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Abstract: Electrocatalysts with strong stability and high electrocatalytic activity have received
increasing interest for oxygen reduction reactions (ORRs) in the cathodes of energy storage and
conversion devices, such as fuel cells and metal-air batteries. However, there are still several bottleneck
problems concerning stability, efficiency, and cost, which prevent the development of ORR catalysts.
Herein, we prepared bimetal FeCo alloy nanoparticles wrapped in Nitrogen (N)-doped graphitic
carbon, using Co-Fe Prussian blue analogs (Co3[Fe(CN)6]2, Co-Fe PBA) by the microwave-assisted
carbon bath method (MW-CBM) as a precursor, followed by dielectric barrier discharge (DBD) plasma
treatment. This novel preparation strategy not only possessed a fast synthesis rate by MW-CBM,
but also caused an increase in defect sites by DBD plasma treatment. It is believed that the co-existence
of Fe/Co-N sites, rich active sites, core-shell structure, and FeCo alloys could jointly enhance the
catalytic activity of ORRs. The obtained catalyst exhibited a positive half-wave potential of 0.88 V vs.
reversible hydrogen electrode (RHE) and an onset potential of 0.95 V vs. RHE for ORRs. The catalyst
showed a higher selectivity and long-term stability than Pt/C towards ORR in alkaline media.

Keywords: FeCo alloy; oxygen reduction reaction; microwave-assisted carbon bath method; plasma;
defect sites

1. Introduction

Fuel cells and rechargeable zinc-air batteries are the most promising clean auto power for the next
generation due to their low cost and high energy density [1–4]. It is already widely known that the
oxygen reduction reaction (ORR) is a slow kinetic process in cathodic reactions [5,6]. Precious metal
Pt-based electrocatalysts usually possess high catalytic activity for ORRs, while their application for
ORRs is not satisfactory, because of the problems, such as high cost and poor long-term durability [7,8].
Therefore, it is essential to develop electrocatalysts with high activity, long life, and low cost to substitute
for the conventional catalysts of ORRs [9–11].

In order to reduce the loading of Pt and Pt-M (M = Fe, Co, Ni, Cu etc.), alloy catalysts have been
extensively discussed [12–14]. The second element alloyed with Pt can adjust the catalytic ability of the
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surface of the Pt-based catalyst and improve the catalytic performance [15]. For example, Zhang et al. [16]
synthesized bimetallic PtNi/C with hollow structures through a facile solution-based approach and
observed distance lattice contraction of Pt due to the presence of Ni-improved ORR performance.
It was found that PtNi/C showed excellent half-wave potential (E1/2) of 0.88 V vs. reversible hydrogen
electrode (RHE) and a stable 4-electron pathway. At the meantime, the morphology and size of Pt-M
alloys also have an important influence on the electrocatalytic performance. Ma et al. [17] used a
simple method to synthesize a hexagonal nanosheet PtFe alloy, a hexagonal nanosheet PtFe alloy with
uniform distribution and ultra-small (ca. 2.6 nm) particle size, as a high efficiency electrocatalyst.
The PtFe alloy showed the highest initial potential of 0.95 V vs. RHE. Up till now, non-Pt of the M1-M2

(M1, M2 = Fe, Co, Ni etc.) system has been reported, which is beneficial to improve the conductivity of
catalysts and activate each other’s active sites by the doping of M1/M2 [18,19]. Wen et al. [20] reported
FeCo alloy nanoparticles embedded in Nitrogen (N)-doped carbon with excellent ORR performance,
which was attributed to the core-shell nanostructure, the large specific surface area, and the synergetic
effect of the mutual element for FeCo@NC. Wang et al. [21] prepared FeNi nanoparticles wrapped
in N-doped carbon nanotubes (NCNTS,) in which NCNTS effectively prevented the oxidation and
aggregation of FeNi nanoparticles, showing an initial potential of 0.95 V vs. RHE. All the previous
research showed that the catalysts with bimetallic active sites exhibited optimal performance with
large surface areas, porous nanostructures, and rich active centers.

