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Abstract: The resistive switching (RS) characteristics of flexible films deposited on mica substrates
have rarely been reported upon, especially flexible HfO2 films. A novel flexible Au/HfO2/Pt/mica
resistive random access memory device was prepared by a sol-gel process, and a Au/HfO2/Pt/Ti/SiO2/Si
(100) device was also prepared for comparison. The HfO2 thin films were grown into the monoclinic
phase by the proper annealing process at 700 ◦C, demonstrated by grazing-incidence X-ray diffraction
patterns. The ratio of high/low resistance (off/on) reached 1000 and 50 for the two devices, respectively,
being relatively stable for the former but not for the latter. The great difference in ratios for the two
devices may have been caused by different concentrations of the oxygen defect obtained by the X-ray
photoelectron spectroscopy spectra indicating composition and chemical state of the HfO2 thin films.
The conduction mechanism was dominated by Ohm’s law in the low resistance state, while in high
resistance state, Ohmic conduction, space charge limited conduction (SCLC), and trap-filled SCLC
conducted together.

Keywords: resistance switching; high/low resistance; oxygen defect; conduction mechanism

1. Introduction

Resistive random access memory (RRAM) is a kind of memory in which, according to the different
voltage applied to the metal oxide, the resistance of the material changes correspondingly between
the high resistance state (HRS) and the low resistance state (LRS), so as to open or block the current
flow channel and use this property to store various information [1]. RRAM can significantly increase
durability and data transmission speed compared with flash memory devices. The main factor affecting
the performance of RRAM is the RS layer, and the performance of different RS layers varies greatly.
A variety of materials can be applied as the resistive switching layers of RRAM, such as HfO2, SnWO4,
ZrO2, and CuO [2–6], among which binary metal oxides like HfO2 are widely regarded as the most
promising resistive switching layer [1,7]. The conduction mechanisms of RRAM have been studied in
depth, among which Ohmic conduction, Schottky emission, space-charge-limited conduction (SCLC),
and trap-assisted tunneling are the most popular [1,8–11]. The conductive filament (CF) model has
also been one of the most recognized models [8]. With the development of science and technology,
flexible memory has also been extensively studied in the past decade [12,13]. Due to the advantages of
their being inexpensive and lightweight, flexible memristors are more widely used than non-flexible
devices such as disposable sensors [14] or indenofluorene-based monomers [15].

Although flexible electronic devices have promising applications in wearable devices, few papers
have reported on the RS characteristics of flexible films deposited on mica substrates [16–18]. Mica
substrates are cheap, easy to prepare, and satisfy the demands of industrial production, which makes
them an excellent candidate for preparing flexible RRAM substrates. In this paper, HfO2 thin films
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were grown on flexible mica substrates by the sol-gel method. For comparison of different substrates,
HfO2 films were also deposited on Pt/Ti/SiO2/Si (100) substrates. As a kind of ordinary semiconductor
compound, HfO2 film has a high dielectric constant and desirable light transmittance with a simple
preparation [19]. Due to its thermal stability and excellent retention performance [2,20–22], HfO2

has been widely studied in the field of RRAM in recent years [23], and is one of the most promising
candidates for the resistive switching layer. The results show that the ratio of HRS to LRS exceeded
100 in the HfO2-based-non-flexible structure, with excellent stability. In contrast to non-flexible
resistive switching, the HfO2-based flexible structure demonstrated a pretty good resistive switching
characteristic, but its endurance was inferior to non-flexible resistive switching. This HfO2-based
flexible device has a simple preparation method (sol-gel), inexpensive cost, and excellent flexibility not
existing in an HfO2-based-non-flexible structure, which conforms to the developing requirements of
our time for flexible RRAM.

2. Materials and Methods

Using the sol-gel method for coating, a certain amount of hafnium acetone was weighed as the raw
material, the magnetic stirrer was used to dissolve it in acetic acid until a colloid formed, the hafnium
acetone colloid was spirally coated onto the different substrate by a rotary coating machine and then
placed on a drying platform. The drying platform was heated from room temperature to 300 ◦C for
10 min, which decomposed hafnium acetone into HfO2 at high temperature. In this paper, there
were two samples of different substrates, HfO2/Pt/Ti/SiO2/Si and HfO2/Pt/mica flexible structures.
For further discussion, the structures of HfO2/Pt/Ti/SiO2/Si and HfO2/Pt/mica are abbreviated as S1
and S2, respectively, as shown in Figure 1. Both S1 and S2 were annealed at 700 ◦C in air atmosphere
for 30 min. After annealing, an Au point electrode with diameter of 0.5 mm was plated on the sample
using a small high-vacuum coating machine and a mask template with diameter of 0.5 mm at room
temperature for two min to form a top–bottom (TB) electrode structure.

