedance is observed,
due to the formation of imprinted cavities permitting the access of probe to electrode
surface and then the electron transfer.
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“Polyscopoletin film” and “MIP” refer, respectively, to polymer before and after washing for lysozyme removal.

3.2. Electrochemical Response of Sensors

EIS technique was used for Lyz quantification after rebinding with MIPs, presenting
high sensitivity to surface reactions, suitable detection capabilities and allowing fast data
acquisition. Collected results are reported in Figure 4.

It is possible to observe the expected Nyquist diagrams after exposing both MIP1
(Figure 4a) and MIP2 (Figure 4b) to Lyz increasing concentrations, with a gradual increase
of recorded Rct values, confirming the successful rebinding to the imprinted cavities thus
hindering redox probe electron transfer process. In particular, although such behavior can
be observed for both tested MIPs, it can be easily noticed that on MIP2, where the anchoring
of Lyz precedes the polymerization of scopoletin, the increase in Rct is more conspicuous
than for MIP1. For further comparing MIP1 and MIP2 rebinding performances and evaluat-
ing the specific interaction with Lyz, also NIP responses were acquired and analyzed, as
shown in Figure 5.
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Although a certain response is obtained from both not imprinted polymers suggesting
the occurrence of non-specific interaction with lysozyme, they are considerably lower than
those provided by the respective MIPs, as clearly appreciable in calibration curves reported
in Figure 6.

The equivalent circuit, chosen to describe the physical processes resulting from the ex-
posure of the sensors to the target, is Randles circuit, that provides the lowest percentage
error (among others tested), through fitting with Nyquist plots resulting from experimental
tests. The relative variation of the charge transfer resistance for each sensor was calculated
using the following equation:

Rct−R0/R0 (1)

where Rct is the charge transfer resistance recorded after the incubation of sensors in
solutions containing Lyz, while R0 is the initial resistance in absence of analyte. This
parameter, known as “normalized impedance change” (NIC) [92–95], is often used as
analytical signal in impedimetric measurements [96–98].
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A good linear relationship (R = 0.997) between NIC and the logarithmic value of Lyz
concentrations in the range from 150 nM to 20 µM (2.2 to 292 mg/L) is recorded for MIP2,
expressed by the linear regression equations: NIC = 1.27 log [Lyz] + 1.74. In the case of
MIP1, on the contrary, a linear variation cannot be distinguished on the entire concentration
range. Two distinct linear ranges can be identified in this case, ranging from 150 to 900 nM
(R = 0.996) and from 1.5 to 20 µM (R = 0.993). The existence of two linear response ranges in
MIP1 could suggest the presence of two populations of binding sites with different affinity
with template molecule.

Another evident difference between MIP1 and MIP2 sensing behavior can be gath-
ered by the comparison with respective not imprinted polymers. To this aim, imprinting
factor values (IF) [99,100] have been evaluated, calculated as the ratio between slopes of
the calibration curves for MIP and NIP. IF equal to 2.5 and 7.1 are obtained for MIP1 and
MIP2, respectively, considering the average slope in the case of MIP1. Such a ca. 3-fold
improvement in the imprinting factor of MIP2 evidences its higher specificity and is in great
agreement with what observed by Sheller’s group in the imprinting of a polyscopoletin film
for cytochrome c when they used immobilized template [74] instead of free protein [75]. It
can be easily inferred from Figure 6a that IF value for MIP1 at low lysozyme concentration
(2.2–13.1 mg/mL, first linear range) is particularly low (equal to 1.5), thus indicating a more
significant unspecific contribution particularly at clinically relevant lysozyme concentra-
tions. Moreover, also at higher concentrations, IF value for MIP1 (equal to 3.6) is lower
than the one evaluated for MIP2 on the whole concentration range.

It can be thus argued that the preliminary anchoring of the protein to surface electrode
offers advantages over electropolymerization from a monomer-template mixture allowing
to achieve stronger imprinting effect due to the formation of a more homogeneous binding
sites population. As schematically represented in Scheme 1b, by this approach, all binding
sites have the same orientation and are possibly located at the surface of the polymer, thus
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improving binding site homogeneity and accessibility of the sites by the bulky protein.
On the other hand, in the case of MIP1 film, as sketched in Scheme 1a, binding sites are
randomly generated with the result that they can be embedded within polymer thickness
and/or only partly templated on protein structure. This reflects into: (i) MIP1 response
more strongly affected by not specific contribution (as shown by lower IF value); (ii)
formation of binding sites with heterogeneous affinity distribution (as shown by two
linear response ranges in MIP1). Moreover, the preliminary anchoring of the protein could
determine also a local increase of its concentration interacting with the growing polymer,
thus resulting in a major amount of entrapped protein and, thus, in the formation of
an increased number of imprinted cavities.

Higher sensing performances of MIP2 are evident also considering its analytical
features. Evaluating sensors reproducibility, relative standard deviation (RSD) values
of 2.3% and 7.2% (n = 3) are obtained for MIP2 and MIP1, respectively. Such a low
inter-electrode variability also evidences the good control of Lyz and polymer deposition
processes, as well as adopted procedures for template removal after polymerization.