Herein, we prepared FeCo alloy nanoparticles wrapped with N-doped carbon (FeCo@NC) using
Co-Fe PBA as a precursor via the microwave-assisted carbon bath method (MW-CBM). Dielectric barrier
discharge (DBD) plasma is then used to produce the catalyst with more defect sites (DBD-FeCo@NC).
PBA have different bimetallic compositions, uniform sizes, morphology, and structure, which are
considered to be ideal precursors for the synthesis of hollow and porous electrocatalysts [22]. In addition,
MW-CBM has been successfully used in our previous work of LiFePO4/C [23], LFePO4/MEGO [24],
Fe/C [25], and Ni/VMT [26]. The MW-CBD has rapid heating efficiency due to the high efficiency of
microwave absorption of columnar carbon. due to its advantages of rapid heating efficiency and low
side reactions [27]. The MW-CBD prevents the reaction between air and catalyst precursor due to
the air reacting with the columnar carbon during the heating process. Moreover, the plasma-assisted
preparation method is used in the synthesis and modification of electrocatalyst materials, such as
making active sites or exfoliating catalysts [28,29]. The as-prepared DBD-FeCo@NC exhibited good
electrochemical ORR performance, e.g., a positive half-wave potential of 0.88 V vs. RHE and an onset
potential of 0.95 V vs. RHE. We believe that this strategy provides potential for the preparation of
similar superstructures of other effective catalysts with much active sites.

2. Materials and Methods

2.1. Synthesis of Samples

Synthesis of Co3[Fe(CN)6]2 (Co-Fe PBA): 2 mmol of K3[Fe(CN)6] was dissolved in 100 mL
deionized (DI) water and is labelled as solution A. A total of 3 mmol of Co(NO)2 was dissolved
in 100 mL DI water and is labeled as solution B. Solution B was slowly added to solution A under
continuous magnetic stirring and the mixture was left for stirring for 3.5 h at room temperature. After
aging for 24 h without stirring at room temperature, the precipitate was centrifuged for several times
with DI water and absolute ethanol. The final product of Co-Fe PBA was obtained after drying at 80 ◦C
for 8 h under vacuum.

Synthesis of FeCo@NC catalysts: 1.0 g of Co-Fe PBA was put into a small graphite crucible
(d = 1 cm, h = 1.5 cm). The small graphite crucible containing Co-Fe PBA was then put inside a
150 mL crucible and the graphite crucible was embedded in commercial columnar carbon material.
The 150 mL crucible with a small graphite crucible inside was then placed in a commercial microwave
oven under microwave irradiation with 900 W for 10 min. The obtained product was further treated by
0.5 M H2SO4 with ultrasound for 1 h to remove impurities. The product was washed by centrifugation
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using DI water. The final product was obtained after drying at 80 ◦C in a vacuum and is denoted as
FeCo@NC.

Synthesis of DBD-FeCo@NC catalysts: 50 mg of FeCo@NC was treated in Ar atmosphere under a
DBD plasma reactor at an input power of 50 V × 1.5 A AC (alternating current) for 30 min to prepare
DBD-FeCo@NC.

2.2. Characterizations

The field emission Tecnai G2 F20 electron (Hillsboro, OR, USA) microscope was used to analyze
transmission electron microscopy (TEM). X-ray diffraction (XRD, D8 Advance, Bruker, Karlsruhe,
Germany) with Cu-K radiation was used to characterize the structures of crystallographic phases
for the products. The Raman spectra was analyzed by a Laser Confocal Micro-Raman Spectroscope
(LabRAM HR800, Horiba Jobin Yvon, French) with a laser wavelength of 532 nm. The surface chemical
compositions were tested by using an X-ray photoelectron spectroscope (XPS, ESCALAB 250Xi, Thermo
Fisher Scientific, MA, USA).

