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Abstract: Gold clusters protected by 3-MBA ligands (MBA = mercaptobenzoic acid, –SPhCO2H) 
have attracted recent interest due to their unusual structures and their advantageous ligand-
exchange and bioconjugation properties. Azubel et al. first determined the core structure of an Au68-
complex, which was estimated to have 32 ligands (3-MBA groups). To explain the exceptional 
structure-composition and reaction properties of this complex, and its larger homologs, Tero et al. 
proposed a “dynamic stabilization” via carboxyl O–H––Au interactions. Herein, we report the first 
results of an integrated liquid chromatography/mass spectrometer (LC/MS) analysis of 
unfractionated samples of gold/3-MBA clusters, spanning a narrow size range 13.4 to 18.1 kDa. 
Using high-throughput procedures adapted from bio-macromolecule analyses, we show that 
integrated capillary high performance liquid chromatography electrospray ionization mass 
spectrometer (HPLC-ESI-MS), based on aqueous-methanol mobile phases and ion-pairing reverse-
phase chromatography, can separate several major components from the nanoclusters mixture that 
may be difficult to resolve by standard native gel electrophoresis due to their similar size and 
charge. For each component, one obtains a well-resolved mass spectrum, nearly free of adducts or 
signs of fragmentation. A consistent set of molecular mass determinations is calculated from 
detected charge-states tunable from 3− (or lower), to 2+ (or higher). One thus arrives at a series of 
new compositions (n, p) specific to the Au/3-MBA system. The smallest major component is assigned 
to the previously unknown (48, 26); the largest one is evidently (67, 30), vs. the anticipated (68, 32). 
Various explanations for this discrepancy are considered. A prospective is given for the various 
members of this novel series, along with a summary of the advantages and present limitations of 
the micro-scale integrated LC/MS approach in characterizing such metallic-core macro-molecules, 
and their derivatives. 

Keywords: 3-MBA/Au MPCs; TEA-HFIP ; ESI-MS; HPLC-MS; bidentate binding 
 

1. Introduction 

This work on the 3-MBA protected gold clusters, or cluster compounds, has, in brief, been 
motivated by the following circumstances:  
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(i) A Science paper from 2014 identified a medium-sized (68, 32) 3-MBA gold cluster and 
determined its structure through an HREM-based statistical algorithm [1].  

(ii) It has been proposed [2–4] that this ligand has a different ‘binding mode’ than its sister 4-
MBA (pMBA), which is better understood thanks in particular to Vergara et al.’s recent subatomic 
resolution of the (146, 57) compound [5].  

(iii) Previous attempts by the Tsukuda group to analyze these by ESI-MS are limited in scope, as 
the obtained spectra are “too broad” (unresolved), i.e., inadequate to establish the composition, e.g., 
is it truly Au68 (as the HREM reconstruction indicates)? What is the true ligand count (supplied by 
computational modeling)?  

(iv) According to our best evidence, the main component is (67, 30), rather than the previously 
published (68, 32), and the smaller main component is (48, 26). These unusual numbers, and indeed 
the entire graph of the observed composition number (p vs. n), are consistent with the theoretical and 
experimental (nuclear magnetic resonance, NMR) proposition of a special (bidentate) mode of 3-MBA 
binding. This trend-line (dependency) is in accord with the idea that as the size increases, the 
decreasing curvature (of the core’s surface) increases the propensity for the bidentate mode. 
Asymptotically, flat surfaces (self-assembled monolayers, SAMS) may be dominated by this binding 
mode. 

Noble metal clusters, especially of gold and its intermetallic compounds, form highly stable 
complexes with thiolate and other pseudo-halide ligands. These are often called “monolayer 
protected clusters” (MPCs), because of their relation to the analogous self-assembled monolayers 
(SAMs) on planar or extended electrodes [6–8]. They have attracted special attention because of their 
nobility [9] (tolerance to air, moisture, and light; bio-compatibility, etc.); their facile modification via 
ligand exchange reactions [10–12]; a high-contrast detection, whether visual/optical or in X-ray and 
electron scattering [13]; and the fascination and potential utility of their strongly size-dependent 
optical, electrical and structure-bonding properties [14–16]. 

