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Abstract: In this work, black phosphorus quantum dots (BPQDs) were decorated on hexagonal
ZnIn2S4 flower-like microspheres to form zero-dimensional/two-dimensional (0D/2D) structures.
Interface interactions between the BPQDs and ZnIn2S4 resulted in optimum effective charge transfer,
thereby improving the photocatalytic performance of the material. Thus, the 0.2% BPQD–ZnIn2S4

sample showed 30% higher H2 evolution rates compared to pure ZnIn2S4. This study provides a
simple route for the synthesis of photocatalysts. The results obtained herein can pave the way for
designing effective catalysts for solar-to-chemical energy conversion and feasible approaches to obtain
cheap, clean, and efficient photocatalysts.
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1. Introduction

H2 is regarded as the most promising energy vector in the 21st century. Photocatalytic H2 evolution
from water via solar irradiation is an attractive and sustainable solution for addressing the energy
supply issue [1–3]. Since the photocatalytic splitting of water into H2 over TiO2 under solar irradiation
was first discovered by Fujishima in 1972 [4], this reaction received broad attention. Thus, numerous
efforts were made to develop non-toxic, clean, and efficient semiconductor photocatalysts. In this
sense, a series of photocatalysts with enhanced photocatalytic H2 evolution activity such as CdS [5–7]
and graphitic carbon nitride (g-C3N4) [8–11], among others, were developed so far.

Metal sulfides attract much attention owing to their suitable band position and strong visible-light
absorption characteristics [12]. Among the ternary metal sulfides, chalcogenide ZnIn2S4 combines a
suitable band gap, high chemical stability, and excellent photocatalytic activity, making it a suitable
photocatalyst [13–15]. However, ZnIn2S4 suffers from a quick recombination of photogenerated
electron–hole pairs and low migration ability for the photoexcited charge carriers. These are, in fact,
the fundamental drawbacks of most semiconductors [16]. In order to optimize the photocatalytic
performance of these materials, much effort was made for studying preparation methods leading
to suitable particle size, structure, and morphology [17–19]. In addition, the photocatalytic activity
depends significantly on the migration of the electron–hole pairs from the conduction band (CB) to
the valence band (VB). Thus, the photocatalytic performance of ZnIn2S4 can be mainly improved by
expanding its light absorption region and by eliminating the recombination centers of photoinduced
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electrons and holes. In this sense, numerous strategies such as metal doping [20,21], introduction of
carbon quantum dots [13,22], and incorporation of other semiconductor materials [23–26] were used.
However, photocorrosion and limited solar light utilization remain unsolved [22].

Black phosphorus (BP) is a two-dimensional (2D) material that attracted much attention in recent
years owing to its excellent photoelectric properties (e.g., tunable bandgap and high charge carrier
mobility) [27–33]. Lee’s group [34] prepared a hybrid BP@TiO2 material with enhanced photocatalytic
performance (e.g., dye degradation and antibacterial activity) under light irradiation compared to
pure BP. Zhu and co-workers [35] prepared 2D hybrid BP/WS2 with significantly higher H2 evolution
rates compared to pure BP and WS2. In addition, this material released H2 under near-infrared (NIR)
irradiation. Zhang [36] prepared, for the first time, black phosphorus quantum dots (BPQDs) and
successfully used them in flexible memory devices. These memory devices showed a flash memory
effect with high on/off current ratios and good stability. After this pioneering discovery, much attention
was paid to this size-dependent material. More recently, Kong and co-workers [37] reported on BPQDs
as co-catalysts of g-C3N4 for visible-light-driven photocatalytic H2 generation. Despite this broad
application range, BPQDs are air- and water-sensitive, which limits their applications [38].

Herein, we decorated BPQDs on ZnIn2S4 (ZIS) and used the resulting material as a photocatalytic
H2 production system for the first time. Under simulated sunlight irradiation, the prepared BPQD–ZIS
hybrid photocatalysts showed significantly higher (ca. 1.32-fold) H2 generation rates compared to pure
ZnIn2S4. The characterization results allowed us to propose reasonable mechanisms for this enhanced
H2 production. The design of this new system can pave the way for new photocatalytic applications
for these materials.

