Article Nanophosphor-Based Contrast Agents for Spectral X-ray Imaging

Kevin Smith ¹, Matthew Getzin ², Josephine J. Garfield ¹, Sanika Suvarnapathaki ³, Gulden Camci-Unal ⁴, Ge Wang ^{2,*} and Manos Gkikas ^{1,*}

- ¹ Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
- ² Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- ³ Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, MA 01854, USA
- ⁴ Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
- * Correspondence: wangg6@rpi.edu (G.W.), manos_gkikas@uml.edu (M.G.); Tel.: +1-518-276-4259 (G.W.),
- +1-978-934-3245 (M.G.)

Received: 5 July 2019; Accepted: 27 July 2019; Published: date

Figure S1. FTIR spectra of OA (black line) and OA-stabilized Lu-NPhs (red line). Results showed two bands at 1560 cm⁻¹ (v_{as}: COO⁻) and 1464 cm⁻¹ (v_s: COO⁻) attributed to the oleate ion bound on the nanocrystal surface, unlike free oleic acid where the characteristic carboxylic peak at 1710 cm⁻¹ is shown.

Figure S2. (Left) The 4.8 cm diameter acrylic phantom utilized can hold up to 12 liquid mixtures. The larger diameter tubes hold ~2 mL while the smaller tubes hold ~500 μ L. (Right) Micro-CT images showing the collected regions of interest (ROI) of identical size for all the materials were selected and subtracted from the solvent yielding solvent-corrected attenuation coefficient values for the different K-edge materials. From the green mark clockwise: OA-stabilized Eu-NPhs, OA-stabilized Lu-NPhs, ethanol, water, and OA-stabilized Gd/Eu (50/50)-NPhs.

Figure S3. Micro-CT images and obtained contrast from iodinated molecules. I-1: Sodium diatrizoate at 30 mg/mL in water (18 mg of I/mL); I-2: Iohexol (Omnipaque) at 30 mg of I/mL in water; I-3: Chemically modified diatrizoic acid at 30 mg/mL in water; I-4: Diatrizoic acid at 30 mg/mL in formamide.

NPhs	Weight Loss (%)
OA-stab. Eu	3.81 ± 0.11
OA-stab. Ta	4.35 ± 0.05
OA-stab. Lu	11.36 ± 0.14

Figure S4. Typical TGA spectrum of OA-stabilized Ta-NPhs showing a ~4 wt% grafting.

Tuble 01, The function coefficient values of an effective of the bublication of the bub

<u>Material</u>	<u>K-edge</u>	Attenuation	<u>Bin</u>	Solvent		Difference
OA-Eu	48.5	0.627 ± 0.106	bin 4	0.177 ± 0.011	30% EtOH	0.450 ± 0.107
OA- Gd	50.2	0.445 ± 0.021	bin 4	0.177 ± 0.011	30% EtOH	0.268 ± 0.024
OA-Yb	61.3	0.374 ± 0.013	bin 5	0.168 ± 0.007	30% EtOH	0.206 ± 0.015
OA-Lu	63.3	0.825 ± 0.087	bin 5	0.168 ± 0.007	30% EtOH	0.657 ± 0.087
OA- Ta	67.4	1.188 ± 0.140	bin 5	0.168 ± 0.007	30% EtOH	1.020 ± 0.140
Diatrizoate	33.2	0.475 ± 0.018	bin 2	0.241 ± 0.007	100% water	0.234 ± 0.019
Material	K-edge	Attenuation	<u>Bin</u>	Solvent		Difference
OA- Gd/Eu (50/50)	48.5/50.2	0.404 ± 0.022	bin 4	0.177 ± 0.011	30% EtOH	0.227 ± 0.025
OA- Yb/Lu (50/50)	61.3/63.3	0.309 ± 0.030	bin 5	0.168 ± 0.007	30% EtOH	0.141 ± 0.031
OA- Yb/Eu (98/2)	61.3/48.5	0.341 ± 0.022	bin 5	0.168 ± 0.007	30% EtOH	0.173 ± 0.023
OA- Yb/Er (98/2)	61.3/57.5	0.349 ± 0.012	bin 5	0.168 ± 0.007	30% EtOH	0.181 ± 0.014

Table S2. Attenuation coefficient values of different synthesized PAA-stabilized NPhs.