2.3. Electrochemical Measurements

2.3.1. ORR Text

The electrochemical performance was tested by using a CHI760D electrochemical station with a
three-electrode cell system at room temperature in 0.1 M KOH (Potassium hydroxide) as an electrode
solution. The reference electrode and the counter electrode was the Ag/AgCl electrode and a Pt wire,
respectively. To prepare the catalyst ink for electrochemical analysis, 5 mg of the catalyst was dispersed
into 0.5 mL of ethanol containing a Nafion solution (5 wt%, DuPont) with the aid of ultrasonication.
A total of 10 µL of the catalyst ink was then coated on the glassy carbon disc electrode (3 mm in
diameter) and dried at 60 ◦C. The catalyst loading was controlled at 0.0142 mg/cm2. The catalyst on
the glassy carbon rotating disk electrode was used as a working electrode, with a rotating rate varying
from 625 to 2500 rpm at a scan rate of 10 mV/s. Ag/AgCl and platinum plate were used as the reference
and counter electrodes, respectively. The cyclic voltammetry (CV) curves were obtained at a sweep
speed of 50 mV/s in the potential range between −0.8 and 0.2 V after purging O2 or N2 for 20 min.

In a typical ORR program, the following equation can be used to estimate the number of electron
transfers based on the slope of the Koutecky–Levich (K–L) graph:

1
J

=
1
Jk

+
1

Bω1/2
(1)

where J represents the current density measured on a rotating disk electrode (RDE), Jk is the kinetic
current density, and ω acts as the electrode rotation speed. B is derived from the following equation:

B = 0.2nFC0D2/3
0 ν−1/6 (2)

among which n represents the electron transfer number of each O2 molecule in the ORR process, F
is 96,485 C/mol (Faraday constant), C0 is 1.2 × 10−3 mol/L (the dissolved O2 concentration), D0 is
1.9 × 10−5 cm2/s (the O2 diffusion coefficient), and ν is 0.01 cm2/s (the electrolyte kinematic viscosity).

2.3.2. OER (Oxygen Evolution Reaction) Text

The electrochemical performances of the prepared products were measured in an O2-saturated 1
M KOH at a 10 mV/s scanning rate with a three-electrode system using a CHI760D electrochemical
station. The catalyst ink coated on Ni-foam was used as the working electrode. Pt foil and Ag/AgCl
were used as the counter electrode and reference electrode, respectively. To prepare the catalyst ink,
2 mg of samples were dispersed in 500 µL water and 500 µL ethanol mixture, which contained 30 mL
60 wt% polytetrafluoroethylene (PTFE) solution with the aid of ultrasonication. Subsequently, 100 µL
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of as-prepared catalyst ink was loaded on surface of the Nickel foam surface (1 × 1 cm2) and then dried
at room temperature.

All potentials by measuring were called reversible hydrogen electrode (RHE) by RHE calibration,
as follows:

ERHE = EAg/AgCl + 0.197 + 0.059 pH (3)

For the whole polarization curve, linear sweep voltammetry (LSV) was performed at a 1.0 mV/s
scanning rate, which were IR (deviation caused by I-current and R-resistance) corrected. Calculating
the overpotential (η) is expressed as follows: η = ERHE − 1.23 V.

3. Results

As shown in Figure 1a, it was observed from the XRD pattern of Co-Fe PBA that the peaks of
XRD are related to the Co3[Fe(CN)6]2(H2O)10 (JCPDS No. 46-907) [20]. At the same time, Figure 1b
showed the FTIR spectrum of CoFe-PBA. It can be seen that FeIII-CN-CoII and FeII-CN-CoIII appeared
at positions of 2111 cm−1 and 2158 cm−1, respectively. Additionally, two peaks at 1609 cm−1 and
3416 cm−1 corresponding to the bending vibration and stretching vibration absorption peak of O-H
in water molecules were obviously detected, indicating that some water molecules entered the PBA
lattice. Combined with the XRD spectrum and FTIR spectrum, it was shown that CoFe-PBA was
successfully synthesized.
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Figure 1. (a) XRD pattern, (b) FTIR spectra of CoFe-PBA, (c) XRD pattern, and (d) Raman spectra of
FeCo@NC and DBD-FeCo@NC.

