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Abstract: Metalenses recently have attracted attention because of their more compact size in
comparison with conventional lenses; they can also achieve better optical performance with higher
resolution. Duplexer is an interesting function of a metalens that can distinguish different sources and
divide them into two parts for specific purposes. In this article, we design tunable duplex metalenses
with phase-change material Ge2Sb2Te5 for the first time. Two types of special unit cells are designed
to modulate the incident lights, and four metalenses are designed based on the two types of unit cells.
Specific phase profiles are calculated for different sections of metalens in which the corresponding unit
cells are settled; accordingly, the metalenses can focus the incident lights at any positions according to
our design. Moreover, the metalenses become selectable via tuning the state of phase-change material,
which means that the output light field can be actively controlled. The proposal of our tunable duplex
metalenses will offer new opportunities for active three-dimensional imaging or optical coding.
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1. Introduction

Recently, researchers have begun to pay increasing attention to metasurfaces due to their
extraordinary performance in electromagnetism fields [1–21]. As 2D, artificial, photonic metamaterials,
metasurfaces can manipulate the electromagnetic wave freely. By shaping the subwavelength
resonators of metasurfaces, the amplitude, phase, polarization, and propagation direction of light can
be easily controlled [1–4]. With the completion of new theories and technologies in this field, they
have been applied to various functions, such as to ultrathin metalens [5,6], cloaking [7,8], nonlinear
device [9,10], holograms [11,12], surface plasmon launcher [13], computing [14,15], biosensing [16,17],
switching [18,19] and many novel photonic devices [20,21]. Metalens has become an exciting research
topic that holds great promise to the applications of metasurfaces. Metalens can not only show better
optical performance but also be smaller and lighter, which is more suitable for compact devices in
comparison with conventional lens. Recently, excellent research about metalens have been reported.
For example, Khorasaninejad et al. verified the exceptional ability of metalens experimentally [5].
Also, other functions such as chromatic aberration correction [6,22–24] and active tuning [25–27] have
been proposed or proved. However, there are still various functions to be achieved, owing to the
subwavelength manipulation to the electromagnetic field.

Duplexer can divide a light source into two parts for distinct uses. Using this as inspiration,
we can design duplex metalens that can separate light sources and focus or image them at designed
positions, which is impossible for conventional lenses. This is especially important in beam splitter or
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three-dimensional imaging. Some previous efforts have explored the novel functions of metalens. For
instance, Li et al. focused light with different wavelengths into different positions [28], and Boroviks
et al. focused different polarized lights into different positions [29]. Nevertheless, once metalenses
are fabricated, the functions are fixed, which makes them inflexible. However, this situation can be
improved with the help of tunable phase-change materials.

Phase-change materials have been applied in optical disk storage for many years. Recently, they
have been increasingly used for electrical nonvolatile memories in which their refractive index can be
selectively tuned [30–32]. As a typical phase-change material, Ge2Sb2Te5 (GST) alloy has two different
states: the amorphous state and the crystalline state. Different phase states correspond to different
lattice arrangements such as amorphous, metastable, face-centered cubic (Fcc), and stable hexagon,
all of which result in great complex permittivity contrast at near-infrared (NIR) and middle-infrared
(MIR). Especially, the state transition between amorphous and crystalline can be precisely controlled by
appropriate thermal, optical, or electrical stimuli [30–32]. The amorphous GST is gradually crystallized
when it is heated to the temperature between the transition temperature (160 ◦C) and the melting
temperature (627 ◦C) [33]. After a short, high-density laser pulse melts the GST and is it quickly
quenched, the crystallized GST returns to an amorphous state (the reamorphization temperature is
640 ◦C) [34]. GST has become the most promising candidate for the next generation of controllable,
nonvolatile photonic devices due to its ultrafast switching speed (occurring in a nanosecond or less) [32],
high-switching stability (potentially up to 1015 cycles) [35], and compatibility with Complementary
Metal Oxide Semiconductor (CMOS) technology. Lately, the combination of GST with metasurfaces has
attracted increasing interest because active control is desirable in many nano-photonic devices. Several
metadevices, such as display [36], filter [37], absorber [38], beam steering [39], modulation [40–42]
and other novel devices [34,43–46], all of which are based on phase change materials, have been
investigated. All devices have demonstrated the great potentialities of GST in active and flexible
control of nano-devices.

