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Abstract: Metal-free porphyrin with good planarity is beneficial to π–π stack interactions, which
promotes electron coupling and the separation and transfer of photogenerated carriers. It is necessary to
develop metal-free porphyrin-based photocatalysts and exploit the photocatalytic mechanism. Herein,
metal–free porphyrin (5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin, TCPP) was self-assembled through
an acid-based neutralization reaction and mixing dual-solvents under surfactants to form different
aggregates. Morphology structures, optical and optoelectronic properties of the TCPP aggregates were
characterized in detail. TCPP self-assemblies showed higher photocatalytic activities for the degradation of
phenol under visible light than untreated TCPP powders, and the aggregates of nanorods formed through
the acid-based neutralization reaction in the presence of hexadecyl trimethyl ammonium bromide (CTAB)
possessed 2.6 times more activity than the nanofiber aggregates formed through mixing dual-solvents.
It was proved that self-assembly methods are crucial for controlling the aggregation of porphyrins to
form different aggregations, which have a profound impact on the photocatalytic activity.
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1. Introduction

Photocatalysis is an effective technology for storing and transforming solar energy, which would
help to solve environmental pollution caused by water contamination [1]. The key to this technology
is to develop photocatalysts with high efficiency, stability, environmental friendliness and abundant
sources of raw material. Organic materials as photocatalysts possess many advantages, such as
excellent light absorption, tunability in structure, and rich resources [2,3]. Their use can avoid the
introduction of metal contamination, therefore, utilization of organic photocatalysts such as graphitic
carbon nitride (g-C3N4) [4] and perylene diimide derivatives (PDIs) [5] has attracted attention to
achieve splitting water, the reduction of carbon dioxide and degradation of pollutants under visible
light. However, photogenerated carriers are easy to recombine in organic photocatalysts and the
photocatalytic efficiency is low [6]. In addition, organic molecules have poor light and thermal stability.
So, to solve these problems, the organic molecules with π-conjugated structure are usually arranged by
intermolecular non-covalent bonding to form supramolecular nanostructures, which capture photons
more effectively and prolong the excited state electron-holes in ordered aggregates [7–9]. This has
proved to be an effective strategy for achieving efficient photocatalysis using supramolecular structures
of organic small molecule semiconductors [10,11].

Porphyrin molecules with their planar aromatic macrocyclic structure are the centers of photosynthetic
reactions in plants, have strong visible absorption, and are mainly used as light-trapping antenna molecules
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and cocatalysts in photocatalytic systems [12]. Based on the rigid molecular skeleton and abundant
substituents, aggregates of porphyrins are easily formed using self-assembly techniques [13] such as
reprecipitation, surfactant assisted crystallization and solvent phase volatilization. The aggregates not only
broaden the light absorption range, but also enhance the stability of the porphyrin photocatalyst due to
the geometrical constraints of the rigid frame [14]. Furthermore, the mode of molecules aggregation and
morphology of nanostructures are very essential to the separation and transmission of photogenerated
charges [15,16]. When the porphyrin is assembled into a crystal structure, higher charge mobility can be
obtained, and is an important prerequisite for photocatalytic reactions [17–20].

In the past, porphyrin-based photocatalysts mainly concentrated on metallo-porphyrins and the
mechanism of the molecular and aggregation mode of photocatalysis in porphyrin aggregates is still
unclear. On the other hand, the excellent planarity of metal-free porphyrin is beneficial to the π-π stack
interactions, which promotes electron coupling and facilitates separation and transfer of photogenerated
carriers [18]. Herein, a metal–free porphyrin (5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin, TCPP)
was self-assembled through an acid-base neutralization reaction in the presence of hexadecyl trimethyl
ammonium bromide (CTAB) as a surfactant and mixing dual-solvents under ethylene glycols (EG)
as a surfactant. The aggregates were used as photocatalysts for degradation of phenol. We showed
that self-assembly methods are crucial for controlling the aggregation of porphyrins to form different
aggregations, which have a profound effect on the photocatalytic properties of the material.

