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Abstract: To the best of our knowledge, this report presents, for the first time, the schematic of
the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs)
in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution
transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se
increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First,
[Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier
transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is
formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that
ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents,
HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were
approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that
Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the
Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led
to a decrease in particle size.
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1. Introduction

The preparation and identification of quantum dots (QDs) have been widely studied, thus creating
a new field of research. Different chemical methods have been reported for preparing QDs, such as
microwave irradiation [1], solvothermal [2], and nonorganometallic precursor [3–5] methods, as well
as the pyrolysis of single-molecular organometallic compounds [6,7], the organometallic precursor
method [8], and the sonochemical method [9]. Preparing multicomponent alloy QDs involves more
complicated steps than preparing single-component QDs. Thus, the fabrication of alloy QDs using
the one-pot method has become a popular research topic since the late 2000s [10–15]. QDs have been
used in a wide variety of applications such as light-emitting diodes, lasers [16,17], solar cells [18–20],
photonic band-gap crystals [21], and biomedical labels [22–24]. QDs are quasi-zero-dimensional
nanomaterials composed of typical inorganic semiconductors [25]. Because QDs have various emission
wavelengths, they have attracted considerable attention in fields requiring special material, physical,
and chemical properties [14,26]. The various emission wavelengths of multicomponent alloy QDs are
the most widely investigated, given that many reaction parameters can be controlled. Although the
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emission wavelength of QDs can change with nanoparticle size, it can also be controlled through the
ratio and composition of the precursors [14].

More recently, various ligands, such as trioctylphosphine (TOP) ligands, oleic acid (OA) ligands,
and oleylamine (OLA) ligands, have been extensively investigated in order to determine the impact of
size and ligand chemistry on the optical properties and growth of QDs [27,28]. Most researchers have
focused on changing the emission wavelength of QDs by controlling the reaction time, temperature,
and ratio and composition of precursors [27–30]. The synthesis of ternary ZnxCd1−xSe alloy QDs
has become well-establishment using the one-pot method. Various shell/core QD systems have been
synthesized and reported, i.e., ZnS/ZnxCd1−xSe, CdZnS/ZnxCd1−xSe, and CdSe/ZnxCd1−xSe, which
are the most studied with simple synthetic control resulting in desired optical properties [30–34].
Previous studies have mostly used a two-step chemical reaction method to synthesize the core/shell
ZnO/CdSe system and investigated emission wavelength, morphology, and growth evolution [35–38].
However, to the best of our knowledge, there are few reports on the core/shell ZnO/ZnxCd1−xSe alloy
QDs (not the ZnO/ZnxCd1−xSe nanocables and hollow spheres) in the literature [19,39]. The effect of
varying OLA contents on the growth evolution of ZnO/ZnxCd1−xSe alloy QDs using a one-pot method
has not yet been discussed. Thus, the growth evolution of ZnO/ZnxCd1−xSe alloy QDs with various
OLA contents is an important subject.

In the present study, we used a one-pot method to synthesize ternary Zn0.5Cd0.5Se alloy QDs.
We investigated the effect of the OLA ligands on the emission wavelength, morphology, and growth
evolution of these QDs, which were characterized along with their structure using high-resolution
transmission electron microscopy (HRTEM), photoluminescence (PL), Fourier transform infrared
(FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray photoelectron spectroscopy (XPS),
and X-ray diffraction (XRD).

2. Materials and Methods

2.1. Materials

Zinc acetate (Zn(OAc)2, 99.99%), cadmium oxide (CdO, 99.99%), Se (99.99%), trioctylphosphine
(TOP, 90%), 1-octadecene (ODE, 90%), OA (90%), OLA (80–90%), ethanol, and anhydrous toluene
were purchased from Sigma-Aldrich (Uni-onward Trade Co., Ltd., New Taipei City, Taiwan) and used
without any further purification.