In order to determine the structural feature of the as-prepared products, the XRD pattern (Figure 1c)
of FeCo@NC and DBD-FeCo@NC were presented in Figure 1c. The XRD patterns of the two showed
a sharp peaks at 44.8◦and 65.3◦, which can be indexed to the diffraction from (110) and (200) planes
of FeCo alloy (JCPDS No. 49-1567) [30]. Additionally, the two catalysts had broad peaks at 2θ = 26◦,
which formed on the (002) plane of graphite. FeCo@NC prepared by MW-CBM exhibited a high degree
of graphitization. However, the peak intensity of graphite carbon was reduced for DBD-FeCo@NC after
plasma treatment, indicating that the crystallinity of graphite carbon was decreased. The molecular
structures of FeCo@NC and DBD-FeCo@NC were investigated using the Raman spectra. As can
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be seen from Figure 1d thatthe G band and the D band were around 1580 cm−1 and 1350 cm−1,
respectively. The value of ID/IG can be used to estimate the defect levels in the Raman spectra of
carbon-based materials. It was found that the ID/IG values were 1.01 for FeCo@NC, and 1.27 for
DBD-FeCo@NC, respectively, indicating that the plasma treatment promoted the defective sites for
DBD-FeCo@NC [31,32]. This conclusion was consistent with our XRD results and high-resolution TEM
(HRTEM) images. The catalysts exposed more active sites due to increased defect sites, which was
beneficial for ORR performance.

XPS was further employed to survey the surface composition of the FeCo@NC and DBD-FeCo@NC.
Figure 2a showed the survey XPS spectrum of FeCo@NC and DBD-FeCo@NC. Figure 2b showed
that C 1s spectra can be divided into three peaks, corresponding to sp2 hybridized C (284.2 eV),
C-O/C-N (285.5 eV), and O-C=O (288.0 eV) [33]. Figure 2c displayed the N 1s spectra of FeCo@NC
and DBD-FeCo@NC, which could be deconvoluted into four peaks relevant to pyridinic N (398.2 eV),
pyrrolic N (400.0 eV), graphitic N (401.1 eV), and oxidized N (406.6 eV). All of these N species were
reported to show advantages for ORR, apart from the uncertain contribution of the oxidized N. As
shown in Table 1, the different nitrogen type contents of FeCo@NC and DBD-FeCo@NC were 0.26 vs
0.58 at.% (pyridinic N), 0.30 vs 0.33 at.% (pyrrolic N), 0.26 vs 0.26 at.% (graphitic N), and 0.98 vs 0.50
at.% (oxidized N), respectively. It was found that DBD-FeCo@NC expressed an increased in the content
of pyridinic N after plasma treatment, which was good for ORR activity [34,35]. The O 1s XPS spectra
of all samples were given in Figure 2c. The peak at 531.2 eV and 532.0 eV belonged to oxygen defects
and O-H sites from surface-absorbed water, respectively. Moreover, the amount of oxygen defects for
FeCo@NC and DBD-FeCo@NC was 72.98% and 85.57%, respectively. The increase of oxygen vacancies
after plasma treatment was beneficial to the adsorption and reduction of oxygen [36,37]. Figure 2e
showed the Fe 2p spectra of FeCo@NC and DBD-FeCo@NC. The peak at the binding energy of 711.2 eV
corresponded to Fe 2p3/2, the peak at 725.2 eV was relevant to Fe 2p1/2, and the peak at 718.4 eV was a
satellite peak, confirming the existence of Fe-N-C structure [38]. The high-resolution XPS spectra of Co
2p (Figure 2f) revealed that there was a weak pair of doublets for the Co 2p3/2 and Co 2p1/2 signals at
780.6 eV and 796.2 eV, and the peak at 719.0 eV was a satellite peak, indicating the presence of Co-N-C
species [39].

Table 1. Atomic content of FeCo@NC and DBD-FeCo@NC.