2. Experimental Section

2.1. Preparation

All chemicals were of analytical grade and used as received without further purification.

2.1.1. Preparation of Hexagonal ZnIn2S4 Flower-Like Microspheres

In a typical procedure, 1.0 mmol of ZnCl2, 2.0 mmol of InCl3, and 6.0 mmol of thioacetamide
(TAA) were dissolved in 80 mL of deionized water. The mixed solution was vigorously stirred for
30 min and then transferred to a 150-mL Teflon-lined autoclave. The autoclave was sealed, kept at
80 ◦C for 12 h, and then cooled to room temperature naturally. A yellow precipitate was filtered and
washed with deionized water and absolute ethanol several times. Then, the solid was oven-dried at
60 ◦C overnight. The sample was denoted as ZIS.

2.1.2. Preparation of a Dispersion of BPQDs

A dispersion of BPQDs was synthesized via solvent exfoliation with dimethylformamide (DMF).
Firstly, 10 mg of bulk BP was added to 10 mL of DMF. The dispersion was sonicated for 6 h
on an ultrasonic homogenizer (Scientz, JY92-II N, Ningbo, China) under ice cooling. After that,
the dispersion was centrifuged at 5000 rpm for 20 min (to remove the non-exfoliated bulk BP) followed
by centrifugation at 13,000 rpm for another 30 min to remove the BP flakes. The resulting material was
a BPQD/DMF dispersion.

2.1.3. Preparation of BPQD–ZIS Materials

BPQD–ZIS materials were prepared by adding 200 mg of ZIS to DMF, followed by ultrasonication
of the mixture to form a homogeneous dispersion. Subsequently, the as-prepared BPQD/DMF
dispersion was added to a ZIS dispersion and sonicated for 2 h, and the mixture was stirred overnight.
The as-obtained powders were collected by high-speed centrifugation, washed with deionized water
and ethanol thoroughly, and finally vacuum-dried at 40 ◦C overnight to obtain BPQD–ZIS. Several
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BPQD–ZIS materials with various weight ratios were prepared by adding different amounts of the
BPQD dispersion to the ZIS dispersion.

2.2. Characterization

The morphology of the hybrid materials was characterized by field-emission scanning
electron microscopy (SEM, FEI Quanta 250 FEG, FEI, Hillsboro, OR, USA). Transmission electron
microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive
spectrometry mapping (EDS mapping) images were obtained on a JEM-2100HR device (JEOL, Tokyo
Japan). X-ray diffraction (XRD) patterns and X-ray photoelectron spectra (XPS) were obtained on
BRUKER D8 ADVANCE (BRUKER, Karlsruhe, Germany) and Thermos SCIENTIFIC ESCALAB 250Xi
devices(Thermos, Boston, MA, USA), respectively. Fourier-transform infrared (FT-IR) spectroscopy
was conducted on a BRUKER VERTEX 70 device (BRUKER, Karlsruhe, Germany). Ultraviolet–visible
light (UV–Vis) diffuse reflectance spectroscopy (DRS) was conducted on a METASH UV-8000A
device (METASH, Shanghai, China), while the photoluminescence (PL) spectra were obtained on a
GANGDONG F-380 fluorescence spectrophotometer (Gangdong, Tianjin, China).

2.3. Photoelectrochemical Measurements

Photoelectrochemical measurements of the obtained products were carried out on an
electrochemical analyzer (CHI660E) in a standard three-electrode system using the prepared samples
as the working electrodes with an active area of 1 cm2, a Pt wire as the counter electrode, and saturated
Ag/AgCl as the reference electrode. An aqueous Na2SO4 (0.2 M) solution was used as the electrolyte.
The electrochemical impedance spectra (EIS) were obtained by applying an alternate current amplitude
of 5.0 mV in a frequency varying from 100 kHz to 0.01 Hz.