In this work, we design the tunable duplex metalens based on phase-change material GST in the
communication wavelengths (1.55µm and 1.31µm) for the first time. Two unit cells and four metalenses
have been designed to test our method. The metalenses are composed of a series of well-designed GST
nanocube resonators accompanying Pancharatnam-Berry (P-B) phase shift. Importantly, the metalenses
were divided into two sections, and different sections were arranged with different unit cells to achieve
duplex function. When the GST structures remained at the amorphous state, the corresponding light
was able to pass through. When the GST structures stayed at the crystalline state, the corresponding
light was shut off. Accordingly, we can selectively control the focused light on demand by adjusting
the state of GST when the incident light is 1.31 µm, 1.55 µm, or both. We believe that the proposed
tunable duplex metalens could be applied in active three-dimensional imaging or optical coding.

2. Single-Wavelength Tunable Duplex Metalenses

The structure of the unit cell is depicted in Figure 1a. A nanocuboid waveguide GST was placed
on the transparent SiO2 substrate. The orientation of GST formed an angle θ with x axis as shown in
Figure 1b; Figure 1c is the side view of the unit cell. A 30-nm thin transparent film of indium tin oxide
(ITO) was sandwiched between the GST and the SiO2 substrate. This film was treated as a conductive
layer to tune the state of GST by electrically heating the structured GST.

In this work, P-B phase shift is adopted to achieve phase control. A left/right circularly polarization
(LCP/RCP) incident light passes through the unit cell, propagating along +z direction; by applying the
Jones matrix theory, the output field can be simplified as [28]:
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Figure 1. (a) Overview of the unit cell. The structured GST with period p, height h, length l, width w
is settled on the substrate SiO2. A 30-nm thin film ITO is deposited between the GST and substrate
as a conductive layer. (b) Top view of the unit cell. The structured GST forms an angle θ with x axis.
(c) Side view of the unit cell.

Here, the incident light EL/R = 1/
√

2
(
ex ± i ∗ ey

)
is the normalized representation of Jones matrix

for LCP and RCP separately, and α = to ± te, where to and te represent the complex transmission
coefficients along the optical fast axis and slow axis which is determined by the parameters of the
unit cell (p, l, w, h, ε(ω)), and the symbol “±” distinguishes the co-polarization and cross-polarization
light, respectively. According to the formula, the incident CP light is divided into two cross
polarization outputs. The co-polarization light only receives the amplitude modulation but the
cross-polarization light has the 2θ phase modulation simultaneously. 2π phase tuning can be achieved
for the cross-polarization light if the angle θ rotates from 0 to π. When the state of the GST is changed,
the transmission is changed simultaneously; thus the output of the unit cell can be actively controlled.

