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Abstract: The eco-friendly vegetable liquid is increasingly used because of the growing demand for
environmentally friendly dielectric liquid. A vegetable liquid/fullerene nanofluid was fabricated
via ultrasonic processing with good dispersion of the fullerene nanoparticles. It was observed
that a small amount of fullerene (~100 mg/L) can significantly improve the electrical properties of
vegetable insulating liquid (dissipation factor decreased by 20.1%, volume resistivity increased by
23.3%, and Alternating Current (AC) dielectric breakdown strength increased by 8.6%). Meanwhile,
the trace amount of fullerene is also able to improve the electrical performances (i.e., dissipation
factor and electrical resistivity) of the vegetable nanofluid under harsh conditions of long-term
thermal aging compared with the blank contrast. The reduced acid values (25%) and dissolved
decomposition gases (58.2% for hydrogen) in the aged vegetable nanofluid indicate the inhibition of
molecule decomposition of vegetable liquid with fullerene. The improved electrical performances and
thermal resistance of the vegetable nanofluid contribute to the electron affinity of fullerene proved by
calculation of electron density distribution on the surface. The thermogravimetric analysis of the
nanofluid under different atmospheres interprets that the oxygen absorbed inevitably in the fullerene
contributes to the performance deterioration of the nanofluids during the initial aging. This work
provides a potential method towards eco-friendly dielectric liquid with great electrical performances
for harsh environments.
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1. Introduction

Liquid dielectric, which is a self-healing dielectric material in a liquid state, is widely used as
dielectric materials in capacitors [1,2] and cables [3], and as an insulating coolant in transformers [4]
and switchgears [5] for the non-permanent conductive trace in the fluid in the discharge channel.
To further reduce the fire risk from the liquid dielectric and improve the reliability and eco-friendliness
of the insulating facility, researchers are pursuing eco-friendly liquid dielectric with superior electrical
performances from the natural resources, such as natural esters [6,7]. The electrical properties of the
eco-friendly liquid dielectric generally include dissipation factors, volume resistivity and dielectric
breakdown strength [8]. The electrical properties tend to be strongly influenced by dissolved gases,
dust, and especially ionic impurities such as acidic material [9]. Recently, some studies have reported
that the incorporation of inorganic nanoparticles into natural esters can greatly improve the electrical
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performances of liquid dielectric materials [10–13]. Given the extremely high specific surface area
and reactivity, a few nanoparticles can absorb the reactive oxygen species produced during the aging
of vegetable insulating liquid and inhibit its oxidation. Meanwhile, nanoparticles adsorbed the
moisture reduced the hydrolysis of ester molecules and improved the anti-aging effect of oil–paper
insulation [14].

Nevertheless, it is worth noting that the dispersibility of magnetic nanoparticles was greatly
influenced by orientation of the external magnetic field [15]. In magnetic fields, the magnetic particles
aggregation led to the formation of the bridge across the gap between the electrodes, which lowered
the dielectric breakdown voltage and was not propitious for wide use in transformers [16]. There exists
the influence of magnetic fields on dielectric properties in the ester nanofluids modified by conductive
nanoparticles [17]. Thus, the overall electrical performances of the modified liquid dielectric may
not be improved [18,19]. Furthermore, because of the high ratio of inorganic nanoparticle fillers,
the biodegradability of the natural esters has been much lower than the fresh natural esters [20,21].
Therefore, the basic advantage of natural esters being renewable disappears. This restricts extensive
applications of natural materials in electrical and electronic industries. Thus, an eco-friendly liquid
nanodielectric with overall improved electrical performances and lower filler concentration under
harsh conditions is highly desired.

Fullerene with unique physico-chemical properties [22] have been widely investigated as
multifunctional materials for applications in tissue engineering [23], photovoltaics [24], molecular
imaging, and bio-sensing [25,26]. Specifically, it has been proved that the addition of fullerene C60 to
mineral oil enhances the resistivity by 20–30% and reduces the dielectric loss by one to two orders of
magnitude [27–29].