By now, much evidence has accumulated to suggest that many of these MPCs may be obtained 
in high yield as pure macromolecular substances of definite composition [17,18] and structure-
bonding characteristics [19–21], as opposed to the more usual metal colloidal or nanoparticle [9] 
substances that often show heterogeneity. Such a proven structural uniformity of MPCs is essential 
to precision-intensive applications, as well as to all fundamental physicochemical understanding. The 
most compelling demonstrations are the cases of a total structure determination by single crystal X-
ray [22] or electron diffraction methods [23], which for gold-thiolates have recently been extended to 
MPCs as large as Au146(pMBA)57 (aqueous) [5] and Au279(TBBT)84 (nonaqueous) [24]. 

Azubel et al. [1] determined the core structure of an Au68-complex via cryo-TEM, which was 
estimated to have 32 ligands (3-MBA groups). Tero et al. [4] proposed a “dynamic stabilization” 
mechanism via carboxyl O–H––Au interactions to explain its structure, composition and reaction 
properties, as well as those of its larger homologs [2,3]. 

Many reports have discussed the challenge of adequately characterizing samples of novel MPCs, 
particularly in the early stages of identifying the main compounds or components of a mixture, as 
discussed elsewhere [25,26]. Our approach here has been to adapt a method—electrospray ionization 
(ESI)-coupled high performance liquid chromatography mass spectrometry (HPLC-MS)— 
established earlier for bio-macromolecules of a similar size (or mass) and surface chemistry as the 
MPCs under investigation [27]. Specifically, the larger Au/MBA clusters have many (~24–60) acid-
terminated ligands [3], and so are presumed to exist in an aqueous solution at a normal (or higher) 
pH as poly-anions (plus respective counter-cations). For this case, a long experience with 
oligonucleotides (DNA or RNA), composed of a similar number, ~24–60 base-sugar-phosphate 
repeats), seems most instructive.  

Our aims in the present work have been (i) to determine whether the unusual solution-phase 
characteristics of the Au/3-MBA clusters will permit them to yield to be analyzed by the ESI-coupled 
LC-MS methods that have recently improved the analysis of Au-pMBA clusters ranging from small 
oligomers and clusters (25, 18) and (36, 24) to the larger species (102, 44), (130, 50) and (144, 60) [27]; 
(ii) to examine whether ion-pairing agents will work similarly to enable both high-resolution LC 
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separations and reduced-fragmentation ESI-ToF (time-of-flight) mass spectra; (iii) to provide some 
insight into the powerful selection principles underlying the results in refs. [1–4]; (iv) to search for 
minor or hidden components (new compositions) as semi-stable or transition MPCs; and (v) to 
provide additional evidence pertaining to the ‘bidentate’ or dynamical carboxyl-gold interactions 
described in reference [4]. 

Herein, we report the first results of an ESI-coupled LC-MS analysis of unfractionated samples 
of Au/3-MBA clusters that span a narrow mass range, 13.4–18.2 kDa. Using procedures adapted from 
oligonucleotide analyses, we show that integrated capillary HPLC-ESI-MS, based on aqueous-
methanol mobile phases and ion-pairing reverse-phase chromatography, can separate at least two 
major components (and several minor ones) that are present in all sources. For each component, a 
well-resolved mass spectrum, nearly free of adducts or signs of fragmentation, allows the 
determination of a consistent assignment of molecular masses, as calculated from detected charge-
states tunable from 3− (or lower), to 2+ (or higher). One thus arrives at a set of proposed compositions 
(n, p), as characteristic of the Au/3-MBA system. The smaller major component is assigned to the 
previously unknown (48, 26); the larger one is assigned to (67, 30), vs. the anticipated (68, 32).  

2. Materials and Methods  

2.1. Synthesis  

The size-uniform samples prepared at the University of Texas at San Antonio by Germán 
Placencia-Villa (GPV) for this work are synthesized according to a modified Brust-Schiffrin approach 
described elsewhere [1]. In brief, a stirred solution of 3:1 molar ratio of 3-MBA – HAuCl4 (Sigma 
Aldrich, Saint Louis MO, USA)was allowed to equilibrate for 16 h under basic conditions in 30% 
methanol (Fisher Scientific, Hampton NH, USA) solution prior to the cluster-forming reduction 
reaction initiated by the addition of sodium borohydride (Sigma Aldrich, Saint Louis MO, USA). This 
altered method has been shown to produce uniformly sized clusters, as opposed to the production of 
many discretely sized particles.  