2.4. Photocatalytic H2 Evolution

Typically, 50 mg of catalyst powder was added to a cylinder reactor containing an aqueous
solution (100 mL) containing 0.35 M Na2S and 0.25 M Na2SO3 and sealed with a rubber septum. Before
the reaction, Ar purges were carried out through the solution to remove the O2 and N2 dissolved in
the water. The reaction was carried out by irradiating the suspension with simulated sunlight with a
300-W Xe lamp (Perfect Light, PLS-SXE300, Beijing, China) equipped with an optical filter AM 1.5
(Perfect Light, Beijing, China). The gas produced over the catalyst was collected and analyzed by gas
chromatography (GC, Shiweipuxin GC-7806, Shiweipx, Beijing, China).

3. Results and Discussion

3.1. Characterization of the Photocatalysts

The XRD patterns of the pure ZnIn2S4 and hybrid BPQD catalysts (BPQD loadings of 0.1, 0.2, 0.3,
and 0.4 wt.%) are presented in Figure 1. Intense peaks were observed at 2θ values of 20.44, 28.47, 47.32,
52.61, 55.97, and 76.30◦, and these peaks were ascribed to the (006), (102), (110), (022), (116), and (212)
lattice planes of a hexagonal ZnIn2S4 phase (JCPDS card No. 03-065-2023) [39], respectively. These
results indicated that the presence of BPQDs did not alter the crystal structure of ZnIn2S4. The low
loadings of BPQDs prevented us from observing apparent peaks corresponding to BPQDs in the
BPQD–ZIS samples.

The morphology of the prepared BPQD–ZIS was confirmed by SEM. As shown in Figure 2, pure
ZnIn2S4 contained flower-like microspheres of ca. 2–5 µm in diameter. As revealed by TEM (Figure 2d),
the flower-like microspheres of the synthesized BPQD–ZIS materials contained numerous ultrathin
nanosheets. The presence of these nanosheets rendered ZnIn2S4 with a unique layered structure. Thus,
the ZnIn2S4 flower-like microspheres increased the contact area for BPQD decoration. BPQDs were
observed at the edges of the flower-like microspheres, revealing that BPQD-doped ZnIn2S4 hybrids
were successfully synthesized. A lattice spacing of 0.32 nm was determined (Figure 2f) and assigned to
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the (102) facet of hexagonal ZnIn2S4 [15]. The inter-planar spacing of ca. 0.33 nm corresponded to
the (021) facet of BPQDs [40] in the hybrid material. These results demonstrated that BPQDs were
introduced into the ZnIn2S4 phase, generating a good contact between the BPQDs and ZnIn2S4 in the
BPQD–ZIS hybrids. Elemental mapping of the BPQD–ZIS samples revealed the presence of P, Zn, In,
and S, confirming that the BPQD–ZIS hybrids were successfully prepared.
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Figure 2. SEM images of ZnIn2S4 (a,b), TEM images of BPQDs (c) and BPQD–ZIS (d,e), high-resolution
TEM (HRTEM) images of BPQD–ZIS (f), and elemental mapping of BPQD–ZIS (g).
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To gain insight into the interfacial interaction between ZnIn2S4 and BPQDs, XPS measurements
(Zn 2p, In 3d, S 2p, and P 2p) were carried out. The full survey scanned spectra (Figure 3a) of ZnIn2S4

and the BPQD–ZIS hybrids contained the Zn 2p, In 3d, and S 2p bands. The high-resolution XPS Zn 2p
band of ZnIn2S4 (Figure 3b) contained two peaks at 1044.88 and 1022.34 eV, corresponding to the Zn
2p1/2 and Zn 2p3/2 transitions of Zn2+ species, respectively. The peaks at 452.61 and 445.1 eV (Figure 3c)
corresponded to In 3d3/2 and In 3d5/2 transitions of In3+ species, respectively. The peaks at 163.18
and 161.82 eV (Figure 3d) corresponded to the S 2p band of ZnIn2S4, and were attributed to S 2p1/2