In this study, it is demonstrated for the first time that a small amount of fullerene (~100 mg/L)
significantly improves all the electrical properties of vegetable insulating liquid (Refinement Bleaching
and Distillation (RDB)) under harsh conditions of long-term thermal aging compared with the blank
contrast. The reduced acid values (25%) and dissolved decomposition gases (58.2% for hydrogen) in the
aged vegetable nanofluid (fullerene RDB nanofluid) indicate the inhibition of molecule decomposition
of vegetable liquid with fullerene. The improved electrical performances of the vegetable nanofluid
under thermal aging contribute to the electron affinity of fullerene. The thermogravimetric analysis
of the nanofluids under different atmospheres indicates that the oxygen absorbed inevitably in the
fullerene contributes to the performance deterioration of the nanofluids during initial aging. This work
provides a potential method towards eco-friendly dielectric liquid with great electrical performances
for harsh environments.

2. Experimental

2.1. Preparation of C60 Nanofluid

Firstly, 0.5 g of oleic acid was taken and a small amount of anhydrous ethanol was mixed with
C60 and mechanically stirred for 2 h to maintain ultrasonic dispersion. The ultrasound energy was
455 W and the ultrasonic process was a circulation of a 2 s pause and a 2 s operation. Secondly, it was
cooled to room temperature and subsequently centrifuged for 3000 rpm and washed with ethanol and
cyclohexane several times to remove the residual unreactive oleic acids on the surface of C60. Thirdly,
the mixed liquor was placed into the vacuum drying oven at 60 ◦C, and the vacuum degree was
maintained at 0.1 MPa for 12 h. Finally, the modified C60 nanoparticles were prepared and reserved.

The vegetable liquids (RDB obtained from raw rapeseed oil by three procedures, alkaline
refinement, vacuum distillation, and bleaching in Chongqing University [30]) and mineral liquids
(25# from Karamay, Xinjiang, China) were dried under a pressure of 0.1 MPa for 72 h at 60 ◦C. The
nanoparticles were added to two insulating liquids at the concentration of 0, 50, 100, 200, and 300 mg/L.
The C60 nano-modified insulating liquid was ultrasonically agitated for 20 min at 30 ◦C to uniformly
disperse nanoparticles in the liquid.
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2.2. Electrical Test

Different concentrations of C60 modified insulating liquid also present different performances.
In this paper, the properties of vegetable liquid (RDB oil) were measured by an authorized
testing institute in China, applying Chinese testing standards in accordance with the International
Electro-technical Commission (IEC) and International Organization for Standardization (ISO) [30].
Particularly, the measurement of dielectric loss and electrical resistivity were performed using
BAURDLTC dissipation factor measurement equipment, followed by the execution of IEC 60247.
The measurement of AC breakdown voltage was performed using flat spark gap at ambient temperatures
and AC voltage with a frequency of 50 Hz. A 2.5 mm spark gap was used in the test. The measurement
of lightning impulse breakdown voltage followed IEC 60897, and a 15-mm needle-sphere spark gap
was used. Each measurement was carried out five times, and the arithmetic mean was obtained.

2.3. Thermal Aging Test

According to IEC 61125A, the thermal aging speed was doubled when the aging temperature
of the insulation liquid was increased by 6 ◦C. This study analyzed the nanofluid samples without
C60 after aging. A total of 28 samples were analyzed using different aging times (0, 6, 12, 18, 24,
30, and 36 days), and various concentrations of C60 (0, 50, 100 and 200 mg/L) accelerated aging of
the samples at 130 ◦C. Firstly, the C60 nano-modified vegetable insulating liquid was dried under a
pressure of −0.1 MPa for 48 h at 90 ◦C. Secondly, when the sample was cooled to room temperature, the
samples were packed into a conical flask, and most of the air in the bottle was discharged by nitrogen.
Finally, glass bottle stoppers were used to seal the sample bottles after the injection of nitrogen, and
the bottles were wrapped with PMP(Poly(4-methylpentene-1)) polyethylene film and aluminium foil.
The PMP polyethylene film is utilized to ensure the isolation of nanofluids with the oxygen in the air
during the aging process and to keep the thermal aging of nanofluids under the nitrogen atmosphere.
The aluminium foil was chosen to prevent the nanofluids from the light irradiation because of the
strong photosensitivity of the C60 nanoparticles.