<u>Material</u>	<u>K-edge</u>	Attenuation	<u>Bin</u>	<u>Solvent</u>		Difference
PAA-Eu	48.5	0.270 ± 0.014	bin 4	0.184 ± 0.015	100% water	0.086 ± 0.021
PAA-Gd	50.2	0.212 ± 0.014	bin 4	0.184 ± 0.015	100% water	0.028 ± 0.021
PAA-Yb	61.3	0.200 ± 0.017	bin 5	0.173 ± 0.010	100% water	0.027 ± 0.020
PAA-Lu	63.3	0.209 ± 0.010	bin 5	0.173 ± 0.010	100% water	0.036 ± 0.014
PAA-Ta	67.4	0.202 ± 0.009	bin 5	0.173 ± 0.010	100% water	0.029 ± 0.013
Diatrizoate	33.2	0.475 ± 0.018	bin 2	0.241 ± 0.007	100% water	0.234 ± 0.019
Material	K-edge	Attenuation	<u>Bin</u>	Solvent		Difference
PAA- Gd/Eu (50/50)	48.5/50.2	0.227 ± 0.014	bin 4	0.184 ± 0.015	100% water	0.043 ± 0.021
PAA- Yb/Lu (50/50)	61.3/63.3	0.182 ± 0.009	bin 5	0.173 ± 0.010	100% water	0.009 ± 0.013
PAA- Yb/Eu (98/2)	61.3/48.5	0.178 ± 0.008	bin 5	0.173 ± 0.010	100% water	0.005 ± 0.013
PAA- Yb/Er (98/2)	61.3/57.5	0.206 ± 0.011	bin 5	0.173 ± 0.010	100% water	0.033 ± 0.015
PAA- Gd/Lu (50/50)	63.3/50.2	0.225 ± 0.015	bin 4	0.184 ± 0.015	100% water	0.041 ± 0.021

Figure S6. FTIR spectrum of PAA-stabilized Yb-NPhs.

Figure S7. FTIR spectrum of PAA-stabilized Ta-NPhs.

Figure S10. FTIR spectrum of PAA-stabilized Lu-NPhs.

Gd-PAA_1_82620182627

Figure S11. TGA spectra of PAA1.8K-stabilized Gd-NPhs.

Ta-PAA_1_82420182626

Figure S12. TGA spectra of PAA_{1.8K}-stabilized Ta-NPhs.

Yb-PAA_1_82620182627

Figure S13. TGA spectra of PAA_{1.8K}-stabilized Yb-NPhs.

Eu-PAA_1_82420182626

Figure S14. TGA spectra of PAA_{1.8K}-stabilized Eu-NPhs.

Er-PAA_1_82420182626

Figure S15. TGA spectra of PAA_{1.8K}-stabilized Er-NPhs.

Lu-PAA_1_82520182626

Figure S16. TGA spectra of PAA_{1.8K}-stabilized Lu-NPhs.

Figure S17. TEM images of PAA-stabilized (**a**) Eu-NPhs, (**b**) Lu-NPhs and (**c**) Ta-NPhs showing partial particle clustering after drying from water for the last two, with a tendency to form dimers or trimers. Therefore, DLS was used as a more accurate technique for size estimation in solution, showing a hydrodynamic diameter (z-average) of 216.0 ± 10.3 nm, 226.2 ± 15.1 nm, and 184.6 ± 6.8 nm for PAA-stabilized Eu-NPhs, Lu-NPhs, and Ta-NPhs respectively.

Figure S18. TEM characterization of OA-stabilized (**a**) Eu-NPhs, (**b**) Lu-NPhs, and (**c**) Ta-NPhs. Samples were prepared from ethanol.

Figure S19. TGA spectra of newly synthesized PAA-stabilized Lu-NPs with a grafting density of 18.1% ± 0.6.

Figure S20. (a) Micro-CT image of PAA'-stabilized Lu-NPhs (labeled 2 in the image) at 90 mg/mL in water using the acrylic tubes shown in S2. The material with ~18% grafting density showed a high attenuation coefficient in the range of 0.303 ± 0.017 cm⁻¹, as well as moderate-to-good dispersibility. (b) FTIR spectrum of synthesized PAA'-stabilized Lu-NPhs. The characteristic C=O stretching peak for carboxylic acid, shown at 1695 cm⁻¹ in the case of poly(acrylic acid) (black line, PAA), was slightly shifted to 1688 cm⁻¹ for the case of new PAA-stabilized Lu-NPhs (red line), while the bound polymer (asterisk) onto the nanocrystal surface is shown at 1565 cm⁻¹ (v_{as}: COO⁻) and 1445 cm⁻¹ (v_s: COO⁻). Similar peaks have been also reported in the literature^[48-50].