2.2. Synthesis of Zn0.5Cd0.5Se Alloy QDs

Three different ZnxCd1−xSe alloy QDs were prepared using a one-pot method. The feed
Zn(OAc)2/CdO molar ratios were 0.5:0.5; the resulting products are hereinafter referred to as
Zn0.5Cd0.5Se. To synthesize Zn0.5Cd0.5Se alloy QDs, 0.5 mmol of Zn(OAc)2, 0.5 mmol of CdO,
and 5 mL of OA were placed in a four-neck flask along with different amounts of OLA (0, 2, 4, 6,
or 10 mL) and ODE (10, 8, 6, 4, or 0 mL). Then, the mixture was heated to 150 ◦C under flowing
high-purity Ar gas for 30 min. After 30 min, all the solids in the flask were completely dissolved,
yielding a clear solution of Zn(OA)2 and Cd(OA)2. The solution was then heated to 300 ◦C while
quickly injecting 4 mmol of Se in 4 mL of TOP into the four-neck flask. The reaction temperature was
maintained at 280 ◦C for 30 min to grow the Zn0.5Cd0.5Se alloy QDs. This solution was then rapidly
added to ice toluene to terminate the reaction. The mixed solution was precipitated in excess ethanol
and centrifuged at 5000 rpm for 10 min to separate the Zn0.5Cd0.5Se alloy QDs and the supernatant
liquid phase was decanted to remove the excess reagent. Subsequently, purified Zn0.5Cd0.5Se alloy
QDs in a nonpolar toluene solution were re-dispersed.

The alloy QDs are labeled Zn0.5Cd0.5Se-y, where y is the OLA content (mL) added during the
synthesis process.
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2.3. HRTEM

The morphology and size of all QDs were investigated using HRTEM (JEM-2100F, JEOL Ltd.,
Tokyo, Japan) with an accelerating voltage of 200 kV.

2.4. XRD

To determine the crystal structure of the QDs, XRD patterns were recorded using a Bruker D8
Advance diffractometer (Bruker AXS, Inc., Madison, WI, USA) over scanning ranges from 2θ = 20◦ to
70◦ at a scanning rate of 2◦/min.

2.5. PL

The PL spectra were collected using a Hitachi F-2700 (Hitachi Ltd., Tokyo, Japan) fluorescence
(excitation wavelength, λex = 365 nm).

2.6. FTIR

The FTIR spectra were obtained on a Perkin-Elmer spectrometer (Waltham, MA, USA). One
spectrum in the transmission mode from 400 to 4000 cm−1 was obtained after 20 scans at a 4 cm−1

resolution using the standard KBr disk method.

2.7. XPS

The chemical states and constituent compositions of the all samples were analyzed by XPS
(ULVAC-PHI PHI 5000 Versa Probe, Kanagawa, Japan).

2.8. UV-vis Spectrophotometer

UV-vis spectra were performed on a Hitachi U-3010 (Hitachi Ltd., Tokyo, Japan) with a bandwidth
0.1 nm and a scanning speed at 200 nm/min.

3. Results and Discussion

3.1. Effect of Low OLA Content

According to the literature, both zinc-blende and wurtzite phases might form during the fabrication
of ternary Zn0.5Cd0.5Se alloy QDs [31–33]. We studied the effect of low OLA content on the preparation
of Zn0.5Cd0.5Se alloy QDs, where the initial OLA content was set to 0, 2, and 4 mL, and all other
reaction parameters were fixed. All data were analyzed under the same parameters. Figure 1 shows
the XRD patterns of Zn0.5Cd0.5Se alloy QDs prepared with various OLA contents. The patterns of pure
Zn0.5Cd0.5Se alloy QDs clearly exhibited diffraction peaks at 2θ = 25.32◦ (100), 26.63◦ (002), 28.29◦ (101),
37.24◦ (102), 44.78◦ (110), 48.33◦ (103), and 53.07◦ (112), indicating a wurtzite crystal structure [31,34].
Because the wurtzite phase is thermodynamically more stable than the zinc-blende phase [34], these
ternary pure Zn0.5Cd0.5Se alloy QDs predominantly developed a wurtzite structure. Thus, the
Zn0.5Cd0.5Se alloy QDs with various OLA contents all exhibited a wurtzite crystal structure [31,34].
The crystal structures of Zn0.5Cd0.5Se-2 and Zn0.5Cd0.5Se-4 alloy QDs are the same as that of pure
Zn0.5Cd0.5Se alloy QDs. These results suggest that adding OLA during synthesis does not change the
crystal structure of Zn0.5Cd0.5Se alloy QDs.