Sample Content (at.%) Content of N Species (at.%)

C O N Fe Co Pyridinic Pyrrolic Graphitic Oxidized

FeCo@NC 50.42 32.89 1.8 9.44 5.45 0.26 0.30 0.26 0.98
DBD-FeCo@NC 60.05 24.65 1.67 8.64 4.99 0.58 0.33 0.26 0.50

The morphology of FeCo@NC and DBD-FeCo@NC was investigated by transmission electron
microscopy (TEM). A closer view of the TEM image displayed that FeCo@NC existed in a core-shell
structure with a diameter of 30–50 nm (Figure 3a). The high-resolution TEM (HRTEM) in Figure 3b of
FeCo@NC further revealed that the FoCo alloy nanoparticles were wrapped by graphitic carbon layers.
The well-defined crystalline lattice gaps were 0.201 nm (core) and 0.35 nm (shell), which associated
with the (110) plane of the FeCo phase and (002) the plane of the graphitic carbon, respectively. The
HRTEM image in Figure 3c disclosed that DBD-FeCo@NC maintained a core-shell structure well after
plasma treatment, and the lattice fringe spacing (0.201 nm) of the FeCo phase can also be observed.
It was worth noting that the thickness of the graphite carbon layer of DBD-FeCo@NC was stripped
from 2.68 nm to 1.06 nm after plasma treatment, compared to FeCo@NC. The thin layer structure of
DBD-FeCo@NC reduced the surface reaction resistance of the catalyst, which was beneficial to ion
transport/transfer [40]. More importantly, there were a few defects in DBD-FeCo@NC, which indicated
that the interface active site was enhanced by plasma treatment and was beneficial for ORR [41,42].
HAADF-STEM (High-Angle Annular Dark Field- Scanning transmission electron microscopy) images
(Figure 3e) and relevant elemental mapping of Fe, Co, C, and N revealed the core-shell morphology
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with C, N, Fe, and Co and the uniform distribution of Fe and Co elements in the core-shell structure,
proving that the active centers were doped and distributed uniformly on the catalyst.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 13 
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The catalytic performance of ORR was tested using RDE with the electrolyte of 0.1 M KOH. LSV
curves (Figure 4a) for the FeCo@NC, DBD-FeCo@NC, and 20 wt% Pt/C were examined at a 10 mV/s
scanning rate 1600 rpm rotation speed in O2-saturated electrolytes. Not surprisingly, DBD-FeCo@NC
disclosed the limited current density of 5.66 mA/cm2 and an onset potential of 0.96 V vs. RHE, which
was greater than FeCo@NC (4.42 mA/cm2, 0.88 V vs. RHE) and 20 wt.% Pt/C (5.01 mA/cm2, 0.93 V vs.
RHE). It was observed that DBD-FeCo@NC showed the half-wave potential at 0.88 V vs. RHE, which
was 100 mV higher than that of FeCo@NC without plasma treatment. The ORR performance was
comparable to other alloy catalysts (Table 2). Figure 4b displayed that CV showed a noticeable reduction
peak at a 50 mV s−1 scanning rate in O2-saturated electrolytes, but no peak in N2-saturated electrolytes.
These results indicated the obvious ORR activity toward DBD-FeCo@NC. The reaction kinetics of
DBD-FeCo@NC was measured by an ORR polarization technique at 625–2500 rpm (Figure 4c). The
Koutecky–Levich (K–L) graphs of the DBD-FeCo@NC exhibited an approximately linear relationship
betweenω−1/2 and j−1 in Figure 4d. In the range of 0.3–0.6 V, the average electron transfer number n
value for DBD-FeCo@NC was calculated to be about 3.8 from K–L graphs, indexing a near four-electron
transfer mechanism. Durability tests were performed for 20 wt% Pt/C and DBD-FeCo@NC by i-t
measurement (Figure 4e). After 32,000 s of continuous operation, the current density of DBD-FeCo@NC
can still be maintained at 75.6% (vs 35.6%, 20 wt% Pt/C), manifesting that DBD-FeCo@NC exhibited
good durability. The methanol tolerance of DBD-FeCo@ NC and 20 wt% Pt/C was examined by adding
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3 M methanol to 0.1 M KOH solution after 200 s. The chronoamperometric response (Figure 4f) showed
that DBD-FeCo@NC only decreased slightly, and its current remained at 89.2% after 1200 s, while
the 20 wt% Pt/C was only 43.1% of its maximum current. The results displayed that the stability and
selectivity of the DBD-FeCo@ NC catalyst for ORR was higher than 20 wt% Pt/C.
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(e) HAADF-STEM image and the corresponding elemental mapping of DBD-FeCo@NC.
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(CV) curves of DBD-FeCo@NC at a scan rate of 50 mV/s in N2-saturated or O2-saturated 0.1 M KOH
electrolyte; (c) LSVs of DBD-FeCo@NC at various rotation speeds and corresponding K–L plots (d); (e)
long-term stability tests; and (f) tolerance to alcohol poisoning tests of DBD-FeCo@NC and 20 wt.%
Pt/C via the oxygen reduction reaction (ORR) cathodic current-time (i-t) method.