2.2. 3-MBA/Au System Characterization 

The characterization of molecular nanoparticle preparations is carried out by a variety of 
methods for the characterization of the system of interest. Size-exclusion [28], gel-permeation [29], 
thin-layer chromatography [30], gel-electrophoresis [31], reversed-phase [32], and hydrophobic 
interaction [33] liquid chromatography has all been extensively used as essential analytical tools for 
the characterization of such nanoclusters. These methods separate the various components of a 
mixture according to one or more physical and/or chemical attributes, including differences in size, 
polarity, hydrophobic character, and electrophoretic mobility (related the size-to-charge ratio). Ion-
pairing can be combined with reversed-phase LC for the analysis of acidic and basic clusters [34]. 
Separation methods may be used alone for sample fractionation or in conjunction with various 
detectors.  

The analysis of nanoclusters through these methods is only possible for those samples exhibiting 
a certain degree of modal- or multi-modal distribution — with each mode showing a minimal 
variance. Samples that exhibit a continual distribution, as is the case of nanoparticles exceeding an 
approximately 3-nm core diameter, are not amenable to LC or MS analysis. ‘Magic-number’ 
nanocluster preparations are good candidates for a characterization by liquid chromatography and 
mass spectrometry because these clusters form in a multi-modal fashion, with only a few 
compositions exhibiting a high degree of stability. The LC-MS data acquired from these samples may 
be used to assign a specific cluster identity as well as for the semi-quantitative determination of each 
of the components present in a sample. Aqueous nanoparticles, like those investigated here, are of 
interest because of their potential application in medical and life sciences [2,3]. 

2.2.1. Coupled Chromatography—ESI-MS  
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In the present work, efforts were focused to determine whether the 3-MBA/Au systems were 
amenable to analysis by HPLC-ESI-MS in the same way as previously observed for the analogous 4-
MBA/Au systems (aka p-MBA/Au). Specifically of interest was the possibility of ion-pairing with 
triethylammonium cations (TEAH+) [27] for the retention and separation of these poly-acid clusters 
via reversed phase chromatography. Additionally, of interest was an understanding on the 
effectiveness of this ion-pairing strategy for electrospray ionization (ESI) and if the necessary 
conditions could be implemented for a supported determination of cluster compositions with some 
degree of clarity by minimizing fragmentation. The successful implementation of HPLC-MS to these 
systems may help reveal ‘hidden components’ [35] — not otherwise known or detectable by native 
PAGE gel-electrophoresis. Any evidence to support or refute the proposed ‘bidentate’ bonding (H-
bonding of carboxyl to Au) is also of interest in these studies.  

Although gel-electrophoresis is a standard technique for the analysis of nanoparticle 
preparations, it is a relatively coarse size separation method. An exact determination of size and 
uniformity requires confirmation by a secondary analytical technique, since it is possible for the 
components having different sizes, shapes, or charges to share the same, or similar, electrophoretic 
mobilities.  

2.2.2. HP-LC–ESI-MS Sample Preparation  

The obtained Au/3-MBA samples were either re-dispersed or diluted — if a solid or solution, 
respectively — approximately 10× in the appropriate solution. LC separation was performed with 
coupled electrospray time-of-flight mass spectrometry detection (ToF-MS). The separations were 
carried out on a C18 stationary phase using gradient methods, whereby the initial mobile phase 
composition was replaced with a higher organic concentration in a linear fashion over a period of 
twenty minutes. The instrumental procedures, i.e., mass spectrometer, HPLC columns used in this 
work, are described elsewhere [36] in the HPLC-MS and UV−Vis Method Conditions section. The 
mobile phases were prepared containing 400 mM hexfluoroisopropanol (HFIP)-15 mM triethylamine 
(TEA), TEA-HFIP or 10 mM triethylammonium acetate (TEAA) in ddH2O (mobile phase A) and 
methanol (mobile phase B). The separation behavior of the nanoclusters predominantly depends on 
the selected combination of the stationary phase, mobile phase, gradient, and mobile phase modifier. 
Starting from the conditions used to obtain a satisfactory separation and ionization of our previous 
report of larger p-MBA/Au MPCs [27], the gradient and modifier selection were varied to find the 
conditions for the satisfactory separations for this current 3-MBA (aka m-MBA)/Au MPCs work. In 
this work, 10–40% MeOH (mobile phase B) gradient over 20 min at ambient temperature were used 
for the efficient separation of the clusters, though the selection of the modifier (ion-paring agent) 
plays the vital rules as demonstrated in our results. The near-baseline separation of the various 
components is crucial for providing a differentiation and correlation between the various MS signals 
observed, which aids the MS interpretation and reduces the possibilities for ion-suppression artifacts. 
The gradient method can be adapted to produce a greater separation between components, and the 
mobile phase modifier is essential for a good chromatographic performance compatible with 
acceptable electrospray ionization. Solution phase ion-pairing effectively neutralizes the MBA’s 
carboxylate (–COO−) group by association with TEAH+, enhancing the interaction of the 
mercaptobenzoic acid ligands with the C18 stationary phase.  