2.4. Simulation of Electron Density Distribution of C60

The electron density distribution of C60 was calculated by software Gaussian 09W (Gaussian Inc.,
Wallingford, CT, USA), which specializes in chemical analysis. Then, the graphical result of the electron
density distribution was shown by using software of Gauss View.

3. Results and Discussion

3.1. Characterization of Nanofluids

Although C60 have minimal solubility in organic solvents, the extremely small particle size of its
nanoparticles has a large specific surface area with high surface energy, which leads to agglomeration.
Thus, oleic acid was used in this experiment to modify the surface of C60 nanoparticles, thereby
enhancing dispersibility and stability of C60 in insulating liquid.

Figure 1 shows the infrared spectroscopy pattern (test by Thermo Fisher NICOLET IS10, Shanghai,
China) of C60 nanoparticles. The characteristic peaks of C60 were clearly indicated at 524, 574, 1182,
and 1428 cm−1 and peaks at 524 and 574 cm−1 were most evident, which was assigned to the four
main Infrared(IR) bands, dipole-active vibrational modes with Flu symmetry, of C60 molecule [31]. The
vibration peaks at 2850 and 2919 cm−1 were absorbed by saturated hydrocarbon (–CH3 and –CH2) of
oleic acid molecules. Moreover, the peak of carboxylate, which was in the range of 1540 cm−1, indicated
the presence of oleic acid around the nanoparticles, and the peak of CO2 was also evident [32].
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Figure 1. Infrared spectroscopy of the C60 nanoparticles.

Figure 2 shows the X-ray diffraction (XRD test by Shimazu XRD-6000, Cu-Kα) of C60 and the
peak effect of its size and shape. The size of the nanoparticles was calculated using the Scherrer
Equation [33]:

D =
K·λ
β·cosθ

(1)

where D is the size of a crystal particle, β is the half-width of diffraction peak, θ is the diffraction angle
of X-ray, and K is constant with a value of 0.89. The result showed the size of C60 crystal particle at a
point with 4 nm to 6 nm. Table 1 shows the basic physical and chemical properties of pure vegetable
insulating liquid (RDB fabricated by Chongqing University [30]) and mineral liquid (25# from Karamay,
Xinjiang). The nanofluids are expected to be processed away from light due to the photosensitivity of
C60. The double bond of the carbon in C60 molecule can be opened in certain light conditions, and then
adjacent C60 molecules might be linked by new covalent bonds [34]. This characteristic may cause the
unsatisfactory modification and dissolution of C60 nanoparticles.
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Table 1. Basic physicochemical properties of insulating liquid.

Parameters Unit Symbol Typical Value

Vegetable Liquid Mineral Liquid

Kinematic Viscosity at 40 ◦C mm2
·s−1 41.0 10.0

Density at 20 ◦C kg·m−3 0.90 0.83–0.89
Flash Point ◦C 320 ≥135
Pour Point ◦C −18 −22
Acid Value mgKOH·g−1 ≤0.03 ≤0.01
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The zeta potential of C60 modified insulating liquids was tested. Zeta potential is an important
characterization of the stability of a dispersion system. The absolute value of zeta potential of a stable
dispersion system requires at least 30 mV. The result showed that the zeta potential of 300 mg/L
concentration of C60 nanoparticles for vegetable insulating and mineral liquids was −45.7 mV and
39.4 mV, respectively, thereby indicating that the modified C60 nanoparticles in insulating liquid were
stabilized. The nanofluids with different concentrations of C60 (50–300 mg/L) were stable and without
sediment even after 12 months.