2. Materials and Methods

2.1. Materials

5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (97% purity, TCPP) was purchased from Aladdin
Reagent (Shanghai, China). Sodium hydroxide, ethylene glycol (EG), anhydrous sodium sulfate and
tetrahydrofuran (THF) were provided by Yongda Chemical Reagent Co., Ltd. (Tianjin, China). HCl was
purchased from Kaixin Chemical Industry Co., Ltd. Hexadecyl trimethyl ammonium bromide (CTAB)
was purchased from Xingfu Fine Chemical Research Institute (Tianjin, China). All the chemical reagents
used were of analytical purity and not further purified.

2.2. Characterization of the Materials

The X-ray diffraction (XRD) was tested by D8 Advance X-Ray Diffractometer (Buker, Germany).
Field emission scanning electron microscopy (SEM) was tested by Hitachi S-4800 (Tokyo, Japan).
Transmission electron microscopy (TEM) was tested by Hitachi HT-7700 (Tokyo, Japan). Dynamic
light scattering (DLS) was measured by the Malvern Mastersizer 3000 instrument (Malvern, Britain).
Optical absorption spectra were measured by UV−vis spectrophotometer (UV-9000S, Shanghai, China).
The FT-IR (Fourier Transform Infrared) spectra were obtained by the VERTEX70 spectrometer (Buker,
Germany). The CHI660E electrochemical workstation (Shanghai Chenhua Co., Ltd., Shanghai, China)
with a 500 W xenon lamp (420 nm filter) and three-electrode quartz cells were used to measure the
electrochemical properties of the aggregates. Electron paramagnetic resonance (ESR) spectra was
tested on the CTAB-TCPP samples containing 2,2,6,6-Tetramethyl-4-piperidone (TEMP) as a probe of
1O2 under dark and visible light by the ESR spectrometer (BrukerA300, Buker, Germany) at rt.

2.3. Synthesis of Self-Assembled TCPP

2.3.1. The Self-Assembly Method through Acid-Base Neutralization in the Presence of CTAB

TCPP (0.0190 g) was dissolved in 2.5 mL of NaOH (0.2 M) to form the TCPP/NaOH solution
(0.01 M). Then, 0.5 mL of TCPP/NaOH solution was rapidly injected into 9.5 mL of aqueous solution
containing CTAB (2.5 mM) and HCl (12 mM), which was stirred continuously. The mixed solutions
needed to be stirred (1020 rpm) at room temperature (25 ◦C) for 6 h. Finally, the mixture was freeze
dried to obtain the self-assembled TCCP (CTAB-TCPP) as solid catalyst.
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2.3.2. The Self-Assembly Method through Acid-Base Neutralization without CTAB

TCPP (0.0190 g) was dissolved in 2.5 mL of NaOH (0.2 M) to form the TCPP/NaOH solution
(0.01 M). Then, 0.5 mL of TCPP/NaOH solution was rapidly injected into 9.5 mL of aqueous solution
containing HCl (12 mM) under stirring. The mixed solutions were stirred (1020 rpm) at room
temperature (25 ◦C) for 6 h. Finally, the mixture was freeze dried to obtain the self-assembled TCCP
(CTAB-TCPP) as solid catalyst.

2.3.3. The Self-Assembly Method through Mixing Dual-Solvents under Ethylene Glycols (EG)

TCPP (0.0032 g) was dissolved in 4.925 mL of THF solution (0.8 mM). Then 73.625 mL of H2O
mixed with surfactants ethylene glycols (1.25 mL) was slowly added to the stirred TCPP/THF solution.
The produced self-assembled TCCP (EG-TCPP) as flocculation was collected by filtration and freeze-drying.