The simulation of all the unit cells was performed using finite-element method in frequency
domain with the unit cell boundary in xy direction and the open boundary in z direction; the minimum
size of the mesh was 20 nm. All unit cells were settled in free space. The information of the system used
for computing this structures is as follows: The CPU of the system was Intel(R) Xeon(R) CPU E5-2420
v2; the RAM was 24 GB; the duration of the calculation for one unit cell was approximately several
minutes; the HDD space was 1.72 TB. In the simulation, the incident LCP plane wave propagated
along +z direction through the substrate. The GST data were obtained from the experimental data
in reference [47], in which the dielectric function ε(ω) was investigated by infrared spectroscopy and
spectroscopic ellipsometry. The conversion efficiency from LCP to RCP and the phase modulation of
the unit cell were calculated from the simulations on the unit cell. After optimization at the wavelength
of 1.31 µm, the parameters of the unit cell U1 were determined to be p = 600 nm, h = 700 nm, l = 230 nm
and w = 180 nm. According to the theoretical analysis from Equation (1), a part of incident light will be
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changed into RCP light with phase modulation of ϕ = 2θ. When θ = 0, the conversion efficiency from
LCP to RCP for two different GST states is shown in Figure 2a. When the GST remained at amorphous
state, the conversion efficiency was as high as 87% at the wavelength of 1.31 µm; in contrast, the
conversion efficiency was only 16% at the wavelength of 1.55 µm (used for another purpose). When
the GST was in crystalline state, the ε(ω) changed and the conversion efficiency was tuned lower
than 5%, which can be treated as turning off in the whole range from 1.31 µm to 1.55 µm. Next, the
incident light was fixed at 1.31 µm, at which point the angle of structure was rotated from 0 to π; the
corresponding phase modulation is shown in Figure 2b. For amorphous GST, the simulation showed
no difference with theoretical analysis; however, the phase modulation linearly covered the entire 2π
range. Figure 2c shows that the conversion efficiency remained largely unchanged when the angle was
rotated from 0 to π, which indicates that the angle had little influence in the conversion efficiency for
two different states of GST. All simulations demonstrated that the unit cell is a good candidate for
tunable metalens.
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Figure 2. (a) The conversion efficiency from LCP to RCP versus wavelength for unit cell U1 when GST
stays in amorphous state (red line) and crystalline state (greed line). (b) The phase modulation of unit
cell U1 versus rotating angle θ for both states of GST at the designed wavelength of 1.31 µm. (c) The
conversion efficiency of unit cell U1 from LCP to RCP versus rotating angle θ for both states at the
designed wavelength of 1.31 µm.

To focus like a conventional spherical lens, the phase profile of the metalens should satisfy:

ϕ(x, y, f ) = −
2π
λ
(

√
(x− xd)

2 + (y− yd)
2 + f 2 − f ) (2)

Where λ is the designed wavelength, f is the focal length. (x, y, 0) represents the position of
the unit cell, and (xd, yd, f ) represents the coordinate of an arbitrary focal point. According to the
simulation result of ϕ = 2θ, the rotating angle of the unit cell in (x, y, 0) should be:

θ(x, y, f ) = −
π
λ
(

√
(x− xd)

2 + (y− yd)
2 + f 2 − f ) (3)

The designed metalens is divided into two equal sections marked as A (x > 0) and B (x < 0). Unit
cells U1 were used to construct the metalens M1. Specially, unit cells in section A were arranged as
xd = 5 µm, yd = 0, f = 20 µm; unit cells in section B were arranged as xd = −5 µm, yd = 0, f = 20 µm.
The radius of the metalens was fixed at 20 µm. The overall structure layout is depicted in Figure 3a.
Figure 3b shows the imperfect phase distribution of metalens M1 along the x axis sampling at the
center of each unit cell.

The results of all the metalenses were simulated by using finite integrity in time domain and
open boundary condition in all directions; the size of the uniform mesh was set at 20 nm along all
axes to minimize numerical errors. The entire devices were settled in free space. The duration of the
calculation for one metalens was about 24 h (different metalenses spend different time). The light
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source was set at 1.31 µm LCP plane wave in the simulation. The spatial dimension of incident light is
40 × 40 µm2 and the LCP plane wave can be expressed as:

E = cos(kz−ωt)
→
ex + cos(kz−ωt + π/2)

→
ey (4)

The incident light was settled at the position lower 1 µm from the metalens. The thickness of
the substrate, ITO layer, and GST was 0.2 µm, 0.03 µm, and 0.7 µm, respectively. The output light
field was obtained from the position upper 1 µm from the metalens. The spatial dimension of the
simulation domain for the full metalens is 40 × 40 × 2.93 µm3. The light field was then exported after
finite integrity in time domain and calculated by Matlab with Angular Spectrum Diffraction method in
the spatial dimension of 40 × 40 × 40 µm3.Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 13 
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Figure 3. (a) The layout of the single wavelength tunable duplex metalens (M1, M2). The metalens is
divided into two equal sections A and B, composed of unit cells U1. (b) The phase profile of metalens M1

along the x axis while y = 0, the central position of the metalens is at (0, 0). (c), (e) and, (f) adhere to the
same conditions. (c) The phase profile of metalens M2. (d) The layout of the dual wavelength tunable
duplex metalens (M3, M4). Section A is constructed with unit cells U1 and section B is constructed with
unit cells U2. (e) The phase profile of metalens M3. (f) The phase profile of metalens M4.