3. Results 

Recent reports have demonstrated the possibility of producing uniformly-sized batches of 3-
mercaptobenzoic acid (MBA) protected nanoparticles [1–4]. Smaller nanoparticles, or nanoclusters, 
are noteworthy for their interesting properties, and because certain stoichiometries (i.e., gold-to-
ligand ratios) form in abundance due to their relatively higher thermodynamic stability [4,37]. This 
phenomenon makes it possible to produce specific nanomolecular particles in abundance. However, 
because there exist various “magic-number” sizes (e.g., Au25, Au38, Au68, Au102, Au144, etc.), 
nanocluster preparations may still exhibit heterogeneity or mixtures varying from one batch to the 
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next. These improved synthetic procedures make it possible to produce size-focused preparations of 
nanoparticles, thus enabling the production of a higher-quality product.  

Synthetic procedures such as these, in tandem with analytical methods that can be used to 
characterize these preparations, may provide the needed capabilities for the development of various 
nanoparticle applications. The 3-MBA/Au systems demonstrate ‘certain advantages’ over other 
thiolates (organic or hydrophobic) for the purposes of ligand exchange and conjugation, as well as 
for bio-applications. 

Figure 1 shows negative-ionization (-ESI) LC-MS mode data acquired following the sample 
(prepared by the size-uniform synthesis procedure) provided by M. Azubel, as prepared at Stanford 
University. Two dominant components are readily identified: (67, 30; 17.8 kDa) and (48, 26; 13.4 kDa). 
These appear at the short (long) retention times and high (low) mass ends of the spectrum.  
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Figure 1. ESI-coupled LC-MS analysis of Au/3-MBA clusters from the Azubel-preparation. Detection 
is set for negative ions, under conditions that generate mainly 3− and 4− charge states. The top frame 
shows the chromatograms, i.e., the base peak chromatogram (m/z 100–10,000), and an extracted-ion 
chromatogram (EIC) for each identified component. The color-coded EIC chromatographic peaks 
track with the coded and numbered mass spectra listed herein with compositions assigned as follows: 
(1, Red) (67, 30), 17.8 kDa; (2, Black) (60, 31), 16.6 kDa; (3, Green) (58, 30), 16.0 kDa; (4, Blue) (60, 30), 
16.4 kDa; and (5, Purple) (48, 26), 13.4 kDa. The fine-structure of the (67, 30)3− complexes is presented 
in Figure S1. 

Figure 2 shows the results from the analysis of the same sample, obtained in the positive-
ionization (+ESI) LC-MS mode. The mass spectra are shown for each of the 5 major components: (67, 
30; 18.1 kDa), (60, 31; 16.9 kDa), (58, 30; 16.2 kDa), (60, 30; 16.6 kDa), and (48, 26; 13.6 kDa). These are 
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also considered when assigning the compositions listed in Figure 1. In both cases, 10 mM TEAA was 
used as the ion-pairing agent to facilitate the ionization process.  

 
Figure 2. As in Figure 1, but with a positive (ESI+) mode for detection. This analysis shows mainly 2+ 
charge-states. The black trace corresponds to the base peak chromatogram (m/z 100–10,000). The 
color-coded EIC chromatographic peaks track with the coded and numbered mass spectra listed 
herein, with compositions assigned as follows: (1, Red) (67, 30), 18.1 kDa; (2, Black) (60, 31), 16.9 kDa; 
(3, Green) (58, 30), 16.2 kDa; (4, Blue) (60, 30), 16.6 kDa; and (5, Purple) (48, 26), 13.6 kDa. The fine 
structures of the (67, 30)2+ complexes are presented in Figure S2. 