3.2. Dielectric Loss and Electrical Resistivity

The dielectric dissipation factor and electrical resistivity can effectively reflect the degradation and
contamination of insulating liquids. Figure 3 shows that the dissipation factor and electrical resistivity
of nanofluids changed with different concentrations of C60, and the measured results of vegetable
liquid varied a little greater than mineral liquid. For vegetable liquid, the greatest variation in the
dissipation factor and electrical resistivity occurred at 0 mg/L and 50 mg/L, respectively. As for mineral
liquid, the greatest variation in the dissipation factor and electrical resistivity occurred at 250 mg/L and
50 mg/L, respectively. Figure 3a shows that the dissipation factor of the vegetable insulating liquid
significantly decreased at a low concentration from 50 mg/L to 150 mg/L, and then returned to the
situation of the pure sample. The largest drop appeared in 100 mg/L concentration of C60, which
shows an approximate decline of 20.1%. The experimental data evidently showed that the electrical
resistivity of nanofluid increased after C60 adjunction. The overall trend exhibited a decrease after the
first increase, followed by the increasing concentration of C60. The electrical resistivity of vegetable
insulating liquid obtained the maximum upgrade at the concentration of 100 mg/L, which showed
an approximate increase of 23.3%. Although the concentration reached up to 300 mg/L, electrical
resistivity also increased to nearly 1.3 × 1010 Ω·m.

Figure 3b shows that the addition of C60 nanoparticles would not have a significant effect, except at
50 mg/L. This result was evident due to the low dissipation factor resistivity of mineral liquid. However,
the electrical resistivity of mineral based nanofluid decreased significantly when the concentration
was greater than 50 mg/L. Thereby, addition of C60 nanoparticles in liquid can improve the dielectric
properties for vegetable insulating liquid, while it does not change obviously for mineral liquid.
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3.3. Dielectric Breakdown Strength

AC breakdown voltage is an important parameter that characterizes the dielectric strength of the
liquid medium. Figure 4 shows that the AC breakdown voltage of nanofluid varied with different
C60 concentrations, and the measurement of vegetable liquid varied a little greater than mineral
liquid, consistent to electrical resistivity and the dissipation factor. The greatest variation of AC
breakdown voltage of vegetable liquid occurred at 0 mg/L, and that of mineral liquid occurred at
150 mg/L. The breakdown voltage may not be negatively affected due to the doped C60 into the
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vegetable insulating liquid. The AC breakdown voltage slightly increased at low concentrations and
then significantly declined. The AC breakdown voltage obtained the most improvement with an
increase of approximately 8.6% at 100 mg/L concentration of C60. The breakdown voltage decreased
by 11.3% compared to pure liquid following the increasing concentration. However, mineral liquid
obtained the most improvement at approximately 21.7% at 200 mg/L concentration of C60. The result
indicates that modified vegetable insulating liquid can obtain the optimal dielectric properties and the
AC breakdown characteristic at 100 mg/L concentration of C60.
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Table 2 shows the lightning impulse breakdown voltage of nanofluids with 100 mg/L C60

nanoparticles. The lightning impulse breakdown voltage was enhanced to a certain extent. Given
the addition of C60 nanoparticles, positive lightning breakdown voltage increased by approximately
7.3%, and the percentage of negative lightning breakdown voltage was 7.4% greater than vegetable
insulating liquid. As a control for mineral liquid, the lightning impulse breakdown voltage of the
mineral insulating liquid was simultaneously promoted through the modification of C60 nanoparticles.
The positive and negative breakdown voltages increased by 10.0% and 7.6%, respectively.

Table 2. Lightning impulse breakdown voltage of insulating liquid.

Liquid Types Breakdown Voltage (kV) Breakdown Time (µs)

Positive Negative Positive Negative

Vegetable Liquid 78.2 83.7 10.3 11.9
Nano Vegetable Liquid 83.9 89.9 10.9 12.3

Mineral Liquid 60.8 103.3 8.7 11.1
Nano Mineral Liquid 66.9 111.2 9.2 11.9

The breakdown characteristics of modified insulating liquid with C60 under AC and impulse
voltage can be unified into the streamer development [35,36]. In the development of the streamer
of nanofluids, electron mobility is much faster than the positive ion mobility. Nanoparticles can
adsorb the fast electrons and convert them into slower negative charges, which results in reducing
the development of the head development rate of the streamer. Thus, this weakens the electric field
strength of the head and meanwhile reduces the rate of positive and negative charge movement.
Finally, the breakdown voltage and the breakdown time increased.
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The time of the electron is captured by nanoparticles in the transformer liquid calculated as [36]:

τ =
2εb f + εnp

2σn f + σnp
(2)

where εbf and εnp are relative dielectric constant of insulating liquids and nanoparticles, respectively.
σnf and σnp are the electrical conductivity of nanofluids and nanoparticles, respectively. Due to the
time of the streamer development in insulating liquids is in microseconds, it can be considered that
when the relaxation time of the nanoparticle is far less than the microsecond level, electrons can be
trapped during the development of the streamer, thereby inhibiting the streamer development [37,38].

As the semiconductor material of C60 nanoparticles, the charge distribution is generated on its
surface under an electric field. The presence of a surface charge could result in the spatial potential to
occur with redistribution around the center of nanoparticles. The model of potentials generated by the
spherical charges of nanoparticles in Figure 5 can be expressed by:

δ = ε0E0

(
εnp − εb f

2εb f + εnp

)
cosϕsinθ (3)
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the potential distribution generated by the surface polarization of the nanoparticle is:

V(r,ϕ) =
aE0

4π

(
εnp − εb f

2εb f + εnp

)
×

∫ π

−π

∫ π

0

sin2θdθcosϕdϕ√
1 + (r/a)2

− 2(r/a)sinθcos(ϕ−ϕ′)
(4)

where the E0 is the field strength, r is the distance from the centre of the nanoparticles and the a is radius
of the nanoparticles. The results of the nano-polarization model show that the distribution of the surface
potential of nanoparticles is also related to their size. Surfactants on surface of nanoparticles, which
increased the effective radius of nanoparticles, were increasing the trap depth of the nanoparticles [18].
Subsequently, the potential well was prompted to deepen and increased the breakdown characteristics.
However, as soon as the concentration of C60 nanoparticles increased to a certain extent, the percolation
mechanism occurred; that is, the nanoparticles form the semi-conductive parts where C60 is the
conductor and then reduce the breakdown strengths.

However, C60 nanoparticles also have their unique side, such as electronegativity. The C60 molecule
contains 60 electrons, but its closed shell structure requires 72 electrons. Theoretical calculations show
that the lowest unoccupied molecular orbital (LUMO) energy level of the C60 molecule is low and is in
triple degeneration, which allows a single C60 molecule to accept at least six electrons, thereby leading
to strong electronegativity [35]. Furthermore, electron affinity, which reflects the energy released
by a unit atom or molecule that captures an electron, can respond to the capacity of the atom or
molecule to accept electrons. The greater the affinity of the electron, the stronger is the capability
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of atoms or molecules to capture electrons. On the contrary, the electrons are more likely to escape.
Moreover, if the electron affinity value is equal to or even less than zero, then the surface charge
escapes at any time. At present, the electron affinity of C60 was accurately calculated by Wang et al.
(2.683 ± 0.008 eV) [37]. C60 molecules capture free electrons to form negative ions, thereby weakening
the discharge development and enhancing the breakdown strengths of vegetable insulating liquid.

3.4. Dielectric Properties of Aging Nanofluid

Figure 6 shows that the dissipation factor changed with the aging time of vegetable and mineral
liquids with different concentrations of C60. The increase rate of dielectric loss factor of C60 modified
vegetable liquid was evidently higher than pure liquid in the early stage. After 12 days of aging, the
dissipation factor of the modified vegetable liquid slowly changed and the dielectric loss factor became
lower than pure liquid. The dissipation factor of pure mineral liquid did not result in any significant
change. However, with the addition of C60 nanoparticles in mineral liquid, the dissipation factor
increased with the concentration.
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The C60 nanoparticles are able to slow down the thermal aging of the vegetable insulating liquid.
However, there exist small amounts of oxygen in the C60 nanoparticles inevitably during the experiment.
The traces of oxygen introduced into the vegetable insulating liquid by C60 can accelerate the cracking
of the vegetable insulating liquid. At the same time, the small amount of C60 nanoparticles lead to the
poor inhibition of vegetable liquid cracking and the significantly increased dielectric loss of vegetable
liquid. As the thermal aging of vegetable liquid progresses, when the traces of oxygen absorbed in the
C60 nanoparticles is consumed, the C60 nanoparticles without oxygen demonstrate great resistance to
the cracking of vegetable liquid, resulting in the low dielectric loss of the vegetable liquid during the
later aging stage.