When the GST in both sections remained in an amorphous state, the incident light was separated
into two parts: one focused at the position (5.29, 0.32, 19.9) µm, the other focused at the position
(−4.64, 0.32, 20.3) µm. The result is illustrated in Figure 4a. Full width at half maximum (FWHM) of
the spots in focal plane were 0.95 µm and 0.97 µm, respectively, which indicates that the metalens
achieved subwavelength resolution. The deviance from the expected result (±5, 0, 20) µm came from
the discrete phase distribution, as depicted in Figure 3b. By applying appropriate electrical current
pulse through the ITO layer, the state of the GST can be changed. When the GST in section A remained
in an amorphous state and the GST in section B was changed into a crystalline state, the incident light
was focused at the position (−4.64, 0.32, 20.3) µm with FWHM of 0.95 µm, as shown in Figure 4b.
When the GST in section A was changed into a crystalline state while the GST in section B was in an
amorphous state, the incident light was focused at the position (5.29, 0.32, 19.9) µm with FWHM of
0.97 µm, as shown in Figure 4c. The result of the GST in both sections changing to a crystalline state
is shown in Figure 4d. There was no light focusing because the conversion efficiency from LCP to
RCP is very low when GST remains in a crystalline state. The results prove that the focusing effect of
our tunable duplex metalens can be actively controlled in horizontal direction and will bring some
convenience to integrated optical systems.
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Figure 4. The light field distribution of metalens M1. (a) The GST in both sections are in amorphous
state. (b) The GST in section A stays in amorphous state but the GST in section B stays in crystalline
state. (c) The GST in section A stays in crystalline state but the GST in section B stays in amorphous
state. (d) The GST in both sections are in crystalline state.

Although metalens M1 was designed to have the focus spots arranged in horizontal, in this
study, we designed metalens M2 to have the focus spots arranged in vertical. Metalens M2 was also
constructed by unit cells U1. Differently, unit cells in section A were arranged as xd = 0, yd = 0, f =

15 µm, and unit cells in section B were arranged as xd = 0, yd = 0, f = 25 µm. The phase distribution of
metalens M2 along the x axis is shown in Figure 3c. The conditions of simulation remained unchanged,
and the incident light remained 1.31 µm LCP plane wave. When the GST in both sections remained in
an amorphous state, the incident light was focused at two different positions: (0.27, 0.27, 15.2) µm and
(0.35, 0.35, 24.7) µm. The distribution of light field is depicted in Figure 5a. FWHM of the spot at z =

15.2 µm was 0.83 µm and FWHM of the spot at z = 24.7 µm was 1.03 µm. This is reasonable because
longer focal length means smaller numerical aperture (NA), resulting in a larger focal spot. When the
GST in section A stayed in an amorphous state and the GST in section B changed to a crystalline state,
the incident light was focused at the position (0.27, 0.27, 15.2) µm with FWHM of 0.83 µm, as shown in
Figure 5b. When the GST in section A was changed into a crystalline state but the GST in section B
remained in an amorphous state, the incident light was focused at the position (0.35, 0.35, 24.7) µm with
FWHM of 1.03 µm, as shown in Figure 5c. When the GST in both sections was changed into crystalline
state, the metalens was turned off completely, as seen in Figure 5d. These results demonstrate that
our tunable duplex metalens can actively control the focusing in vertical direction, and it may have
potential in three-dimension imaging.
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Figure 5. The light field distribution of metalens M2. (a) The GST in both sections are in amorphous
state. (b) The GST in section A stays in amorphous state, but the GST in section B stays in crystalline
state. (c) The GST in section A stays in crystalline state, but the GST in section B stays in amorphous
state. (d) The GST in both sections are in crystalline state.