Figures 3 and 4 show two analyses with two different ion-pairing agents TEAA and TEA-HFIP, 
respectively of a separate preparation (GPV) of 3-MBA clusters.   
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Figure 3. The analysis of a second preparation (GPV) of Au/3-MBA clusters. Negative ionization mode 
(-ESI) detection shows mainly 3− & 4− charge-states. The black trace corresponds to the base peak 
chromatogram (m/z 100–8,000). The color-coded EIC chromatographic peaks track with the coded 
and numbered mass spectra listed herein, with compositions assigned as follows: (1, Red) (67, 30), 
17.8 kDa; (2, Black) (53, 28), 14.7 kDa; (3, Blue) (59, 31), 16.3 kDa; (4, Green) (58, 30), 16.0 kDa; (5, Light 
Blue) (60, 30), 16.4 kDa; and (6, Purple) (48, 26), 13.4 kDa. For the singly charged (z = 1−) of the same 
sample, see Figures S3 and S4. The polyacrylamide gel-electrophoresis (PAGE) analysis and 
corresponding HPLC-ESI-MS chromatogram are presented in Figure S4. 
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Figure 4. The analysis of the second preparation of 3-MBA clusters using the TEA–HFIP mobile phase 
buffer composition. The negative ionization mode was used for the analysis, mainly 3− and 4− charge-
states. The black trace corresponds to the base peak chromatogram (m/z 1000–10,000). The color-
coded EIC chromatographic peaks track with coded and numbered mass spectra listed, and the 
compositions are assigned as follows: (1, Dark green) (25, 18), 7.7 kDa; (2, Dark Blue) (38, 24), 11.1 
kDa; (3, Blue) (46, 26), 13.0 kDa; (4, Purple) (48, 26), 13.4 kDa; (5, Black) (53, 28), 14.7 kDa; and (6, Red) 
(67, 30), 17.8 kDa. 

Besides the main components, (67, 30; 17.8 kDa) and (48, 26; 13.4 kDa), identified in Figures 1 
and 2 (Azubel’s sample), several other minor ones, (25, 18; 7.7 kDa), (38, 24; 11.1 kDa), are identified 
with our ESI-MS method, especially at a smaller mass. Figure 4 shows results for the same sample 
analyzed using a combination of a more volatile weak acid HFIP than acetic, and TEA. Interestingly, 
while the components observed in each analysis are essentially identical, the order of elution is 
significantly altered for the two modifiers. The TEAA modifier produces a chromatography whereby 
the larger clusters generally elute first, followed by smaller ones. The TEA-HFIP reverses this general 
trend, so that smaller clusters elute first, followed by larger ones. 
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Figure 5 contains a comparison among the mass spectra above (Figures 1–4), as they pertain to 
the putative “Au68(3-MBA)32” compound (calculated mass of 18.3 kDa), and also to an extract from 
the mass spectrum provided in reference [1]. In negative-ion detection, as appropriate to polyacids, 
the evidence all points toward 17.8 kDa, the mass of (67, 30). In positive-ion detection, where TEAH+ 
adducts provide the charge, the mass of 18.1 kDa also agrees with (67,30), assuming triple-adduction, 
i.e., 3 TEAH+, in which case the (67, 30) complex carries an intrinsic (core) charge of 1−. 

 

Figure 5. A comparison of the deconvoluted mass spectra in the region of the 17.8 kDa compound, 
putatively “Au68(3-MBA)32”, vs. the ESI-MS of reference [1] (blue curve at top). Selected portions of 
the ESI mass spectra of gold cluster samples are depicted, in which the independent variable has been 
converted from the (m/z) scale to the total mass (kDa), using the charge (z) assignments indicated in 
Figure 2 (red), Figure 4 (pink and purple), Figure 1 (orange and black), and Figure 3 (dark green). 
Note that in the case of the positive ion mode (z = 2+), the peak is shifted higher by ~ +0.3 kDa, 
consistent with three (3) TEAH+ adducts, to the (67,30)1− complex. [Mass of TEAH+ = 101 Da.]. 