Figure 7 shows that electrical resistivity varies with different concentrations of C60 modified
vegetable and mineral liquids. The electrical resistivity of the C60 modified vegetable liquid is higher
than pure liquid in the early stage of aging. However, with the increased aging time, the addition of
C60 nanoparticle reduced the value of electrical resistivity as compared to the pure liquid.
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Triglyceride, a mixture of three fatty acid molecules and one glycerol molecule, is the main
component of vegetable liquid, and fatty acid molecules consist of oleic acid, linoleic acid, α-linoleic
acid, etc. Due to the sensitivity of the unsaturated double bonds of fatty acid molecules to oxygen at
high temperature, the glycerol chains and the fatty acid molecules are easily oxidized and decomposed
by oxygen at high temperature, thereby resulting in the generation of short-chain fatty acids, hydroxyl
radicals, peroxides, ketones, aldehydes, and other substances. C60 nanoparticles as antioxidants are
stronger than vitamin E composing of synthetic antioxidants, such as BHA and BHT. The addition of
C60 nanoparticles to vegetable liquid can inhibit the action process of the hydroxyl radical and the
hydroperoxide, thereby enhancing the oxidation resistance [38]. Unlike vegetable liquid, the mineral
liquid is more difficult to shed hydrogen atoms from carbon chains due to the absence of labile double
bonds. The oxidation induction period of mineral liquid is longer and the oxidation reaction is slightly
intense as vegetable liquid.

3.5. Acid Values of Aged Nanofluid

Acid value is an important indicator to evaluate the oxidation degree of insulating liquid. Figure 8a
shows that the acid value of nano vegetable liquid aging for 35 days was approximately 10 times larger
than pure liquid at day 0. Figure 8a shows that pure liquid samples had lower acid value than C60

doped samples in the early accelerated thermal aging stage. This phenomenon indicates that modified
liquids entered the development of the thermal acidification stage earlier than the pure sample. When
the acid value of pure sample accelerated significantly, the trend of the curve evidently exceeded the
modified liquid samples. Moreover, when additional C60 was added, the acid value was less after
20 days of aging. This result suggests that C60 nanoparticles inhibited the acidification process of
vegetable liquid. Figure 8b shows that all mineral liquid samples possessed low acid level values
during aging period, and the acid value of each sample did not exceed 0.05 mg (KOH)/g. The high
concentration of C60 modified mineral liquid showed relatively low acid value.
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3.6. Thermal Analysis of Aged Nanofluid

Quality variation is often observed when transferring materials in the heating process.
The thermogravimetric analysis (TGA) tests the temperature control procedures and shows the
relationship between the quality of the sample and test temperature. Differential thermal analysis
(DTA), which reflects the endothermic and exothermic reactions of the test sample during the increase
in temperature, is also measured. Owing to the deterioration of insulating liquid due to oxygen,
100 mg/L concentration of nanofluid was measured with nitrogen and air. The thermal analysis of C60

modified vegetable insulating liquid was carried out because the deterioration of insulating liquid was
due to oxygen. The increase in temperature rate was 10 ◦C/min, and the flow rate of the atmosphere
(nitrogen and air) was 50 mL/min. The C60 concentration of modified liquid was 100 mg/L, and each of
the samples had been dried prior to the experiment. Thermal analysis provides two kinds of curves,
namely, TGA and DTA.