Nanomaterials 2019, 9, x FOR PEER REVIEW 2 of 11 

 

Although flexible electronic devices have promising applications in wearable devices, few 

papers have reported on the RS characteristics of flexible films deposited on mica substrates [16–18]. 

Mica substrates are cheap, easy to prepare, and satisfy the demands of industrial production, which 

makes them an excellent candidate for preparing flexible RRAM substrates. In this paper, HfO2 thin 

films were grown on flexible mica substrates by the sol-gel method. For comparison of different 

substrates, HfO2 films were also deposited on Pt/Ti/SiO2/Si (100) substrates. As a kind of ordinary 

semiconductor compound, HfO2 film has a high dielectric constant and desirable light transmittance 

with a simple preparation [19]. Due to its thermal stability and excellent retention performance 

[2,20–22], HfO2 has been widely studied in the field of RRAM in recent years [23], and is one of the 

most promising candidates for the resistive switching layer. The results show that the ratio of HRS 

to LRS exceeded 100 in the HfO2-based-non-flexible structure, with excellent stability. In contrast to 

non-flexible resistive switching, the HfO2-based flexible structure demonstrated a pretty good 

resistive switching characteristic, but its endurance was inferior to non-flexible resistive switching. 

This HfO2-based flexible device has a simple preparation method (sol-gel), inexpensive cost, and 

excellent flexibility not existing in an HfO2-based-non-flexible structure, which conforms to the 

developing requirements of our time for flexible RRAM. 

2. Materials and Methods 

Using the sol-gel method for coating, a certain amount of hafnium acetone was weighed as the 

raw material, the magnetic stirrer was used to dissolve it in acetic acid until a colloid formed, the 

hafnium acetone colloid was spirally coated onto the different substrate by a rotary coating machine 

and then placed on a drying platform. The drying platform was heated from room temperature to 

300 °C for 10 min, which decomposed hafnium acetone into HfO2 at high temperature. In this paper, 

there were two samples of different substrates, HfO2/Pt/Ti/SiO2/Si and HfO2/Pt/mica flexible 

structures. For further discussion, the structures of HfO2/Pt/Ti/SiO2/Si and HfO2/Pt/mica are 

abbreviated as S1 and S2, respectively, as shown in Figure 1. Both S1 and S2 were annealed at 700 °C 

in air atmosphere for 30 min. After annealing, an Au point electrode with diameter of 0.5 mm was 

plated on the sample using a small high-vacuum coating machine and a mask template with 

diameter of 0.5 mm at room temperature for two min to form a top–bottom (TB) electrode structure. 

Current–voltage (I-V) and endurance characteristics were measured by the Keithley 2400 s 

instrument. Atomic force microscopy (AFM) showed the surface morphology of the film, and field 

emission scanning electron microscopy (FESEM) could clearly observe the thickness of the HfO2 thin 

film and the layers between substrate and film. Additionally, the phase structures of HfO2 films 

were analyzed by grazing-incidence X-ray diffraction (GIXRD) with an incident angle of 1°. 

Moreover, X-ray photoelectron spectroscopy (XPS) analyses of the HfO2 thin films were carried out 

using an Escalab 250Xi X-ray photoelectron spectrometer. 

 

Figure 1. Schematic patterns of the HfO2/Pt/Ti/SiO2/Si (S1) and HfO2/Pt/mica (S2) devices. Figure 1. Schematic patterns of the HfO2/Pt/Ti/SiO2/Si (S1) and HfO2/Pt/mica (S2) devices.

