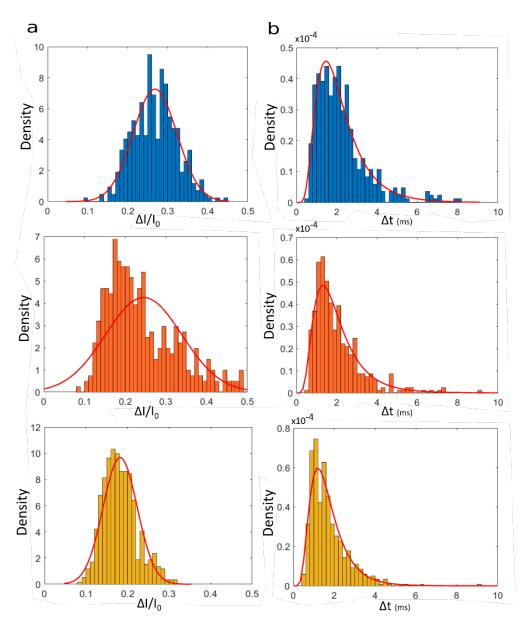

1 Supplementary information: Machine learning to improve

2 the sensing of biomolecules by conical track-etched

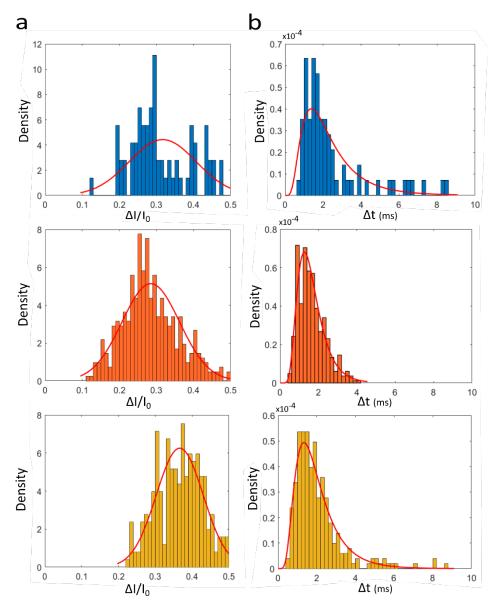
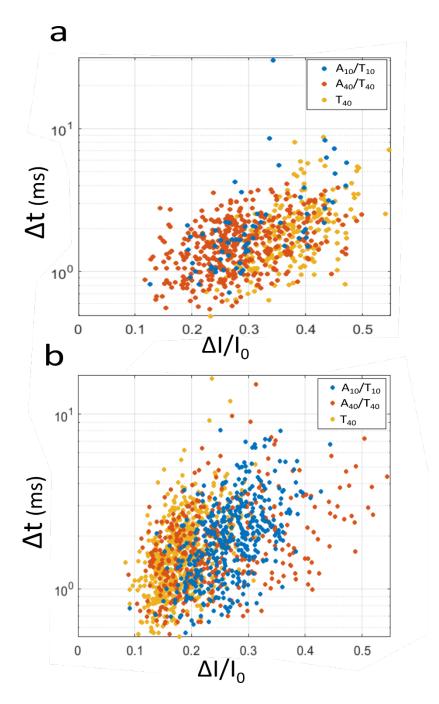
3 nanopore

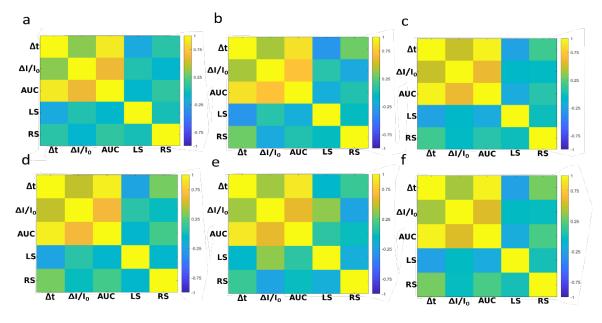

- 4 Nathan Meyer, Jean-Marc Janot, Mathilde Lepoitevin, Michael Smietana, Jean-Jacques Vasseur,
- 5 Joan Torrent, Sebastien Balme
- 6

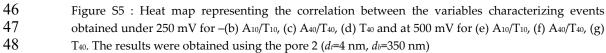
8 Figure S1 : Distribution histograms of a) the amplitude of the relative current blockade ($\Delta I/I_0$) and b) 9 the dwell time (Δt) for the A₁₀/T₁₀ (blue), A₄₀/T₄₀ : (orange), T₄₀ (yellow). The events were recorded at 10 250 mV with the pore 1, the number of events n= 703, 116 and 388 for A₁₀/T₁₀, A₄₀/T₄₀ and T₄₀ 11 respectively). The results were obtained using the pore 1 (d_i =3 nm, d_b =200 nm). The density (d_i) is the 12 frequency (f_i) of event relative to the sample size (n) and the bin width (w_i) $d_i = \frac{f_i}{nw_i}$ 13 where $w_i = 0.01$ and 200 for $\Delta I/I_0$ and Δt respectively.