and S 2p3/2 transitions [39], respectively. However, the Zn 2p, In 3d, and S 2p bands shifted to higher
binding energies for the BPQD–ZIS hybrid material compared to ZnIn2S4. The electronic coupling
between ZnIn2S4 and BPQDs upon introduction of BPQDs can account for these shifts. Furthermore,
as shown in Figure 3e, the three characteristic P 2p peaks at ca. 129.8, 130.6, and 133.6 eV were observed
for BPQDs [37] after curve-fitting, and these peaks corresponded to P 2p3/2, P 2p1/2, and oxidized
phosphorus (POx), respectively. BP crystals are very stable in air. However, when BP is in the form of
QDs, it becomes especially sensitive to water and oxygen. Since our experiments were carried out in
air, BPQDs were unavoidably oxidized during the process. The high-resolution P 2p XPS spectra of the
BPQD–ZIS samples further confirmed the formation of the BPQD–ZIS hybrid system.
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(a); Zn 2p (b), In 3d (c), S 2p (d), and P 2p (e) high-resolution XPS spectra of ZnIn2S4 and BPQD–ZIS.

The Brunauer–Emmett–Teller (BET) specific surface area of pure ZIS and 0.2% BPQD–ZIS samples
were investigated by N2 adsorption–desorption measurements. As can be clearly seen in Figure 4,
the curved shape of the samples belonged to a type IV isotherm with hysteresis loops characteristic of a
mesoporous structure. The BET specific surface areas of pure ZIS and 0.2% BPQD–ZIS were calculated
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to be 116.35 and 118.52 m2
·g−1, suggesting that the incorporation of BPQDs had negligible influence

on the surface area of ZIS. The slight larger surface area of the 0.2% BPQD–ZIS sample may be due to
testing errors.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 13 

 

 

Figure 4. The nitrogen adsorption/desorption isotherm of pure ZIS and 0.2% BPQD–ZIS samples. 

FT-IR spectroscopy was conducted to further characterize the prepared samples and the results 

are shown in Figure 5. Pure ZIS and the BPQD–ZIS samples showed similar FT-IR bands. The peaks 

at about 1620 and 1385 cm−1 corresponded to the hydroxyl group and surface-absorbed water 

molecules, and the absorption peak found at 1100 cm−1 was assigned to the absorbed CO2. The 

characteristic peaks of BPQDs were not observed [13,41], while the peak located at around 640 cm−1 

could be assigned to the stretching vibrations of In–S [42], which gradually enhanced with increased 

BPQDs. The reason for this phenomenon is that the incorporation of BPQDs may influence the 

stretching vibrations of In–S, resulting in increased peak intensity. These results further confirmed 

the contact between the BPQDs and ZnIn2S4 and the formation of BPQD–ZIS hybrids. 

 

Figure 5. Fourier-transform infrared (FT-IR) spectra of ZnIn2S4 and the BPQD–ZIS samples. 

DRS was used to gain insight into the light absorption properties of ZnIn2S4 and the hybrid 

BPQD–ZIS materials. As shown in Figure 6a, all samples showed nearly similar absorption spectra. 

The spectra of the hybrid BPQD–ZIS materials red-shifted, and this can be ascribed to absorption of 

light by the BPQDs. 

Figure 4. The nitrogen adsorption/desorption isotherm of pure ZIS and 0.2% BPQD–ZIS samples.

FT-IR spectroscopy was conducted to further characterize the prepared samples and the results
are shown in Figure 5. Pure ZIS and the BPQD–ZIS samples showed similar FT-IR bands. The peaks at
about 1620 and 1385 cm−1 corresponded to the hydroxyl group and surface-absorbed water molecules,
and the absorption peak found at 1100 cm−1 was assigned to the absorbed CO2. The characteristic
peaks of BPQDs were not observed [13,41], while the peak located at around 640 cm−1 could be
assigned to the stretching vibrations of In–S [42], which gradually enhanced with increased BPQDs.
The reason for this phenomenon is that the incorporation of BPQDs may influence the stretching
vibrations of In–S, resulting in increased peak intensity. These results further confirmed the contact
between the BPQDs and ZnIn2S4 and the formation of BPQD–ZIS hybrids.
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DRS was used to gain insight into the light absorption properties of ZnIn2S4 and the hybrid
BPQD–ZIS materials. As shown in Figure 6a, all samples showed nearly similar absorption spectra.
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The spectra of the hybrid BPQD–ZIS materials red-shifted, and this can be ascribed to absorption of
light by the BPQDs.Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 13 
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of BPQDs.