Figure 6 shows plots of the various chemical compositions observed for each of the different 
samples analyzed here. Although a number of different compositions were observed for each sample, 
a clear difference between the size-uniformity of the two samples can be observed. When a long 
equilibration prior to reduction is carried out, a much narrower range of cluster sizes is formed. If the 
procedure is varied––even slightly––to reduce this time period, a wider range of cluster sizes is 
formed, and this is supported by the recent reported “captamino”, a base side, thiolated gold clusters 
in the size range of 25–144 numbers of Au, or even larger ones [17,18]. In Figure 3, cluster 
compositions ranging from (47, 26) to (71, 34) are observed; whereas in Figure 4, compositions 
ranging from (25, 18) to (67, 30) are observed. 
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Figure 6. The number of ligands (p) vs. the number of Au atoms (n) found in this work on the Aun(3-
MBA)p, (n = 48–67, p = 26–30) and reported in the literature are shown to see the trends. Legend: 
symbols designate whether the component identified was detected prominently (colored large 
square) and for both samples under all ESI-coupled LC/MS conditions, or not (small hollow red 
circle); a red cross represents the expected (68, 32) clusters, a grey large square represents 3-MBA 
thiolated larger (144, 40) clusters, whereas small grey circles (filled) represent reported different 
compositions of other thiolated clusters, for example 4-MBA (a sister molecule of 3-MBA) thiolated 
Au146(4-MBA)57. 

4. Discussion 

4.1. General Remarks 

As mentioned in the Introduction, our general objective in this research has been to advance the 
analytical chemistry of thiolate-protected gold clusters. Specifically, we have aimed to adapt the 
standard HPLC-ESI-MS methodology, as applied for example to oligonucleotides, which are acidic 
(poly-anionic), developing optimized strategies for gold clusters protected by a monolayer of thiolate 
ligands with terminal (solution-exposed) acidic groups. The recent progress reported by Black et al. 
includes the HPLC-ESI-MS identification of a long series of Au-pMBA clusters as large as (146, 57) 
[5], or as small as (25, 18) and (36, 24). Through the use of a suitable ion-pairing agent (TEA+), well 
resolved mass spectra could be obtained under gentler conditions (to reduce poly-anion 
fragmentation in electrospray ionization) and nearly free from alkali-ion and solvent adducts [27]. In 
a related work, silver-lipoate clusters (29, 12)3− have been effectively resolved, where lipoate acts as a 
bidentate (di-thiolate) ligand with a terminal carboxylate (“thioctic acid”) [36,38]. 

4.2. Contrasting 3-MBA (or Meta-MBA) and 4-MBA (Aka Para-MBA) 

In turning from the 4-MBA (pMBA) to 3-MBA (or “mMBA”) ligands, one faces a more 
challenging analytical situation, as described most recently in a 2017 ACS Nano report by Tero et al. 

[4], as well as in the earlier reports of Azubel et al. [1–3], dating to the 2014 Science article: 
• There has been no total-structure determination of any 3-MBA protected gold clusters. 
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• There has been no adequately resolved ESI-MS identification of any of these: no composition-
determination by any standard analytical method. 

• Electron microscopy (or diffraction) provides the gold structure and atom count, in both (2) 
reported cases. (Ligands/S-atoms are not located by this method). Models are then constructed, 
which include the ligands, and these are tested (refined) by DFT computations. 

• The compositions arrived at by these procedures, (68, 32) and (144, ~40), are respectively 
distinctly and strikingly different from those determined previously for aliphatic ligands, i.e., 
(67, 35) and (144, 60), or from the more directly relevant water-soluble aromatic pMBA ligand 
(146, 57). [Figure 6 presents these compositions in a graphical format.] 
In practice, (via the same HPLC-ESI-MS optimized procedures) we were able to readily obtain 

clear results on the samples believed to be dominated by the (68, 32), but not on the samples labeled 
as larger compounds (144, ~40). This is not particularly surprising, for large polyanionic assemblies 
have a reputation for presenting a difficult ESI-MS analysis. For the same reason, the presence of 
readily detectable smaller components, such as the major one assigned to (48, 26), or even the minor 
one (25, 18) in one instance, is unsurprising, as their signal levels may be disproportionate to their 
concentration in solution. 

Perhaps the major positive result of our work is the greatly improved (vs. 2014 Science report1) 
quality of ESI mass spectra (Figure 5) that led us to identify (67, 30) as the composition of the 
compound previously assigned to (68, 32). This is only a minor difference, amounting to a single gold 
atom and two (2) 3-MBA ligands, but could suggest a reinterpretation of its structure and bonding. 