Limit of detection (LOD) value was calculated as [101,102]:

LOD = 3 d/m (2)

where d is the residual standard deviation of the linear regression, and m is the slope of
the regression curve. Moreover, in terms of LOD values, performance of MIP2 sensor was
more satisfactory being equal to 62 nM (0.9 mg/L), lower than LOD value obtained for
MIP1 sensor, equal to 141 nM (2.1 mg/L).

3.3. Interference Studies

The study of selectivity is crucial for assessing the effective imprinting effect revealing
MIP sensor ability to discriminate analyte in comparison with other chemical species that
could interfere with the analytical determination. Tested interfering molecules are HHb,
CytC, GOx and BSA, already used in other works for this purpose [61,66,67]. Calculated
NIC values for different interference concentrations, on MIP1 and MIP2, are reported in
Figure 7.

While a certain response from tested molecules is recorded on MIP1, a significantly
higher selectivity is exhibited by MIP2, which exhibits only negligible responses to all
tested molecules, as revealed by interfering ratio (IR) values reported in Table 1. IR [76,103]
is a parameter expressing the degree of sensor selectivity towards the target molecule and
is calculated as the ratio between the analytical signal produced by interfering molecule
and analyte, at a fixed concentration.

Table 1. Interfering ratio (IR) estimated for MIP1 and MIP2 at a concentration of 20 µM (292 mg/L).

Interfering Ratio (IR)

HHb BSA GOx CytC

MIP1 0.31 0.54 0.52 0.30

MIP2 0.10 0.09 0.24 0.07

Such selectivity results further confirm the advantages in protein imprinting coming
from the use of a self-assembled anchored layer for protein immobilization [48,49]. As
schematically drawn in Scheme 1 and as discussed above (Section 3.2), the formation of
binding sites with a rather homogeneous affinity distribution leads to the reduction of
unspecific contribution and, in turn, to an increased selectivity for the template molecule.
In this way, binding sites are more efficiently templated on protein structure conferring
higher selectivity to the polymer, which is able to recognize target analyte while almost
completely rejecting interfering molecules.
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Due to more satisfactory performances of MIP2 in terms of IF, selectivity, LOD values
and reproducibility, it was further investigated by evaluating its repeatability, time stability
and testing its response in real sample.

3.4. Repeatability and Time-Stability

To evaluate MIP2 sensor repeatability, impedimetric measurements were performed
in three replicates on the same modified electrode, simply regenerating it between mea-
surements by washing with the same protocol used after electropolymerization. Very high
repeatability was obtained with RSD% equal to 2.5%, demonstrating the possibility of
consecutively using the same sensor at least three times, without significantly affecting
sensor response. It is interesting to note the high similarity between inter-electrode and
intra-electrode observed variability, which suggests that the repetitive use of the same
sensor affects measurements at the same extent as the use of a freshly prepared sensor for
each measurement.

Furthermore, the stability of MIP2 sensor was evaluated by monitoring its impedimet-
ric response at different time intervals (1, 7, 15 and 30 days) upon storage in PBS pH 7.4. It
was observed that sensor maintains its performance for a period of at least thirty days with
low variability (RSD% = 3.5) further confirming the possibility of repetitive use of the same
device with subsequent time and cost reduction.

3.5. Synthetic Saliva Studies

To evaluate the potential application of MIP2 sensor to Lyz detection in real samples
for medical purpose, tests in synthetic saliva were carried out. The recovery studies were
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performed with spiked saliva samples testing four different concentrations (from 2.2
to 13.1 mg/L) of target. Obtained percentage recovery values are displayed in Table 2.
Satisfactory recovery values are achieved being between 93.1 and 113.1% for each sample.

Table 2. Percentage recovery values of Lyz in artificial saliva samples.

c (mg/L) Recovery (%)

Added Lyz

2.2 93.1

4.4 100.8

8.8 104.7

13.1 113.1

4. Conclusions

In this work, a novel electrochemical sensor based on molecularly imprinted polyscopo-
letin has been developed for the sensitive detection of Lyz in synthetic saliva. Two MIPs
were prepared by scopoletin electropolymerization, one from a solution containing the tar-
get (MIP1) and the other after preliminary anchoring of lysozyme to the electrode surface
(MIP2). In agreement with what was reported in literature for protein imprinting, for both
chemical and electrochemical polymer synthesis, higher sensing performances have been
exhibited by MIP2 in terms of imprinting factor, selectivity, LOD values and reproducibility.
Further studied have been thus performed on MIP2, which revealed to be able to achieve
very repeatable and stable responses to Lyz as well as to detect it in artificial saliva samples
producing high recovery values at all tested concentrations.

To our knowledge, this is the first polyscopoletin MIP-based impedimetric sensor
for the detection of lysozyme in artificial saliva. The fabrication procedure is simple and
low-cost. Time and cost related to sensor assembly are further reduced by the demonstrated
possibility of repetitive use of the same device due to good repeatability and time stability
within 30 days. Moreover, tests on artificial saliva indicate the potentially successful use of
the sensor for clinical purposes.
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