Current–voltage (I-V) and endurance characteristics were measured by the Keithley 2400 s
instrument. Atomic force microscopy (AFM) showed the surface morphology of the film, and field
emission scanning electron microscopy (FESEM) could clearly observe the thickness of the HfO2 thin
film and the layers between substrate and film. Additionally, the phase structures of HfO2 films were
analyzed by grazing-incidence X-ray diffraction (GIXRD) with an incident angle of 1◦. Moreover, X-ray
photoelectron spectroscopy (XPS) analyses of the HfO2 thin films were carried out using an Escalab
250Xi X-ray photoelectron spectrometer.
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3. Results and Discussion

It can be seen from Figure 2a,b that the grain size of the HfO2 thin films after annealing was
relatively small, which was due to the low annealing temperature and short annealing time. The SEM
cross-sectional views of S1 and S2 show a dense layer of HfO2 with a thickness of ~200 nm, and a dense
Pt layer with a thickness of ~100 nm can be seen in all cases, as shown in Figure 2c,d. Additionally,
the density and adhesion of HfO2 on a typical Pt substrate were better than that on a flexible substrate.
Figure 3 indicates the GIXRD patterns of the HfO2 films grown on two different devices. As can be
seen from Figure 3, the HfO2 thin films had high crystallinity—a polycrystalline (100), (110), (111),
(111), (200), and (220) oriented monoclinic phase structure [24,25]. Additionally, the PDF#78-0050 of
the HfO2 monoclinic phase is inserted in Figure 3 to better identify the XRD peak of the HfO2 film.
HfO2 with a monoclinic phase structure can accumulate oxygen vacancies [26]. The relatively small
GIXRD peak intensity shows the smaller grain size of the HfO2 thin films, corresponding to the results
of the SEM and AFM analyses. Additionally, a Pt (111) oriented peak existed in the S1 device.
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As shown in Figure 4a,c, Hf 4f core levels of HfO2 thin films layers in all cases were deconvoluted
into two Gaussian peaks (16.7 eV for Hf 4f5/2 and 18.3 eV for Hf 4f7/2, indicated by the red line and
green line, respectively) [27–29]. Figure 4b,d shows XPS spectra of the O 1 s core levels of the HfO2 thin
films layers in all cases. Obviously, the Gaussian peak with a binding energy of 529.7eV was defined as
lattice oxygen (Ol), corresponding to the oxygen in the HfO2 matrix; the other, with a binding energy of
531.5eV, was defined as defect oxygen (Od), caused by the defects of oxygen vacancies in the HfO2 thin
film layers. Previous research has indicated the higher the intensity of Od, the higher the concentration
of oxygen vacancy [5]. The ratio of Hf/Ol in all devices was ~2, signifying the existence of HfO2 [30,31].
Furthermore, the ratio of Ol/Od in S1 devices (0.32) was larger than that of S2 devices (0.25) and the
ratio of Od in S1 devices to that in S2 devices was 0.82, resulting in the difference of HRS/LRS ratio
between the two devices, which was consistent with I-V characteristics.
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Figure 4. (a,b) The X-ray photoelectron spectroscopy (XPS) spectra of the S1 device; (c,d) the XPS
spectra of the S2 device; (b,d) show the different oxygen intensities after fitting the peak.

