

Supplementary Materials

The Impact of Nylon-3 Copolymer Composition on the Efficiency of siRNA Delivery to Glioblastoma Cells

Natascha Hartl ¹, Friederike Adams ¹, Gabriella Costabile ¹, Lorenz Isert ¹, Markus Döblinger ², Ximian Xiao ³, Runhui Liu ³ and Olivia M. Merkel ^{1,*}

- ¹ Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
- ² Functional Nanosystems, Department Chemistry and Biochemistry, Ludwig-Maximilians-University, Butenandtstr. 11, 81377 Munich, Germany
- ³ State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- * Correspondence: Olivia.merkel@lmu.de; Tel.: +49-89-2180-77025

1. Polymer synthesis and characterization

M_n = 43700 g/mol

Figure S1. Synthesis of TFA-salt of Nylon-3 polymer DM_{0.4}/CP_{0.6} in presence of a co-initiator I and a base LiHMDS. DM = dimethyl, CP = cyclopentyl, R = side chain groups of DM or CP. Reproduced with permission from [1]. Copyright American Chemical Society, 2014

Figure S2. Synthesis of TFA-salts of gene delivery Nylon-3 polymers (NM/CP) in presence of a coinitiator II and a base LiHMDS. R = side chain groups of NM or CP. Reproduced with permission from [1]. Copyright American Chemical Society, 2014

Figure S3. GPC chromatograph of Boc-protected HS-[(Boc-DM)0.4CP0.6]265 copolymer measured with light-scattering (red) and refractive index (blue) detectors, mobile phase: THF.

Figure S4. ¹H-NMR spectrum of unprotected DM_{0.4}/CP_{0.6} polymer measured in D₂O (300 MHz, 512 scans).

Figure S5.¹H-NMR spectrum in D₂O of unprotected NM_{0.4}/CP_{0.6} polymer measured in D₂O (500 MHz, 126 scans).

Figure S6.¹H-NMR spectrum of unprotected NM_{0.2}/CP_{0.8} polymer measured in D₂O (500 MHz, 126 scans).

2. Polyplex characterization

2.1. N/P ratio optimization

Figure S7. (**A**) Hydrodynamic diameters investigated by DLS (left y-axis) and polydispersity indices (PDI, right y-axis), (**B**) zeta potentials measured by LDA and (**C**) MFIs of NM_{0.2}/CP_{0.8} cells treated with respective polyplexes determined by flow cytometry. (Data points indicate mean \pm SD, n = 3).

2.2. Size measurements by TRPS

Figure S8. (**A**) siRNA encapsulation profiles of NM_{0.2}/CP_{0.8} polyplexes prepared in 10 mM HEPES buffer at N/P 4 and 1X diluted with either 10 mM HEPES buffer or TRPS electrolyte solution (30 mM HEPES, 100 mM potassium chloride, 2 mM EDTA and 0.03% Tween®20). 100% values (N/P = 0) are determined by fluorescence of uncondensed siRNA. (Data points indicate mean, n = 3). (**B**) DLS measurements of NM_{0.2}/CP_{0.8} polyplexes prepared in 10 mM HEPES buffer at N/P 4 and 1X diluted with either 10 mM HEPES buffer or TRPS electrolyte solution, measured after 10 and 60 min incubation period (Data points indicate mean \pm SD, n = 3).

Figure S9. Number-weighted size distributions of NM_{0.2}/CP_{0.8} polyplexes at N/P ratios 5, 5.5, 7.5 and 11.5. 1:1 diluted with electrolyte solution and measured by DLS and TRPS, respectively.

3. Quantification of Cellular Uptake

Figure S10. Cellular uptake of polyplexes performed at various N/P ratios in (**A**) H1299 cells and (**B**) U87 cells after 5 h incubation as determined by flow cytometry presented as median fluorescence intensity. Negative control: untreated cells and cells treated with free siRNA, positive control: cells transfected with Lipofectamin (LF) lipoplexes. (Data points indicate mean \pm SD, n = 3, two-way ANOVA with Bonferroni post-hoc test, ***p < 0.005).

4. Route of cellular Uptake

Figure S11. U87 cell viabilities after treatment with nystatin (10 μ g/mL), wortmannin (12ng/mL), chlorpromazine (10 μ g/mL) and methyl-beta-cyclodextrin (3 mg/mL); determined by trypan blue staining. Number of living and dead cells was counted in a Neubauer chamber using an Axio Vert.A1 microscope. The percentage of viable cells was calculated. (Results are given as mean ± SD, *n* = 3)

Figure S12. Cellular uptake of polyplexes (DM_{0.4}/CP_{0.6} polyplexes: N/P ratio= 5 and NM_{0.2}/CP_{0.8} polyplexes: N/P ratio = 4) after treatment with nystatin (10 µg/ml), wortmannin (12 ng/mL), chlorpromazine (10 µg/mL) and methyl- β -cyclodextrin (M- β -CD) (3 mg/mL) conducted with and without trypan quenching as evaluated by flow cytometry and presented as MFI. (Results are shown as mean ± SD as percentage of median fluorescence intensity related to not inhibited samples, *n* = 3).

References

- 1. Liu, R.; Masters, K.S. Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces. *Biomacromolecules*, **2012**, *13*, 1100–1105,.
- 2. Liu, R.; Chen, X. Structure-activity relationships among antifungal nylon-3 polymers: Identification of materials active against drug-resistant strains of Candida albicans. *Journal of the American Chemical Society*, **2014**, *136*, 4333–4342.