Figure 2 shows the HRTEM images and size distributions of various OLA contents on the
preparation of Zn0.5Cd0.5Se alloy QDs. In these images, all alloy QDs are clearly monodispersed and
quasi-spherical. The average diameters of the Zn0.5Cd0.5Se alloy QDs are estimated to be approximately
8, 6, and 4 nm for 0, 2, and 4 mL OLA loadings, respectively. Thus, the average diameters of the
Zn0.5Cd0.5Se alloy QDs decreases as the OLA content increases in the reaction solution up to 4 mL.
This decrease might be due to OLA inhibiting the growth of Zn0.5Cd0.5Se alloy QDs, thus decreasing
the particle size (discussed in Section 3.2). In addition, the interplanar distances are estimated to be



Nanomaterials 2019, 9, 999 4 of 12

0.37, 0.36, and 0.36 nm for pure Zn0.5Cd0.5Se, Zn0.5Cd0.5Se-2, and Zn0.5Cd0.5Se-4, respectively. This
result suggests that adding OLA during synthesis does not change the crystal structure of Zn0.5Cd0.5Se
alloy QDs and consistent with the XRD results.Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 12 
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To understand the effect of adding OLA on the absorption and emission wavelength of Zn0.5Cd0.5Se
alloy QDs, UV-vis absorption and PL spectra were employed. The UV-vis absorption and PL spectra of
Zn0.5Cd0.5Se alloy QDs prepared with various OLA contents are shown in Figure 3. When the OLA
content increased from 0 to 4 mL, the emission wavelength gradually blue-shifted from 671 to 651 nm,
respectively. We observed that the first absorption feature blue-shifted from 649 to 635 nm. Thus,
the absorption and emission wavelength of the Zn0.5Cd0.5Se alloy QDs blue-shifted with decreasing
particle size, which is the opposite trend as that of Cd3P2 QDs [29]. Specifically, Miao et al. reported
that the emission peaks of Cd3P2 QDs red-shifted with increasing OLA content [29], which implied
that adding OLA is helpful to the growth of Cd3P2 QDs [29].
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3.2. Effect of High OLA Content

To investigate the crystal structure of pure Zn0.5Cd0.5Se alloy QDs with high OLA contents, we
recorded XRD patterns, which are depicted in Figure 4. The pure Zn0.5Cd0.5Se alloy QDs exhibited a
wurtzite crystal structure [31,34] and diffraction peaks at 2θ= 25.32◦, 26.63◦, 28.29◦, 37.24◦, 44.78◦, 48.33◦,
and 53.07◦ were assigned to the (100), (002), (101), (102), (110), (103), and (112) planes, respectively.
The XRD patterns of Zn0.5Cd0.5Se-6 and Zn0.5Cd0.5Se-10 (Figure 4) containing six extra diffraction
peaks were different from that of pure Zn0.5Cd0.5Se. Six diffraction peaks appeared at 2θ values of
31.80◦, 34.41◦, 36.21◦, 56.53◦, 62.74◦, and 67.80◦, which correspond to the (100), (002), (101), (110), (103),
and (112) planes of the wurtzite ZnO structure (JCPDS card no. 36-1451), respectively [40]. Since both
Zn0.5Cd0.5Se and ZnO have a wurtzite crystal structure, they provided good lattice matching. Thus,
we conjectured that the wurtzite ZnO structure might preferentially grow on the Zn0.5Cd0.5Se surface
with high OLA contents.

To understand the XRD results, FTIR was used to explain the differences between Zn0.5Cd0.5Se
and Zn0.5Cd0.5Se-y. Figure 5 presents the FTIR spectra of Zn0.5Cd0.5Se and Zn0.5Cd0.5Se-y. For all
samples, the FTIR data revealed strong absorption peaks at 2986–3686 cm−1, which were assigned
to the carboxylic acid OH stretching mode of OA and N–H stretching vibration of OLA. The strong
absorption peaks at 2853–3005 cm−1 were attributed to the =C–H and C–H stretching vibration of
ligands (OA and/or OLA). The absorption peaks of the ligands (OA and/or OLA) are located in the
wavenumber region from 630 to 1750 cm−1. However, compared to the FTIR spectra of Zn0.5Cd0.5Se,
Zn0.5Cd0.5Se-2 and Zn0.5Cd0.5Se-4, the FTIR spectra of Zn0.5Cd0.5Se-6 and Zn0.5Cd0.5Se-10 contained
two extra absorption peaks at 530 and 435 cm−1. The absorption peaks associated with Zn-O stretching
band clearly appeared at 530 and 435 cm−1, confirming the formation of ZnO [41]. These results
demonstrate that this chemical reaction could produce ZnO when with high OLA contents.
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To further explain the chemical states and constituent compositions, XPS spectra were analyzed.
Figure 6 shows the XPS spectra of Zn0.5Cd0.5Se and Zn0.5Cd0.5Se-y samples. In Figure 6a, two peaks
(all samples) with binding energies of 404.5 and 411.3 eV can be attributed to Cd 3d [42]. The Se 3d5/2