Figure 5a,b shows the excellent resistance switching behaviors of the S1 and S2 structures. It is
apparent that the Vset and Vreset of the S1 devices were 0.7 V and −0.5 V respectively, while the Vset and
Vreset of the S2 devices were 0.7 V and −0.7 V respectively [22,32]. In addition, because the grain size of
HfO2 for S2 is larger than that for S1, based on the FESEM patterns (Figures S2 and S3), the switching
currents of the S2 device were much larger than those of the S1 device. When the applied bias increased
from 0 V to 0.7 V, both devices remain “off” (HRS). The device will be converted to LRS if the voltage
reaches 0.7 V (Vset). Subsequently, with a voltage loop of 0.7 V to 1 V to −0.7 V for S2 (0.7 V to 1 V to
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−0.5 V for S1), the device will always stay in “on” (LRS). When the voltage reaches −0.7 V (−0.5 V
for S1) for the first time, the device will immediately be reset to “off” (HRS), and remain HRS all the
way up to 0 V. The turn-on slope of S1 was calculated as 0.3 V/decade and was almost equal to that
of S2, which depicted a switching speed in S2 consistent with S1; the ratio of HRS and LRS for the
S1 device (~100) was greater than that of S2 device (~50), which also indicates that the S1 device had
better switching characteristics than the S2 device. Additionally, resistive switching characteristics
with 100 sweep cycles are depicted in Figure 2c,d. It can be seen clearly that the HRS/LRS ratio of
S2 device gradually decreased from the 50th cycle; by contrast, the HRS/LRS ratio of the S1 device
was almost stable when a forward bias was applied. From the results above, the device formed on
the flexible substrate had the characteristics of typical RRAM. Figure 6 shows a stable resistance state
(LRS/HRS) of the S1 device, with a reading voltage of 0.2 V for 100 sweep cycles at room temperature.
The fitting linear curves in Figure 6a exhibit a stable off/on ratio for S1 RRAM devices, starting at
1000 times, slowly falling to 100 times, and then leveling off. However, as can be seen from Figure 6b,
the S2 devices exhibited poor endurance characteristics, with rapid fatigue from 50 times to 10 times
followed by leveling off. For the sake of illustrating the variation in HRS resistance and LRS resistance,
Figure 6c,d compares the cumulative probability plots of HRS and LRS for the two devices at a reading
voltage of 0.2 V. Compared to the S2 device, the S1 device exhibited a stable distribution of off/on
resistance [33]. From the above analysis, the performance of S2 device was not as good as that of the
S1device. In order to better illustrate the poor fatigue characteristics of S1 devices, repeatability tests
are also conducted, as is shown in Figure S1. This demonstrates the shortcoming of mica-based devices
that must be improved upon but cannot be at present.
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Figure 5. Resistive switching characteristics of (a) Au/HfO2/Pt/Ti/SiO2/Si, (b) Au/HfO2/Pt/mica,
(c) Au/HfO2/Pt/Ti/SiO2/Si with 100 sweep cycles, and (d) Au/HfO2/Pt/mica with 100 sweep cycles.
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Figure 6. Endurance characteristics of (a) Au/HfO2/Pt/Ti/SiO2/Si and (b) Au/HfO2/Pt/mica RRAM
devices at room temperature; (c,d) the cumulative probability plots of high resistance state and low
resistance state for the two devices, respectively, at a reading voltage of 0.2 V.

Figure 7 indicates that Ohmic conduction (I is proportional to V) and SCLC (I is proportional to V2)
were the main conduction mechanisms. The current density of SCLC can be depicted as following [1]:

JSCLC =
9
8
µε

V2

d3 (1)

where ε is the permittivity of the film, µ is the electron mobility, V is the voltage, and d is the thickness
of the film. Furthermore, it can be reasonably inferred that the conductive mechanism is dominated by
trap-filled SCLC (indicated by the green line) when the forward bias is more than 0.7 V. The current
density of trap-filled SCLC can be depicted as following [1]:

JTFSCLC = q1−lµN
(

2l + 1
l + 1

)l+1( l
l + 1

εrε0

Nt

)l Vl+1

d2l+1
(2)

where q, l, µ, εr, ε0, Nt, N, V, and d are the elemental charge, the ratio of the characteristic temperature
of the trap distribution to the operating temperature, the carrier mobility, the permittivity of the film,
the permittivity of free space, the trap density, the density of state in the conduction band or valence
band, the applied voltage, and the film thickness, respectively.
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negative voltage.

The logI versus logV plots have been fitted linearly to analyze the conduction mechanisms of
S1 and S2 devices comprehensively. Figure 7a,b exhibits four different slope regions for S1 and S2
devices in positive sweeps, which represent three different conduction mechanisms: Ohmic conduction
(slope = 1), SCLC (slope = 2), and trap-filled SCLC (slope > 2). The conduction mechanism of the S1
device was consistent with S2 device, which transferred from Ohmic conduction to SCLC at 0.4 V for
the S1 device and 0.5 V for the S2 device, and then to trap-filled SCLC at 0.7 V for all cases. According to
the SCLC mechanism, the electron trap is conceived as an oxygen vacancy, and the resistance slowly
decreases as the oxygen vacancy filled with electrons, according to Child’s law. However, when the
oxygen vacancy is brimming with electrons, the latter will flow past the conduction band, so that the
devices will be switched from HRS to LRS [34]. Note that the slope of LRS was almost equal to 1 for all
devices, indicating the formation of CF. For the S1 devices in negative sweeps, the Ohmic mechanism
ran through the LRS and HRS, as is shown in Figure 7c, while for S2 devices in negative sweeps, it can
be clearly observed that the slope was 2.15 for voltage ranges from −1 V to −0.7 V, demonstrating
that the CF formed by oxygen vacancies was broken, resulting in reset of resistance state from LRS to
HRS. At the same time, the electrons were quickly disengaged from the oxygen vacancy. In conclusion,
the conduction mechanism was dominated by Ohmic conduction in LRS, while in HRS, the Ohmic
conduction and SCLC conducted together.

