

- 1 Supplementary information
- 2 The Comprehensive Approach to Preparation and
- **Investigation of the Eu³⁺ Doped**
- 4 Hydroxyapatite/poly(L-lactide) Nanocomposites:
- 5 **Promising Materials for Theranostics Application**
- Katarzyna Szyszka ¹, Sara Targonska ¹, Malgorzata Gazinska ², Konrad Szustakiewicz ² and Rafal
 J. Wiglusz ^{1,3,*}
- 8 ¹ Institute of Low Temperature and Structure Research, Polish Academy of Science, ul. Okolna 2, 50-422
 9 Wroclaw, Poland
- Wroclaw University of Science and Technology, Polymer Engineering and Technology Division, Wyb.
 Wyspianskiego 27, 50-370 Wroclaw, Poland
- Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950
 Wroclaw, Poland
- 14 * Correspondence: r.wiglusz@intibs.pl; Tel.: +48-071-3954-159
- 15 Received: 3 July 2019; Accepted: 6 August 2019; Published: date
- 16 S3. Results
- 17 S3.1. Morphology

Figure S1. Particle size distribution based on SEM images (a), SEM image of HAp (b) and 3 mol% Eu³⁺:HAp
 particles (c).

Figure S2. SEM images of breakthroughs for PLLA/HAp (a) and PLLA/5 mol% Eu³⁺:HAp (b).

23

Figure S3. SEM images of composite surface for PLLA/1 mol% Eu³⁺:HAp (a), PLLA/3 mol% Eu³⁺:HAp (b),
 PLLA/5 mol% Eu³⁺:HAp (c).

Figure S4. SEM-EDS element maps of the PLLA/5 mol% Eu³⁺:HAp composites.

28 S3.2. Structural analysis of Eu^{3+} doped composites

29 The crystal phase purity of Ca10(PO4)6(OH)2 nanocrystals doped with Eu³⁺ ions were checked by 30 the powder XRD technique and compared with the reference standard of the Ca10(PO4)6(OH)2 host 31 lattice (ICSD – 180315 [1]). All synthesised nanoapatites were characterised by detectable crystallinity 32 at entire range of proposed dopant concentration (Figure S5). Moreover, no extra diffraction peaks 33 corresponding to any impurities were detected, which means that the single crystalline phase of 34 hydroxyapatites in entire range of proposed dopant concentration of optically active ions were 35 obtained. Based on the recorded diffraction patterns, it is possible to affirm that Eu³⁺ ions were 36 successfully incorporated into the host lattice by occupying the Ca²⁺ ions' sites as well as that 37 incorporating of Eu³⁺ ions with different concentrations does not have destabilize impact on the 38 hydroxyapatite crystal structure. It means that Eu³⁺ ions are well-dissolved in the host lattice.

Figure S5. X-ray powder diffraction patterns of x mol% Eu^{3+} :Ca₁₀(PO₄)₆(OH)₂ (where x = 0 - 5).

- 41
- 42 43

Figure S6. Deconvolution of WAXS patterns of the unmodified PLLA (a); the PLLA/HAp (b); the PLLA/1 mol% Eu³⁺:HAp (c); the PLLA/3 mol% Eu³⁺:HAp (d) and the PLLA/5 mol% Eu³⁺:HAp (e).

The IR spectra of HAp consist of typical active vibrational bands of phosphate groups (PO₄³⁻) at 472.2 cm⁻¹ (v₂), 564.5 cm⁻¹ (v₄), 601.8 cm⁻¹ (v₄), 965.5 cm⁻¹ (v₁), 1033.7 cm⁻¹ (v₃) and 1091.5 cm⁻¹ (v₃). The 1033.7 and 1091.5 cm⁻¹ vibrational bands are the triply degenerate v₃ antisymmetric stretching of the phosphate groups (see **Figure S7**). The 965.5 cm⁻¹ band is the non-degenerate v₁ symmetric stretching of the PO₄³⁻ groups. The 564.5 and 601.8 cm⁻¹ peaks are the triply degenerate v₄ vibration of the O–P– O groups, and the 472.2 cm⁻¹ peak is the doubly degenerate v₂ bending of the O–P–O bongs. The vibrational transition at 3424 cm⁻¹ corresponds to a stretching mode (v(OH)) and those at 630 cm⁻¹ 51 and 3571 cm⁻¹ to a vibrational mode (L(OH)) of the OH⁻ groups, what confirms the presence of 52 hydroxyl groups in the lattice structure [2,3].