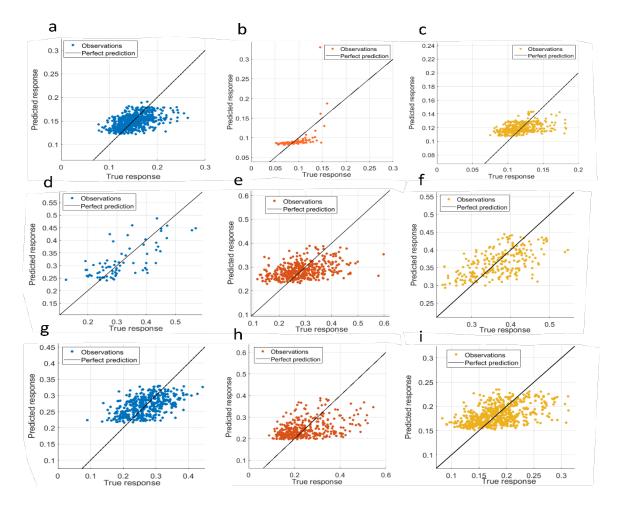
- 14
- 15

17Figure S2: Distribution histograms of a) the amplitude of the relative current blockade ($\Delta I/I_0$) and b)18the dwell time (Δt) for the A₁₀/T₁₀ (blue), A₄₀/T₄₀ : (orange), T₄₀ (yellow). The events were recorded at19500 mV with the pore 2, the number of events is 421, 410 and 590 for A₁₀/T₁₀, A₄₀/T₄₀ and T₄₀20respectively). The results were obtained using the pore 2 (d_i =4 nm, d_b =350 nm). The density (d_i) is the21frequency (f_i) of event relative to the sample size (n) and the bin width (w_i) $d_i = \frac{f_i}{nw_i}$ 22where $w_i = 0.01$ and 200 for $\Delta I/I_0$ and Δt respectively.

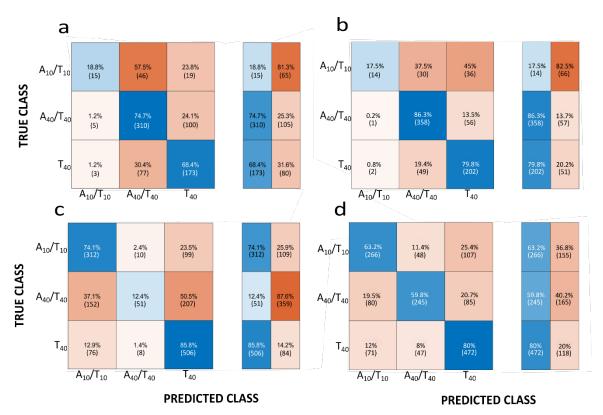

Figure S3 : Distribution histograms of a) the amplitude of the relative current blockade ($\Delta I/I_0$) and b) the dwell time (Δt) for the A₁₀/T₁₀ (blue), A₄₀/T₄₀ : (orange), T₄₀ (yellow). The events were recorded at 250 mV with the pore 2, the number of events is 80, 415 and 253 for A₁₀/T₁₀, A₄₀/T₄₀ and T₄₀ respectively). The results were obtained using the pore 2 (d_i =4 nm, d_b =350 nm). The density (d_i) is the frequency (f_i) of event relative to the sample size (n) and the bin width (w_i) $d_i = \frac{f_i}{nw_i}$ where $w_i = 0.01$ and 200 for $\Delta I/I_0$ and Δt respectively.




38

39Figure S4 : Scatter plot representing the Δt versus the $\Delta I/I_0$ for the A₁₀/T₁₀ (blue), A₄₀/T₄₀ : (orange), T₄₀40(yellow) for a voltage of (a) 250 mV and (b) 500 mV. The events were recorded with the Pore 1. The41number of events recorded at 250 mV n= 80, 415 and 253 and at 500 mV n= 421, 410 and 590 for A₁₀/T₁₀,42A₄₀/T₄₀ and T₄₀ respectively. The results were obtained using the pore 2 (d_t =4 nm, d_b =350 nm)

43



49

50Figure S6 : Linear regression performed with $\Delta I/I_0$ (response variable) and Δt (predictor) The results51show here were obtained with pore 1 (d_i =3 nm, d_b =200 nm) under V= 250 mV a) A₁₀/T₁₀ (R² of X n =52703), b) A₄₀/T₄₀ R²= -0.12; n = 116), c) T₄₀ (R² = 0.12; n = 382) ; pore 2 (d_i =4 nm, d_b =350 nm) under V= 25053mV d) A₁₀/T₁₀ (R² = 0.50; n = 80), e) A₄₀/T₄₀ (R² = 0.17; n = 415), f) T₄₀ (R² = 0.33 ; n = 253) and pore 2 (d_i =454nm, d_b =350 nm) under V= 500mV g) A₁₀/T₁₀ (R² = 0.27; n = 421), h) A₄₀/T₄₀ (R²= 0.19; n = 4₁₀), i) T₄₀55(R²=0.23; n = 590)

57 Figure S7 : Confusion matrix representing the accuracy of classification with the support vector 58 machine approach obtained under V=250 mV using a) 2 features ($\Delta I/I_0$, Δt) and b) 5 features ($\Delta I/I_0$, Δt , 59 AUC, LS, RS) and under 500 mV using c) 2 features ($\Delta I/I_0$, Δt) and d) 5 features ($\Delta I/I_0$, Δt , AUC, LS, 60 RS). The results were obtained using the pore 2 (d_{t} =4 nm, d_{b} =350 nm)

- 61
- 62