Figure 9a shows the thermal analysis curves of the samples in the nitrogen atmosphere. The results
show that both curves of nanofluid and pure liquid have similar changes. Each sample achieved
maximum weight loss rate at nearly 415 ◦C, and maximum endothermic peak appeared at nearly
422 ◦C. All samples with or without C60 have identical thermal stability in the nitrogen atmosphere.
Figure 9b shows the thermal analysis curves when the atmosphere is changed to air. The C60 modified
liquid showed maximum weight loss rate earlier than the pure liquid, and maximum endothermic
peak equally occurred in advance.
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Figure 10 shows the thermal analysis curve of modified mineral liquid and pure liquid. In the
presence of oxygen, the thermal analysis curves of nanofluid and pure liquid had a high degree of
coincidence, with the maximum rate of weight loss which appeared near 220 ◦C and the maximum
endothermic peak near 215 ◦C. This result shows that carbon has a slight effect on the thermal stability
of mineral liquid.
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3.7. Dissolved Gas Analysis of Aged Nanofluid

A few flammable gases, which were mostly dissolved in liquid, were generated when the insulation
liquid was exposed to unusual thermal and electric fields in the transformer. The oil dissolved gas
analysis (DGA) technology was used to effectively detect early failures within the transformer. This
study investigated the gas production law of C60 modified insulating liquid, which accelerated thermal
aging at 130 ◦C for 24 h in nitrogen.

Figure 11 shows the value of gas dissolved in pure vegetable liquid and nano vegetable liquid
sample after thermal aging, respectively. The value of C60 modified vegetable liquid was lower than
the pure sample, because the C60 nanoparticles inhibited the thermal decomposition of vegetable
insulating liquid, thereby strengthening thermal stability.
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Figure 12 shows the mechanism of anti-oxidation behavior of fullerene. C60 is expected to vanish
radicals in the fluid under high temperatures by attaching radicals with double bonds on surface.
In our previous study, it was confirmed that the vegetable fluid generated various radicals during
thermal decomposition [39]. The fullerene with great ability of anti-oxidation can reduce the amounts
of radicals, such as the C3H5• formed during the initial thermal decomposition of vegetable liquid
and the H• generated for dissolved hydrogen in vegetable liquid. Thus, with the aid of fullerene, the
thermal decomposition and hydrogen generation in vegetable liquid under high temperature can be
inhibited greatly. The mechanism proposed corresponds to the dissolved gases vegetable liquid after
thermal aging as shown in Figure 11.
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Figure 12. The mechanism of the anti-oxidation behavior of fullerene.

Figure 13 shows the electron density distribution on C60 and the sketch figure for attracted
electrons. The zones with blue colors stand for the positively charged area. The negative charge locates
in the red area. The deeper color stands for greater electron density. It is observed that the positive
charge locates in the core and on surfaces of the fullerene, and the negative charge locates around the
positively charged area on surface of the fullerene. The electrons in the fluid under electrical stress are
absorbed on surface of the fullerene by the positively charged area as shown in Figure 13. The reduced
carrier concentration in the fluid leads to enhanced electrical performances including the breakdown
performance, dissipation factor, and electrical resistivity.
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4. Conclusions

The present work focuses on the electrical properties and thermal stability of vegetable insulating
liquid filled with C60 nanoparticles. The experimental and analytical results are concluded as follows:

The surface-modified C60 nanoparticles can be stably dispersed in insulating liquid. The electrical
properties, such as dielectric loss factor, electrical resistivity, and breakdown voltage on nanofluids with
different concentrations of C60 nanoparticles, were tested. The results showed that C60 nanoparticles
enhanced the electrical properties with an optimum concentration of 100 mg/L, in which the dielectric
loss factor decreased by 20.1%, electrical resistivity increased by 23.3%, and AC breakdown voltage
increased by 8.6%. Meanwhile, the lightning impulse breakdown voltage increased by nearly 8%.

C60 molecules do not possess the capability to accelerate the thermal aging process of insulating
liquid. Moreover, vegetable insulating liquid modified by C60 nanoparticles showed good thermal
stability under the nitrogen atmosphere. Under the condition of oxygen, the hollow structure of
the C60 nanoparticles provides a resident place for oxygen molecules, thereby resulting in the rapid
deterioration of modified vegetable insulating liquid at the beginning of thermal aging. However, in
the later stage of thermal aging, dielectric loss factor, volume resistivity, and the acid value level were
improved compared to the pure liquid sample.
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