2.4. Evaluation of Photocatalytic Activity

Photocatalytic performance of catalysts under visible light was studied using phenol as the
model pollutant. The photocatalytic performance was tested by a multi-tube photocatalytic reactor
fromXPA-7(Xujiang Machine Factory, Nanjing, China). To keep the reaction solution temperature at a
constant of 25 ± 2 ◦C, the reaction device was connected to the cooling instrument. A 350 W xenon
lamp with a cut-off filter of 420 nm and with about 25 mW/cm2 light intensity tested by an optical
power meter (CEL-NP2000, Beijing, China) was employed as a visible light for irradiation.

First, 30 mL of 5 ppm phenol was added to a 50 mL reaction tube. 10 mg of TCPP aggregates as
catalysts was then added to the phenol solution at a temperature of 25 ◦C under magnetic stirring.
Before the photocatalytic degradation experiment, the adsorption performance of every photocatalyst
with phenol was tested under light-off conditions. The reaction without light was for 1 h with stirring
to eliminate the adsorption effects. Then, the light was turned on for photocatalytic degradation of
phenol. One mL of the degradation solution was taken out at every time interval. The obtained
solution was filtered by a 0.22 µm membrane and the concentration of phenol was detected by high
performance liquid chromatography (HPLC).

Free radical trapping experiments were carried out to trace the active species of photocatalytic
degradation of phenol. The trapping agents used in the experiment were isopropanol (IPA) for
quenching •OH, p-benzoquinone (p-BQ) for quenching •O2−, and ethylene diamine tetraacetic acid
disodium salt (EDTA-2Na) for quenching h+. The trapping experiment was performed as the same as
that of removing phenols without these scavengers. The determination of the phenol removal rate was
also by high performance liquid chromatography (HPLC).

2.5. Electrochemical Measurement

Photoelectrochemical measurements mainly proved the separation efficiency of photo generated
electrons and holes byCHI660B electrochemical workstation. The used counter electrode was Pt wire,
the reference electrode was a saturated calomel electrode (SCE), and the catalyst was coated in ITO
glass as a working electrode to form the three-electrode system. A 500 W xenon lamp with a 420 nm
cutoff filter was used as a light source and the electrolyte solution was Na2SO4 (0.1 mol/L) solution.