According to the analysis of XPS spectra and conduction mechanism, the CF caused by oxygen
vacancy dominated the resistance switching mechanism [5,35]. As shown in Figure 8, a typical CF
model has been proposed to better illustrate the influence of Od. A large number of defects caused
by oxygen vacancies exist in HfO2 thin film layers, distributing randomly in the thin film layer and
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the interface layer without biased voltage, corresponding to the HRS depicted in Figure 8a, which is
consistent with the HRS at zero voltage shown in Figure 5a,b. When a forward bias (<0.4 V for S1
devices, <0.5 V for S2 devices) was applied to the device, the conduction mechanism obeyed Ohm’s
law. The trap was gradually filled by injected electrons as the applied voltage increased (0.4 V–0.7 V
for S1 devices, 0.5–0.7 V for S2 devices), the CF formed, as shown in Figure 8b, and the conduction
mechanism was dominated by Child’s law (SCLC). At this time, it corresponded to the HRS of the
positive bias voltage (0–0.7 V) in Figure 5a,b. Due to the action of the electric field force, the oxygen ions
drifted upward and accumulated at one end of the top electrode, forming a conductive bridge via these
oxygen vacancies, while the CF built by oxygen vacancies connected the top and bottom electrodes,
resulting in the SET process, as shown in Figure 8c [32,36]. It can also be seen from Figure 5a,b that
when the forward voltage was greater than 0.7 V for the first time, the CF was formed, and the RS
converted from HRS to LRS. When the voltage loop dropped from 1 V to −0.5 V, the RS remained
“on” (LRS), as shown in Figure 5a,b, which is consistent with Figure 8c. Meanwhile, the conduction
mechanism was controlled by Ohmic conduction for the existence of CF. Figure 8d exhibits that as the
reverse bias was applied to the device, the oxygen ions drifted downward and then combined with
the oxygen vacancy, resulting in the rupture of the CF. Combined with the analysis in Figure 5a,b,
when the reverse bias voltage reached a certain value (−0.5 V for S1, −0.7 V for S2), the CF completely
ruptured, resulting in an instant reset from LRS to HRS. Subsequently, the RS was always off (HRS)
while the voltage loop went from −0.7 V to −1 V to 0 V for S2 or from −0.5 V to −1 V to 0 V for S1.
The formation and rupture of the CF perfectly explains the principle of resistance switching, which is
consistent with the conductive mechanism and I-V characteristics.
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Figure 8. Schematic diagram explaining the conduction mechanism: (a) The RS is very high because the
device does not form CF; (b) When a positive bias is applied, the oxygen vacancies move towards the
negative electrode and a CF is formed; (c) The device is in the SET state because the oxygen vacancies
has formed CF; (d) When the voltage is reversed, the CF immediately rupture.
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4. Conclusions

In summary, an Au/HfO2/Pt/Ti/SiO2/Si device and an Au/HfO2/Pt/mica device were fabricated
by the sol-gel method. As a popular research material, the S1 device structure has been thoroughly
studied. At present, the breakthrough point was whether the HfO2 with a flexible structure would
have the same performance as the typical device. Herein, quite a few advantages and disadvantages of
flexible HfO2 devices have been identified by analyzing the differences between the S1 and S2 devices.
The Od intensity of XPS spectra for the S2 device was lower than for the S1 device, which indirectly
illustrates that the HRS/LRS ratio of the S2 device was lower. Meanwhile, the I-V characteristic
also demonstrated the difference in off/on ratio. Nevertheless, HRS/LRS ratio of the S2 device also
reached 50, which is enough to illustrate the potential application of flexible HfO2 device and that they
are worth further study. For the Au/HfO2/Pt/mica device, the conduction mechanism was dominated
by Ohmic conduction in LRS, and Ohmic conduction and SCLC conduction together in HRS. There is
no doubt that the CF model can perfectly illustrate this conduction mechanism. The potential problem
is the poor fatigue characteristics of the HfO2-mica-based RRAM, which cannot be solved at present,
but we hope to solve effectively in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/8/1124/s1,
Figure S1: Current–Voltage plots of repeated samples, Figure S2: The FESEM pattern of the surface for S1 device,
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