In order to determine the band gap (Eg) of the samples, the Kubelka–Munk function was used.

A = −lg(R),

F(R) = (1 − R)2/2R,

E = 1240/wavelength.

The results were obtained by plotting (E × F(R))1/2 with respect to E, where R is the reflectivity,
and A is the absorbance. As displayed in Figure 6b, these samples had a similar band gap. After the
incorporation of BPQDs, the band gap of the samples slightly narrowed, whereby the results of pure
ZIS, 0.1% BPQD–ZIS, 0.2% BPQD–ZIS, 0.3% BPQD–ZIS, and 0.4% BPQD–ZIS were 2.29, 2.26, 2.25,
2.28, and 2.26 eV, respectively. In addition, the band gap of BPQDs was also measured to be 2.68 eV,
as shown in Figure 6c,d.

3.2. Photocatalytic H2 Evolution Performance of the Photocatalysts

The photocatalytic H2 production activities of ZnIn2S4 doped with different loadings of BPQDs
were determined under simulated sunlight irradiation. As shown in Figure 7a, pure ZnIn2S4 released
H2 (ca. 2786.45 µmol·g−1

·h−1) in aqueous solution (Na2S 0.35 M/Na2SO3 0.25 M). This may be ascribed
to the fast recombination of the photoinduced electron–hole pairs between the CB and VB of ZnIn2S4.
Moreover, 0.2 wt.% was found to be the optimal BPQD loading, resulting in photocatalytic H2 rates
1.3 times higher (3675.9 µmol·g−1

·h−1) compared to pure ZnIn2S4. The total yield of H2 increased
significantly for the hybrid samples compared to pure ZnIn2S4. These results confirmed that decoration
of BPQDs on ZnIn2S4 improved the photocatalytic activity of the materials. A further increase in the
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BPQD loading above 0.2 wt.% resulted in lower H2 production rates, probably because a fraction of
the BPQDs acted as photo-recombination centers.

To confirm the positive effect of BPQDs in enhancing the photocatalytic H2 production activity of
ZIS, the photocatalytic H2 production values of 0.2% BPQD–ZIS in this work were compared with the
related literature, listed in Table 1. It can be clearly found that 0.2% BPQD–ZIS in this work showed
superior photocatalytic performance to that of other quantum dots, implying that the incorporation
BPQDs onto the ZIS surface may be a feasible route to improve its photocatalytic activity.

Table 1. Comparation in some photocatalysts.

Photocatalyst Sacrificial Reagent Rate of Hydrogen
Evolution (µmol·h−1·g−1)

References

BPQD–ZnIn2S4 0.25 M Na2SO3/0.35 M Na2S 3675.9 Our work
Carbon quantum dots
(CQDs)/MoS2/ZnIn2S4

0.25 M Na2SO3/0.35 M Na2S 3000 [43]

Co/CQDs/ZnIn2S4 0.1 M triethanolamine 1757.5 [44]
NiS/CQDs/ZnIn2S4 10 vol.% triethanolamine 568 [45]
CdS QDs/ZnIn2S4 0.25 M Na2SO3/0.35 M Na2S 2145 [46]

Figure 7. (a) H2 production during 4 h over ZnIn2S4 and BPQD–ZIS hybrids under light irradiation;
(b) cycled runs for the photocatalytic H2 generation over 0.2% BPQD–ZIS under light irradiation

Recycling tests were carried out to evaluate the photostability of 0.2% BPQD–ZIS (Figure 7b).
The yield of H2 remained relatively stable for four consecutive runs, indicating the stability of the
BPQD–ZIS sample during the photocatalytic H2 production reaction.

The charge recombination properties of the as-prepared samples were further confirmed by PL
measurements. Normally, the PL intensity is related to the recombination of holes and electrons.
The lower PL intensity corresponds to the lower recombination of the photogenerated electron–hole
pairs. The PL spectra of all as-prepared samples are shown in Figure 8. All samples showed a similar
PL peak and the intensity of BPQD–ZIS hybrids obviously decreased compared with that of pure ZIS.
The weakest peak intensity suggested the recombination of photogenerated electron–hole pairs was
efficiently suppressed in the 0.2% BPQD–ZIS. However, when the BPQD loading mass was more than
0.2 wt.%, an evidently increased PL emission intensity occurred, which might be ascribed to the excess
BPQDs acting as photorecombination centers, leading to lower H2 production rates.