3. Results and Discussion

3.1. Self-Assembly Properties of TCPP to Form Different Aggregates and the Characterization of
Their Structures

Herein, surfactant-assisted self-assembly (SAS) was employed for the production of porphyrin
supramolecular structures. Acid-based neutralization assisted with CTAB as a surfactant was used
to synthesize assembled structures named CTAB-TCPP [21]. Generally, TCPP were deprotonated
to form (TCPP)−4 in NaOH solution which was soluble in water. When (TCPP)−4 was injected into
acidic aqueous solution in the presence of CTAB micelles, it was protonated and aggregated to form
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assembled structures due to the hydrophobic interactions of porphyrin rings. In another method,
mixing dual-solvent systems containing good and poor solvents for TCPP under stabilizers EG was
employed to form assembled structures named EG-TCPP [22]. The preparation procedure involved
adding an excess volume of poor solvent (H2O) to a THF solution of TCPP in the presence of EG
surfactant under stirring. Figure 1 shows the morphology of different assembly structures with different
methods from SEM and TEM. Irregular bulks were observed through SEM for untreated TCPP powder.
The morphology of CTAB-TCPP was estimated by TEM images and showed uniform nanorods with a
width of ca. 125 nm and length of ca. 500 nm (Figure 1e). Dynamic light scattering (DLS) measurement
was used to confirm the size of the aggregates (Figure S1) and it showed that the size of nanorods was in
the range of 100 nm to 500 nm, which was in accordance with the TEM image (Figure 1e). Without CTAB
surfactant, TCPP was precipitated using acid-based neutralization to form fibril structures with a
length of more than 10 µm (Figure 1c). As shown in Figure 1d, the morphology of EG-TCPP aggregates
showed nanofibers with diameters of ca. 250 nm and lengths of several micrometers. We observed
from the SEM and TEM (Figure 1e,f) that the size of CTAB-TCPP aggregates was much smaller than
that EG-TCPP. As we know, CTAB can form micelle structures with a hydrophobic cavity when its
concentration is above critical micelle concentration. The hydrophobic cavity provided restricted space
for protonated TCPP molecules to aggregate through intermolecular interactions. However, EG as
stabilizing agents cannot provide the restricted space for TCPP aggregation, which resulted in different
sizes and morphologies from CTAB-TCPP aggregates.
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Figure 1. SEM of (a) untreated 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) powders; (b)
hexadecyl trimethyl ammonium bromide (CTAB)-TCPP aggregates; (c) non-CTAB-TCPP aggregates (d)
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To study the aggregation modes of TCPP molecules in aggregates, UV−vis absorption spectra of the
different assemblies in the preparation medium were tested and are shown in Figure 2. TCPP molecules
as monomer in N,N-Dimethylformamide (DMF) solution exhibited a typical Soret band at 425 nm
and four Q bands at 530, 567, 593 and 647 nm [23]. For aggregated TCPP molecules of CTAB-TCPP,
the Soret absorption band were red-shifted to 435 nm and the absorption peaks at Q bands also
moved to long wavenumbers compared with TCPP monomer, which indicated that TCPP molecules
aggregated in order through a J-type aggregation mode [24,25]. However, the absorption spectra of
CTAB-TCPP aggregates showed a tiny shoulder band with high energy, implying the presence of an
H-type aggregation mode between porphyrins. Without the CTAB, UV−vis absorption spectra of
aggregated TCPP showed a broad Soret band and a strong shoulder band, which suggested that in
the absence of CTAB micelles TCPP molecules assembled together disorderly with H-aggregation
and J-aggregation coexisting in a similar proportion. For EG-TCPP aggregates, the Soret absorption
band red-shifted slightly compared with TCPP monomer, which indicated that TCPP molecules in
EG-TCPP assembly also aggregate via a J-type mode but with a lower degree of aggregation compared
with that in CTAB-TCPP [26]. Herein, CTAB as a cationic surfactant was able to form micelles, which
provided a restricted domain for aggregation of TCPP molecules via the non-covalent interactions,
which facilitated porphyrins assembly mainly in the J-aggregation mode.
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Figure 2. UV−vis absorption spectra of different TCPP aggregates and monomer.

Figure 3a showed the photoluminescence spectra of the different aggregates. In the DMF solution,
the TCPP molecules as a monomer showed emission bands of 648 and 703 nm, respectively [27], which
is a characteristic pattern of porphyrin molecules. When forming CTAB-TCPP aggregates the two
emission bands red-shifted and at the same time the bands were broadened. The red-shifting and
widened emission band indicated the main J-aggregation mode of TCPP in CTAB-TCPP aggregates.
However, there is no obvious red shifting in EG-TCPP aggregates, indicating the lower degree of
aggregation in this assembly which leads to different photocatalytic activities. The time-resolved
fluorescence decays of CTAB-TCPP aggregates and TCPP powders were investigated and the results
are shown in Figure 3b. By using multi-exponential fitting, the average lifetimes of the TCPP aggregates
were estimated and are shown in Table S1. The average decay time of CTAB-TCPP aggregates
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was shorter than that of TCPP powders, which confirmed the J-type aggregation mode of TCPP
molecules [28] and more efficient separation of photogenerated carriers in CTAB-TCPP aggregates [29].
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The FT-IR spectra of the different TCPP aggregates were measured to characterize the
intermolecular interactions of TCPP molecules and shown in Figure 4. Compared with TCPP
powders, the absorption band at 1689 cm−1 of C=O stretching vibration shifted to a lower wavenumber
and overlapped with the vibration band at 1602 cm−1of aryl rings of TCPP. In addition, other absorption
bands for stretching vibration of C–O and C–N at 1110 cm−1 and 798 cm−1 were all shifted to lower
wavenumbers. All these results reveal the presence of hydrogen bond interactions between TCPP
molecules in aggregates [30].
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3.2. The Photocatalytic Activities of Different TCPP Aggregates