However, one should note that this suggested revision (reducing the ligand-count to 30 from 32) 
only serves to increase its distinctiveness, as compared to the reference (aliphatic) case, i.e., (67, 35) 
vs. (67, 30). Now, the ‘ligand deficiency’ (below) is five (5) rather than two (2), as indicated in Figure 
6. The other components, and specifically the one identified as (48, 26), may also be interpreted within 
this same context of ‘ligand deficiency’. Figure 6 shows that, for gold clusters protected by 
thiophenol-class thiolates, the important compositions (36, 24) and (44, 28) lie on a distinct ‘curve’. 
Yet the smallest (minor) compound identified here as (25, 18) is the same regardless of the thiolate. 

Below, we suggest how the ‘dynamical stabilization’ model — a form of bidentate ligation — of 
Tero et al. [4] can be generalized, from the two cases {(68, 32), (144, ~40)} investigated by them, to 
account for the entire range of compositions identified and presented in Figure 6. The dynamic-
stabilization model (DSM) [4] was reported to account for the optical (FTIR) spectra as well as other 
analytical observations, in a way that also explains the ligand-count deficiency and the lability of 
these two compounds when exposed to other (non-3-MBA) thiolates in solution. In particular, the 
basis for this model is described as follows:  
• In the carbonyl (C=O) stretching region, the vibrational FTIR spectra show “distinct peak[s] 

around 1730 cm−1, observable only in 3-MBA-passivated clusters, and interpreted as the signal 
of the O=C−OH···Au interaction.” [4]. 

• Molecular dynamic (MD) simulations were based on structure models for each cluster. “Visual 
inspection of MD trajectories revealed several weak interactions in the ligand layer and at the 
ligand−gold interface, such as formation of inter-ligand hydrogen bonds, inter-ligand π stacking 
(aromatic contacts), π−Au interaction where the aromatic ring lies “flat” on the gold core, and 
hydrogen bonding-like O=C−OH···Au interaction when the hydroxyl group is rotated toward 
the gold core.” “We thus assigned the highest frequency observed for both Au144(3-MBA)∼40 and Au68(3-
MBA)32 to the O=C−OH···Au interaction visualized ... This interaction at the ligand−metal interface 
has not been reported before for any thiolate protected gold nanocluster.” [4]. 
In the report, we have referred to any such interaction involving a second functional group 

(other than thiolate sulfur) as a “bidentate” bonding mode, whether the carboxyl group is protonated 
or de-protonated (as is more typical in solution-phase conditions, pH neutral or > 7).  

First, the ligand-deficiency count, which ranges from 15–20 in the case of (144, ~40), amounts to 
five (~5) for (67, 30), to perhaps a couple (2) in the case of (48, 26), and finally to zero (0) in (25, 18), is 
taken to represent the number of ligands bound in a bidentate fashion. It is represented as a fraction of the 
whole: In the extreme case of (144, ~40), more than one-third of the ligands are bound in the bidentate 
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mode. In the special case of (67, 30), one-sixth (5/30) are bidentate, and for (48, 26) only one-twelfth 
(2/26) are so indicated.  

Second, as usual the key step is to relate these fractions to the estimated curvature (1/R) of the 
structure as measured at its surface, where R is the radial distance at which the Au–S or Au–X bonds 
lie. A high curvature removes the driving force for bidentate coordination, because the steric 
constraints are greatly reduced (the position meta to sulfur should be well exposed to the solvent and 
counter-cation). 

For now, we leave this as a semiquantitative argument suitable for guiding further work on both 
the larger, or previously identified compounds, as well as the ones newly identified in this report. 
The need for this was well predicted in the closing remarks of reference [4]: “Several currently 
unknown compositions and sizes of 3-MBA-protected gold nanoclusters will undoubtedly be found 
by variations of the known syntheses, which will open unexplored possibilities for applications of 
these materials in biolabeling, catalyzing biochemical reactions, imaging, detection, and 
theranostics.”  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1; Figures S1–S4, fine-
structure in the electrospray negative ionization mode mass spectrometric analysis of the (67, 30), complex (67, 
30)z− in solution, electrospray positive ionization (ESI+) mass spectrometric analysis of the component identified 
as (67, 30), by HPLC-ESI-MS as in Figure 2, ESI-MS Analysis of GPV sample preparation, under conditions 
wherein mainly the singly charged (z = 1−) ions are detected, and the polyacrylamide gel electrophoresis (PAGE) 
and HPLC analyses of GPV sample preparation. 
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