The transient photocurrent response and EIS were conducted to evaluate the charge separation and
migration behavior. As shown in the Figure 9a, the pure ZIS exhibited a weak photocurrent response,
owing to the fast photogenerated carrier recombination, while the photocurrent response of 0.2%
BPQD–ZIS was much higher than that of the bare ZIS, which suggested that the charge recombination
was remarkably inhibited. It can be clearly found in Figure 9b that the 0.2% BPQD–ZIS sample
displayed a smaller semicircle than that of pure ZIS, suggesting that the charge transfer resistance
can be efficiently reduced with the incorporation of BPQDs. Both the results of photocurrent and EIS
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experiments indicated that the incorporation of BPQDs onto the ZIS surface can facilitate charge carrier
separation and transfer in the photocatalyst.
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Figure 9. Transient photocurrent response (a) and electrochemical impedance spectra (b) of pure
ZnIn2S4 and 0.2% BPQD–ZIS hybrids.

The Mott–Schottky (M–S) plots were conducted to determine the flat-band potential for pure ZIS
and BPQDs. As seen from Figure 10, the positive slope of the M–S plots signified the type of ZIS and
BPQDs as both n-type semiconductors, and, on the basis of the M–S equation, the flat-band potentials
(Ufb) for ZIS and BPQDs were determined as −0.54 and −0.3 V vs. NHE (Normal Hydrogen Electrode),
respectively. Normally, the bottom of the conduction band (CB) position of an n-type semiconductor is
0.1 V more negative than the flat-band potential [47]. Therefore, the conduction band potentials (CB)
of ZIS and BPQDs are approximately −0.64 and −0.4 V. Meanwhile, combining the DRS results and the
equation EVB = ECB + Eg, the values of the valence band potential (EVB) were determined as 1.65 and
2.28 V vs. NHE for ZIS and BPQDs, respectively.
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Figure 10. The Mott–Schottky plots of pure ZnIn2S4 (a) and BPQDs (b).

3.3. Mechanism behind the Enhanced Photocatalytic Performance of the BPQD–ZIS Hybrids

Based on above analysis, we propose a mechanism to explain the BPQD–ZIS photocatalytic
H2 evolution under light irradiation (Scheme 1). Under simulated sunlight irradiation, ZnIn2S4 is
photoexcited and generates electrons and holes. The electrons are transfer to the CB, while the holes
remain in the VB. Typically, these electrons and holes are recombined rather than participating in the
photocatalytic process. In the presence of BPQDs, the photo-generated electrons can be transferred to the
surface of BPQDs quickly because of the lower energy level of BPQDs. Meanwhile, the photo-generated
holes can migrate to the VB of ZnIn2S4, achieving efficient separation of charges. Thus, the electrons
on the surface of BPQDs can participate in the H2 evolution reaction, and the holes on the surface of
ZnIn2S4 can finish the oxidation process.

Scheme 1. Schematic illustration of the degradation mechanism of the BPQD–ZIS hybrid.

4. Conclusions

In summary, we, for the first time, decorated BPQDs on layered flower-like ZnIn2S4 microspheres
and used the resulting materials for photocatalytic H2 generation. XRD, FTIR, UV–Vis absorption,
and XPS were used to study the physicochemical properties of the samples. These characterization
results confirmed that BPQDs were embedded into the nanosheets of the flower-like ZnIn2S4

microspheres. The prepared BPQD–ZIS hybrids were quite stable during the photocatalytic H2

generation in an aqueous solution. The enhanced photocatalytic properties of these materials can be
attributed to the extended optical absorption and efficient charge separation and transport characteristics
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upon addition of BPQDs. The 0.2% BPQD–ZIS sample showed an optimum H2 yield under simulated
sunlight. This sample showed higher H2 production rates than pristine ZnIn2S4.
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