The photocatalytic activity of TCPP aggregates was tested for degradation of phenol under
visible light irradiation. Figure 5 shows the degradation rates for phenol by different TCPP aggregates.
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No obvious photodegradation was observed by untreated TCPP powders under visible light irradiation.
However, the calculated degradation rates of phenol were 94% and 36% by CTAB-TCPP aggregates
and EG-TCPP aggregates, respectively. TCPP exists in the form of disordered molecules in untreated
commercial powders and a very weak intermolecular interaction such as π−π stacking occurs, and
hence, lower photocatalytic activity occurs compared to aggregated porphyrin molecules. In addition,
compared to the EG-TCPP aggregates, CTAB-TCPP aggregates were superior photocatalysts for
photodegradation of phenol, which proved that the photocatalytic activity of TCPP aggregates was
related to the morphology of the aggregate structures as well as aggregation modes of TCPP molecules.
It is noteworthy that just 10 mg of catalyst was used in this degradation process and compared
with other organic photocatalysts such as the perylene-3,4,9,10-tetracarboxylic diimide (PDINH)
supramolecular system and g-C3N4 as reported in the literature [5], its ability to degrade phenol
was superior. In addition, our degradation experiment was performed under visible light and the
degradation ability of other visible materials is incomparable [31].

The HPLC data for the phenol peak during the photodegradation by CTAB-TCPP aggregates is
shown in Figure S2 in the Supplementary Materials and the retention time of phenol was 5.2 min. The peak
of phenol reduced as the reaction proceeded and there were no other peaks. This indicates that phenols
are mineralized to H2O and CO2 by CTAB-TCPP aggregates under irradiation. The three-dimensional
chromatograms of phenol peaks at 0, 3, 6, and 8 h is given in Figure S3. The figure also shows that the
characteristic peak of phenol gradually decreased as the time increased.
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UV-vis diffuse reflectance spectroscopy (DRS) of different aggregates was measured to characterize
the light absorption properties. Compared to untreated TCPP powders, the CTAB-TCPP aggregates
exhibit a wider spectrum response, revealing their ability for wide range absorption of visible light
(Figure 6). The absorption edge of CTAB-TCPP aggregates in the UV–vis spectrum expands to 668 nm
and the photocatalytic reaction could be conducted under visible light irradiation. The properties
of photodegradation of phenol under different light wavelengths were investigated and the results
(Figure 7) showed that when the wavelength of irradiation light was above 520 nm, the photodegradation
rate remained the same. When the wavelength of light was above 590 nm the degradation rate decreased
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to 85% and when it reached above 670 nm there was still degradation, which indicated that this
self-assembled TCPP was efficient as a photocatalyst under a wide visible spectrum.
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The stability of photocatalysts is a critical factor for determining their applicability. Herein,
the stability of CTAB-TCPP aggregates was investigated by observing several cycles of photodegradation
of phenol. As shown in Figure 8, after four cycles the degradation efficiency of CTAB-TCPP aggregates
started to be affected and was reduced to 87% after six cycles. The results indicated that the nonmetallic
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catalyst based on TCPP aggregates formed through non-covalent bond forces showed good stability
and reusability during the degradation.
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3.3. Mechanism of the Different Photocatalytic Activity of TCPP Aggregates