and Se 3d3/2 peaks (all samples) with binding energies of 53.7 and 54.6 eV, respectively, are attributed
to the Se2- in CdSe and ZnSe, thus confirming the formation of CdSe and ZnSe [42,43], as presented in
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Figure 6b. In Figure 6c, one peak with binding energy of 1021.2 eV can be observed for Zn0.5Cd0.5Se,
Zn0.5Cd0.5Se-4, and Zn0.5Cd0.5Se-6 alloy QDs, which is attributed to Zn2+ existing in the form of
ZnSe [44,45]. For the Zn0.5Cd0.5Se-6 and Zn0.5Cd0.5Se-10 alloy QDs, the two peaks with binding
energies of 1021.1 and 1022.7 eV (Figure 6c) can be found, which are assigned to Zn2+ in the form of ZnO
and ZnSe [44]. As shown in Figure 6d, the XPS spectra can be fit to two peaks with binding energies of
531.2 and 533.1 eV for Zn0.5Cd0.5Se, Zn0.5Cd0.5Se-4, and Zn0.5Cd0.5Se-6 alloy QDs. The binding energy
peak at 531.2 eV is attributed to the C–O and C=O bands of oleic acid. The binding energy peak at
533.1 eV is correspondingly attributed to the O–C=O groups of oleic acid [46]. The results indicate that
this chemical reaction could not produce ZnO with low OLA contents. For the Zn0.5Cd0.5Se-6 and
Zn0.5Cd0.5Se-10 alloy QDs (Figure 6d), the O–C=O binding energy peak of oleic acid also appears at
533.1 eV. We also observed that the binding energy peak at 529.9eV is attributed to O2− in ZnO, thus
confirming the formation of ZnO [45]. Consequently, the addition of high OLA contents could form
ZnO/Zn0.5Cd0.5Se QDs in this chemical reaction process.
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Figure 6. (a) Cd 3d, (b) Se 3d, (c) Zn 2p, and (d) O 1s X-ray photoelectron spectroscopy (XPS) spectra
showing the influence of the various OLA content on Zn0.5Cd0.5Se and Zn0.5Cd0.5Se-y.

As shown in Figure 7a,b, the HRTEM images and size distributions of Zn0.5Cd0.5Se-6 and
Zn0.5Cd0.5Se-10 were captured. These figures demonstrate that the Zn0.5Cd0.5Se-6 and Zn0.5Cd0.5Se-10
alloy QDs were fully crystalline. Further, they exhibited well-resolved lattice fringes. We clearly
observed that adding a high content of OLA during synthesis does not affect the interplanar distances
of Zn0.5Cd0.5Se. In addition, the average diameters were estimated to be approximately 6 and 9 nm for
Zn0.5Cd0.5Se-6 and Zn0.5Cd0.5Se-10, respectively. The average diameters of the Zn0.5Cd0.5Se alloy QDs
increased as the OLA content increased in the reaction solution from 4 (Figure 2c) to 10 mL. In these
images, we found that a thin layer grew on the surface of Zn0.5Cd0.5Se alloy QDs. This increase might
be due to ZnO growing on the Zn0.5Cd0.5Se surface, thus increasing the particle size.
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Figure 8 shows the UV-vis absorption and PL spectra of Zn0.5Cd0.5Se alloy QDs prepared with
high OLA contents. After overcoating the Cd0.5Zn0.5Se with the ZnO shell, the absorption wavelengths
of Zn0.5Cd0.5Se-6 and Zn0.5Cd0.5Se-10 QDs exhibited a redshift (from 635 to 654 nm) compared to
Cd0.5Zn0.5Se-4 QD, as shown in Figure 8a. Figure 8b shows that the emission peak red-shifted
from 651 to 676 nm. The results indicate that ZnO can form in this reaction that grows on the
Zn0.5Cd0.5Se surface due to the increasing reaction between [Zn(OAc)2]–OLA complex, TOP, and
oxygen ion [47–49], thus increasing the particle size and red-shifting the absorption and emission
wavelengths. In addition, the photoluminescence quantum yield (PL QY) of all samples with different
OLA contents was monitored, calculated by comparison with standard organic dye. The PL QY
was estimated to be approximately 21.5%, 14.9%, 13.7%, 23.7%, and 26.5% for pure Zn0.5Cd0.5Se,
Zn0.5Cd0.5Se-2, Zn0.5Cd0.5Se-4, Zn0.5Cd0.5Se-6, and Zn0.5Cd0.5Se-10, respectively. The PL QY first
decreased and then increased with increasing OLA content. This indicates that after Zn0.5Cd0.5Se
cores being coated with ZnO, the PL QY of Zn0.5Cd0.5Se-6 and Zn0.5Cd0.5Se-10 obviously enhanced.
This phenomenon can be explained by ZnO having a low lattice mismatch with Zn0.5Cd0.5Se, and
ZnO can provide strong confinement for the Zn0.5Cd0.5Se QD cores as well as remove their surface
defects [33,35–38].