3. Dual-Wavelength Tunable Duplex Metalenses

When incident light becomes a mixed light of 1.55 µm and 1.31 µm, one single structure apparently
can not accomplish the task to distinguish the two different frequencies of lights. Accordingly, another
unit cell, U2, needs to be designed to modulate the phase at wavelength of 1.55 µm. The parameters
of U2 are determined to be p = 600 nm, h = 700 nm, l = 505 nm, and w = 100 nm after optimization.
The same period and height as unit cell U1 was selected to make sure that the different unit cells can
be fabricated in the same steps. In this simulation, the LCP plane wave passed through U2 along +z
direction. When the angle θ = 0, the conversion efficiency from LCP to RCP for two different states of
GST is shown in Figure 6a. When GST stayed at amorphous state, the conversion efficiency was as
high as 97% at the wavelength of 1.55 µm; however, the conversion efficiency was only 23% at the
wavelength of 1.31 µm. The two unit cells U1 and U2 were designed specially; U1 let the 1.31 µm light
pass but turned off the 1.55 µm light whereas U2 let the 1.55 µm light pass but turned off the 1.31 µm
light, which will be very useful to separate multi-wavelength incident lights. When the GST stayed in
crystalline state, the conversion efficiency was lower than 23% in the range from 1.31 µm to 1.55 µm,
which can be treated as turning off in comparison with the effect of the amorphous GST. Next, the
incident light was fixed at the wavelength of 1.55 µm. The angle of the structure was rotated from 0 to
π, affecting the corresponding phase modulation, as depicted in Figure 6b. The results fit well with
theoretical analysis because the phase modulation covers the whole 2π range linearly when the GST
stays in amorphous state. Figure 6c demonstrates the relationship between conversion efficiency and
the rotating angle, and the results prove that the rotating angle has no influence on the conversion
efficiency for unit cell U2.

Metalens M3 is constructed by unit cells U1 and U2 together. Unit cells U1 are arranged in section
A as xd = 5 µm, yd = 0, f = 20 µm, and unit cells U2 are arranged in section B as xd = −5 µm, yd = 0, f =

20 µm. Figure 3d is the overview of the metalens, in which the green structures represent U1 and the
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red structures represent U2. The phase distribution of the metalens M3 along the x axis is depicted in
Figure 3e.
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Figure 6. (a) The conversion efficiency from LCP to RCP versus wavelength for unit cell U2 when GST
stays in different states. (b) The phase modulation of unit cell U1 versus rotating angle θ for different
states of GST at the designed wavelength of 1.55 µm. (c) The conversion efficiency of unit cell U1 from
LCP to RCP versus rotating angle θ for different states of GST at the designed wavelength of 1.55 µm.

In this simulation, the conditions remain unchanged except the incident light source was changed
into mixed light of two wavelengths at 1.55 µm and 1.31 µm. When the GST in both sections stayed in
an amorphous state, the unit cells in section A and B could allow the light of 1.55 µm and 1.31 µm to
pass through, respectively. The incident 1.55 µm light was focused at the position (4.93, 0.38, 20.2) µm
with FWHM of 1.12 µm and the incident 1.31 µm light was focused at the position (−4.96, 0.38, 20.1)
µm with FWHM of 1.00 µm, which have been marked as red spot and green spot, respectively, as seen
in Figure 7a. The size of the spot was proportional to the wavelength while the focal lengths were
equal. When the GST in section A stayed in an amorphous state but the GST in section B changed into a
crystalline state, only the 1.31 µm incident light was focused at the position (−4.96, 0.38, 20.1) µm with
FWHM of 1.00 µm, as shown in Figure 7b. When the GST in section A changed to a crystalline state but
the GST in section B was in an amorphous state, the 1.55 µm incident light was focused at the position
(4.93, 0.38, 20.2) µm with FWHM of 1.12 µm. Simultaneously, the 1.31 µm incident light dissipated,
as shown in Figure 7c. When the GST in both sections changed to a crystalline state, the metalens
completely turned off without any focusing, as shown in Figure 7d. The results show that metalens
M3 can separate two different lights and focus them at different positions in horizontal direction. The
output can be controlled on demand by turning the state of the GST in different sections.