A possible mechanism has been suggested to explain the different photocatalytic activities
performed by different TCPP aggregates. As observed above in the exploration of optical properties,
in CTAB-TCPP assembly, TCPP molecules were aligned in a slipped cofacial mode as J-aggregation.
In EG-TCPP assembly, TCPP molecules existed but with a lower degree of aggregation. As a result,
CTAB-TCPP aggregates with rod shape TCPP molecules, showed greater π−π interactions between
adjacent molecules than that of the EG-TCPP assembly. The J-aggregation mode of TCPP promoted
delocalization of coherent π-electrons, which favors the electron transfer process and efficient photo
semiconductor performance [32]. In contrast, the H-aggregated TCPP possessed a lower π conjugation
structure and hence, it was not conducive to photocatalytic reactions. In order to prove this point,
several CTAB-TCPP aggregates were prepared under different pH values regulated by HCl addition.
In acid-based neutralization methods, different pH leads to different protonation degrees of the
nitrogen atoms of the TCPP skeleton. The lower pH value resulted in protonation of pyrroles in
the porphyrin core, which leads to greater repulsion between macro porphyrin rings; this is not
conducive to face-to-face aggregation but to J-aggregation in CTAB micelles. At higher pH, nitrogen
atoms are not protonated and the hydrophobic interaction between porphyrin rings is beneficial
to face-to-face aggregation in CTAB micelles. This was proved by UV−vis absorption spectra of
CTAB-TCPP aggregates with different pH and results are shown in Figure 9. At pH of 3, the Soret
band of CTAB-TCPP aggregates was red-shifted compared with the TCPP monomer, indicating the
J-aggregation mode of TCPP molecules. When pH was 7, the Soret band of CTAB-TCPP aggregates
was blue-shifted, indicating TCPP molecules aggregated with the H-mode [33]. Correspondingly, the
photocatalytic activities of CTAB-TCPP aggregates prepared with different pH values were different
and as predicated, the CTAB-TCPP aggregates with a pH of 3 showed better degradation efficiency
for phenol than those with a pH of 7 (Figure 10). If the solution was highly acidic with a pH of 1,
strong repulsion between protonation TCPP molecules hindered their orderly alignment and the
products presented the properties of a monomer. When the pH was 5, the UV−vis absorption spectra of
aggregates were the same as a TCPP monomer, and it showed poor photocatalytic activity. The results
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demonstrated that the J-aggregation of TCPP throughπ−π interaction and hydrogen bonding interaction
is beneficial to enhance the coherent electronic delocalization and charge separation, which enriches its
photodegradation ability [34,35].
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Transient photocurrent response spectra of the photocatalysts can be exploited to study
the electron-hole separation efficiency. As shown in Figure 11, the photocurrent of CTAB-TCPP
aggregates and EG-TCPP aggregates were both higher than that of the untreated TCPP powders,
which demonstrates the improved separation efficiency of the carriers in the assembly under visible
light irradiation [36]. Moreover, the photocurrent of CTAB-TCPP aggregates was much stronger than
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that of EG-TCPP aggregates, which further reveals that the charge separation under light irradiation in
CTAB-TCPP aggregates was more effective than that in EG-TCPP aggregates. Higher carrier separation
efficiency leads to more photogenerated charges participating in the reaction, thus improving the
degradation activity. Electrochemical impedance spectra (EIS) of different TCPP aggregates were tested
to further demonstrate their electrical properties and are shown in Figure 12. The Nyquist curve radius
of CTAB-TCPP aggregates and EG-TCPP aggregates were both lower than that of untreated TCPP
powders, revealing that the resistance of photogenerated charge transfer was smaller in the TCPP
assembly. At the same time, CTAB-TCPP aggregates have smaller charge transfer resistance and higher
charge separation efficiency than EG-TCPP aggregates.
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According to the absorption edge in the UV-vis diffuse reflectance spectra, the energy gaps of
CTAB-TCPP aggregates and EG-TCPP aggregates were estimated to be 1.85 eV and 1.88 eV, respectively.
For some organic aggregates, HOMO and LUMO of π-stacked molecules were overlapped and formed
electronic energy level-like structures with conduction bands (CB) and valence bands (VB). Herein,
the Mott-Schottky plots of CTAB-TCPP aggregates and EG-TCPP aggregates were used to determine
the electronic energy levels and the results are shown in Figures S3 and S4 [37,38]. The flat band
potential (Efb) for CTAB-TCPP aggregates and EG-TCPP aggregates were−1.04 eV and −0.76 eV (vs.
SCE), respectively. So, the CB positions (HOMO level) of CTAB-TCPP aggregates and EG-TCPP
aggregates was calculated to be −1.00 eV and −0.72 eV (vs. NHE). The CB position (HOMO level) of
the EG-TCPP aggregates was lower than that of CTAB-TCPP aggregates. According to the energy gaps,
the VB positions (LUMO levels) of CTAB-TCPP aggregates and EG-TCPP aggregates should be around
+0.85 eV and +1.16 eV, respectively.