Table 2. FeCo@NC and DBD-FeCo@NC compared with other alloy catalysts. Reversible hydrogen
electrode (RHE); microwave-assisted carbon bath method (MW-CBM).

Catalysts Preparation Method Onset Potential
(V vs. RHE)

Half-Wave Potential
(V vs. RHE)

Limiting-Current
Density (mA/cm2) Ref.

PtNi/C Solution synthesis - 0.88 - [16]
PtFe alloy Solution synthesis 0.95 0.88 5.83 [17]

FeCo@NC-750 Furnace heating 0.94 0.80 4.82 [20]
FeNi@NCNTs Furnace heating 0.95 0.77 4.70 [21]

FeCo@NC MW-CBM 0.88 0.78 4.42 this work
DBD-FeCo@NC MW-CBM 0.96 0.88 5.66 this work

The electrocatalytic properties of FeCo@NC and DBD-FeCo@NC for the OER activity were also
studied. As displayed in Figure 5a, the initial potential of DBD-FeCo@NC was 1.49 V vs. RHE,
which was more negative than that of FeCo@NC (1.55 V vs. RHE), and the initial potential of nickel
foam displayed 1.58 V vs. RHE, suggesting an enhanced OER activity in DBD-FeCo@NC. It is
well known that the potential demanded to provide the current density of 10 mA/cm2 is the key
benchmark for OER [43–45]. Under the current density of 10.0 mA/cm2, overpotential of 386 mV and
335 mV were estimated for FeCo@NC and DBD-FeCo@NC, respectively. As illustrated in Figure 5b,
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the DBD-FeCo@NC displayed a Tafel slope (111 mV/dec), which was much less than that of FeCo@NC
(209 mV/dec), demonstrating the most favorable OER kinetics and highly active DBD-FeCo@NC.
The current i-t curve (Figure 5c) showed excellent stability of DBD-FeCo@NC under a current density
of 10 mA/cm2, which retained 91.3% of the initial catalytic current after 14 h of continuous testing.
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Based on the structure and morphology of the catalysts, the excellent electrocatalytic activities for
both ORR and OER can be attributed to several factors: (1) The active sites of Fe/Co-Nx-C can adjust
the electronic polarities and surface properties, which can improve the activity of the catalyst; (2) the
unique core-shell structure offered more active sites and effectively prevented the coagulation and
dissolution/redeposition of FeCo alloy nanoparticles, thus maintaining high electrocatalytic stability;
(3) the plasma treatment made the catalyst possess more defect sites, which played an important role
in improving catalytic performance; (4) the Co-Fe system enhanced the conductivity of the catalysts.

4. Conclusions

In summary, we synthesized N-doped graphite carbon-coated FeCo alloy core-shell nanoparticles
via the microwave-assisted carbon bath method and further treatment with DBD plasma as bi-functional
ORR/OER catalysts. The materials exhibited unique core-shell structure, Fe/Co-N-C sites, the existence
of FeCo alloys, and enriched defect active sites. Because of these characteristics, DBD-FeCo@NC
displayed excellent ORR performance, as well as good OER activity. This synthetic route is facile and
scalable to prepare catalytic materials with different metal-doped and abundant defect active sites,
giving a wide possibility for large-scale application in practice.
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conceptual advice. All authors analyzed, discussed the data, and wrote the manuscript.
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