To understand all chemical reaction mechanisms, we propose a schematic of the possible reaction
mechanism underlying the chemical synthesis for the one-pot method for Zn0.5Cd0.5Se alloy QDs with
low/high OLA contents, as shown in Figure 9. Figure 9a illustrates that the precursors (CdO and
Zn(OAc)2) in the OA and ODE solution formed Zn(OA)2 and Cd(OA)2 when the reaction temperature
reached 150 ◦C. When the reaction temperature reached 300 ◦C, the Se-TOP solution was quickly
injected into the reaction solution. At this time, Zn0.5Cd0.5Se alloy began to form. Subsequently, the
reaction temperature was maintained at 280 ◦C to grow the Zn0.5Cd0.5Se alloy QDs. This reaction
process occurred without the presence of OLA. Figure 9c illustrates the probable chemical synthesis
mechanism underlying the growth of Zn0.5Cd0.5Se alloy QDs in the presence of high OLA contents.
It is known that ZnO nanoparticles can be formed through thermal decomposition of Zn(OAc)2 or
Zn(acac)2 [47–49]. The literature indicates that before the formation of ZnO nanoparticles, Zn(OAc)2

and OLA can form the [Zn(OAc)2]–OLA complex as precursors. In this study, when the reaction
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temperature reached 150 ◦C, the precursors (CdO and Zn(OAc)2) in the OA, OLA, and ODE solution
formed Zn(OA)2, Cd(OA)2, and the [Zn(OAc)2]–OLA complex, respectively. Then, cadmium oxide
dissociated into cadmium ions and oxygen ions. The [Zn(OAc)2]–OLA complex, TOP, and oxygen ion
at 280 ◦C were used to form ZnO via the thermal decomposition with high OLA contents. FTIR, XPS,
and XRD data also confirmed that the addition of high OLA contents could form the ZnO/Zn0.5Cd0.5Se
QDs in this chemical reaction process. Thus, the HRTEM results demonstrate that this increase might
be due to the ZnO growing on the Zn0.5Cd0.5Se surface, thus increasing the particle size.
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According to the literatures [47–49] and above results, we also confirmed that the chemical reaction
could produce [Zn(OAc)2]–OLA complexes with the addition of low OLA contents (Section 3.1). Because
the OLA contents were too low, this chemical reaction could not produce ZnO/Zn0.5Cd0.5Se QDs
(Figures 1 and 5). When the reaction temperature was maintained at 280 ◦C, only some Zn(OA)2
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chemically reacted. This phenomenon indicates that the [Zn(OAc)2]–OLA complex inhibits the growth
of Zn0.5Cd0.5Se alloy QDs because of the reduction in the reaction between Zn(OA)2 and Se2−, which
leads to a decrease in the particle size, as shown in Figure 9b. Therefore, the Zn0.5Cd0.5Se alloy QD
produces a blue shift of its emission wavelength with increasing the OLA amount (from 0 to 4 mL).

4. Conclusions

To the best of our knowledge, a schematic diagram of the possible mechanism for the one-pot
synthesis of Zn0.5Cd0.5Se alloy QDs in the presence of low/high OLA contents is reported for the first
time. Under the condition of high OLA contents, the average size of Zn0.5Cd0.5Se QD examined by
HRTEM increases significantly from 4 to 9 nm when the OLA content increases from 4 to 10 mL. In
the beginning, the [Zn(OAc)2]–OLA complex can be formed via a reaction between Zn(OAc)2 and
OLA. Then, the thermal decomposition of [Zn(OAc)2]–OLA complexes occurs and forms the ZnO as
confirmed by the FTIR, XRD, and XPS measurements. The results indicate that the ZnO can grow on
the Zn0.5Cd0.5Se surface, thus increasing the particle size. For the QD synthesized under low OLA
loadings of 0, 2, and 4 mL, the average sizes of the Zn0.5Cd0.5Se alloy QDs are approximately 8, 6, and
4 nm as estimated by HRTEM, respectively. It could be due to the reduction in the reaction between
Zn(OA)2 and Se2−, which led to a decrease in the particle size. Therefore, the emission wavelengths of
the Zn0.5Cd0.5Se alloy QDs are blue-shifted with the increase of the OLA amount from 0 to 4 mL.
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