Figure S7. IR spectra of the Eu³⁺:Ca₁₀(PO₄)₆(OH)₂ nanoparticles as a function of optically active ions concentration.

56 S3.3. Thermal properties

57

53 54

55

Table S1. The thermal parameters form the first heating DSC curves.

sampla	T_{g}	T_{cc}^{onset}	Tcc	ΔH_{cc}	Τα'-α	$\Delta H_{\alpha'}-\alpha$	Tm	ΔH_{m}
sampre	(°C)	(°C)	(°C)	(J/g)	(°C)	(J/g)	(°C)	(J/g)
PLLA	61.1	91.6	95.6	-34.56	159.2	-7.89	180.9	46.68
PLLA/HAp	59.8	89.0	92.6	-34.86	160.5	-6.57	178.6	46.78
PLLA/ 1 mol%Eu³+:HAp	62.3	84.0	88.7	-22.29	160.8	-6.32	177.2	46.98
PLLA/ 3 mol% Eu³+:HAp	59.4	82.2	87.5	-20.99	159.5	-6.69	177.3	47.60
PLLA/ 5 mol% Eu³+:HAp	61.0	82.6	87.5	-20.78	159.7	-6.66	177.4	47.10

Table S2. The thermal parameters form the cooling DSC curves.

sample	T _c onset (°C)	Тс (°С)	ΔH _c (J/g)	T _g (°C)
PLLA	114.8	107.7	-32.79	67.1
PLLA/HAp	117.1	110.5	-36.34	64.7

Nanomaterials 2019, 9, x FOR PEER REVIEW

PLLA/1 mol% Eu³+:HAp	132.9	125.6	-44.93	62.4
PLLA/3 mol% Eu ³⁺ :HAp	133.9	127.6	-45.35	61.7
PLLA/5 mol% Eu ³⁺ :HAp	131.9	124.1	-43.33	62.5

Table S3. The thermal parameters form the second heating DSC curves.							
	sample	Tg (°C)	Τα'-α (°C)	ΔΗ _{α'-α} (J/g)	T _m (°C)	T _{m2} (°C)	ΔHm (J/g)
	PLLA	65.8	164.5	-2.51	179.9	-	42.30
	PLLA/HAp	65.1	165.8	-1.06	179.4	-	44.16
	PLLA/1 mol% Eu³+:HAp	66.8	-	-	176.1	181.2	51.12
	PLLA/3 mol% Eu ³⁺ :HAp	62.8	-	-	176.4	181.2	51.39
	PLLA/5 mol% Eu ³⁺ :HAp	62.8	-	-	175.9	181.2	49.67

60 S3.4. Spectroscopic properties

Figure S8. Excitation spectra of the Ca₁₀(PO₄)₆(OH)₂:Eu³⁺ nanoparticles as a function of optically active ions.

59

61 62

Figure S9. Emission spectra of the Ca₁₀(PO₄)₆(OH)₂:Eu³⁺ nanoparticles as a function of optically active ions.

70 References

- Balan, E.; Delattre, S.; Roche, D.; Segalen, L.; Morin, G.; Guillaumet, M.; Blanchard, M.; Lazzeri, M.;
 Brouder, C.; Salje, E.K.H. Line-broadening effects in the powder infrared spectrum of apatite. *Phys. Chem. Miner.* 2011, *38*, 111–122, doi:10.1007/s00269-010-0388-x.
- Guerra-López, J.R.; Echeverría, G.A.; Güida, J.A.; Viña, R.; Punte, G. Synthetic hydroxyapatites doped
 with Zn(II) studied by X-ray diffraction, infrared, Raman and thermal analysis. *J. Phys. Chem. Solids* 2015,
 81, 57–65, doi:10.1016/j.jpcs.2015.01.017.
- Yuan, Q.; Wu, J.; Qin, C.; Xu, A.; Zhang, Z.; Lin, S.; Ren, X.; Zhang, P. Spin-coating synthesis and
 characterization of Zn-doped hydroxyapatite/polylactic acid composite coatings. *Surf. Coatings Technol.* **2016**, 307, 461–469, doi:10.1016/j.surfcoat.2016.09.021.