Trapping experiments were measured to test the active species of the photocatalysis reaction.
Figure 13 shows the photodegradation rates for phenol by CTAB-TCPP aggregates in the presence
of hole scavenger (EDTA-2Na) [39], superoxide radical scavenger (p-BQ) [40] and hydroxyl radical
scavenger (IPA) [31], respectively. The degradation rate was reduced drastically in the presence of p-BQ,
revealing that superoxide radical (•O2

−) was the main oxidative species in the degradation reaction.
In addition, the degradation rate was decreased in the presence of EDTA-2Na, proving that the holes
(h+) also participated in the oxidation reaction. IPA had slight influence on the degradation of phenol,
which suggested that a small fraction of hydroxyl radical (•OH) was produced in the degradation process.
Meanwhile the electron paramagnetic resonance (ESR) with TEMP (2,2,6,6-tetramethyl-1-piperidine) as a
spin probe was performed to detect the singlet oxygen (1O2) during irradiation of CTAB-TCPP aggregates.
The ESR results in Figure 13b show that noticeable signals of 1O2 were observed, which revealed that 1O2

can be produced by CTAB-TCPP and also governs the photocatalytic degradation process. In view of
the above discussion, a predicted photocatalytic mechanism of TCPP aggregates is shown in Figure 14.
The photoexcited electrons reacted with O2 to generate •O2

−, which oxidized phenol directly. In this
process, hydrogen peroxide (H2O2) could be formed by O2with electrons and H+ and it further transformed
into •OH [41] according to the theoretical potential value. The produced H2O2 and •OH were both
detected with titanium (IV) oxysulfate and coumarin, respectively (Figure S5). Simultaneously, the h+

moves to the catalyst surface and oxidize the phenols. The different CB positions between EG-TCPP
aggregates and CTAB-TCPP aggregates lead to different abilities to form superoxide radicals, which
resulted in different photodegradation activities. Due to the more negative CB position (HOMO level) of
CTAB-TCPP aggregates, the photogenerated electrons showed a greater ability to produce superoxide
radicals. On the other hand, different aggregation modes of TCPP molecules and aggregate size resulted
in the different separation efficiency of photogenerated carriers. Based on the factors discussed above,
CTAB-TCPP aggregates present excellent photocatalytic activity for degradation of phenols.
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4. Conclusions

In this paper, metal-free porphyrin (TCPP) was used to form supramolecular structures with
orderly molecule aggregation and they showed enhanced photodegradation properties for phenol
under visible light in contrast to untreated powders. In addition, the self-assembled aggregates of
nanorods (CTAB-TCPP) with porphyrins in mainly J-aggregation mode demonstrated more efficient
separation of photogenerated charges and a more positive CB position than that of nanofibers aggregates
(EG-TCPP) through different assembly methods. Based on the above factors, CTAB-TCPP aggregates
presented a strong ability to produce superoxide radicals as oxidative active species and showed
excellent photocatalytic degradation activity. In conclusion, the metal-free porphyrin aggregates were
proved to be a stable and effective photocatalyst for degradation of contaminants, while avoiding the
introduction of metal ions. CTAB-TCPP aggregates have a high utilization rate of visible light, which
is conducive to its practical application. This research may provide some theoretical guidance for the
development of metal-free photocatalysts for use in the control of environmental pollution and solar
energy conversion.
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