Considering metalens M3 separate the incident in horizontal, here we designed another metalens
M4 to separate the incident light in vertical. M4 was also constructed by putting unit cells U1 and
U2 together. Unit cells U1 were arranged in section A as xd = 0, yd = 0, f = 15 µm, and unit cells U2

were arranged in section B as xd = 0, yd = 0, f = 25 µm. The corresponding phase distribution of
metalens M4 along the x axis is depicted in Figure 3f. The incident light remained the mixed light
of two wavelengths at 1.55 µm and 1.31 µm. When the GST in both of the two sections was in an
amorphous state, Figure 8a demonstrates how the incident light was focused at two different positions
in a vertical direction: the 1.55 µm light was focused at the position (0.56, 0.56, 25.4) µm displayed
as the red spot with FWHM of 1.27 µm; the 1.31 µm light was focused at the position (0.41, 0.41,
15) µm displayed as the green spot with FWHM of 0.83 µm. When the GST in section A remained
in an amorphous state but the GST in section B is turned into a crystalline state, only the 1.31 µm
light was focused at the position (0.41, 0.41, 15) µm with FWHM of 0.83 µm, as shown in Figure 8b.
When the GST in section A was turned into crystalline state but the GST in section B stayed in an
amorphous state, only the 1.55 µm light was focused at the position (0.56, 0.56, 25.4) µm with FWHM
of 1.27 µm, as seen in Figure 8c. When the GST in both sections stayed in a crystalline state, Figure 8d
shows that the metalens M4 was turned off. These results prove that the tunable duplex metalens M4

can divide the two different lights in a vertical direction and actively control them if necessary. The
proposal of the metalens M4 may bring some reference value to three-dimensional colored imaging.
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Four metalenses (M1, M2, M3 and M4) have been designed to accomplish different functions in this
article. The comparison of them can be seen in Table 1.
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Figure 7. The light field distribution of metalens M3. The red profile and green profile indicate the
1.55 µm and 1.31 µm light respectively. (a) The GST in both sections are in amorphous state. (b) The
GST in section A stays in amorphous state but the GST in section B stays in crystalline state. (c) The
GST in section A stays in crystalline state but the GST in section B stays in amorphous state. (d) The
GST in both sections are in crystalline state.Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 13 
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Figure 8. The light field distribution of metalens M4. (a) The GST in both sections are in amorphous
state. (b) The GST in section A stays in amorphous state while the GST in section B stays in crystalline
state. (c) The GST in section A stays in crystalline state while the GST in section B stays in amorphous
state. (d) The GST in both sections are in crystalline state.
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Table 1. Comparison of the four metalenses.

Metalens M1 M2 M3 M4

Constructed
unitcell U1 U1 U1 and U2 U1 and U2

Function Single-wavelength
duplex

Single-wavelength
duplex

Dual- wavelength
duplex

Dual- wavelength
duplex

Wavelength 1.31 µm 1.31 µm 1.31 µm and 1.55 µm 1.31 µm and 1.55 µm

Duplex direction Horizontal Vertical Horizontal Vertical

Tunability Tunable Tunable Tunable tunable

4. Conclusions

In this paper, by utilizing phase change material GST, we designed two types of unit cells to
modulate the phase of incident light: when the GST stays in amorphous state, U1 responds to 1.31 µm
light but shuts off at the wavelength of 1.55 µm. In contrast, U2 responds to 1.55 µm light but shuts off

at the wavelength of 1.31 µm. When the GST stays in crystalline state, the two unit cells are shut off at
either wavelength. On the basis of two other types of unit cells, four metalenses were designed with
different functions. Metalens M1 and M2 can divide the single-wavelength light into two parts and
focus them at different positions along horizontal and vertical directions, respectively. In comparison,
the effects of metalenses can be actively controlled by tuning the state of GST on demand. Metalens M3

and M4 can separate the dual-wavelength light and focus them at designed positions along horizontal
and vertical directions, respectively. By tuning the state of GST, the two metalenses can also achieve
different focusing effects as necessary. In summary, our tunable duplex metalenses would make
metalens more applicable in photonic devices.
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