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Abstract: To evaluate the influence of transition metal substituents on the characteristics of 
CH3NH3PbI3/TiO2, we investigated the geometrical and electronic properties of transition metal-
substituted CH3NH3PbI3/TiO2 by first-principles calculations. The results suggested that the 
substitution of Ti4+ at the five-fold coordinated (Ti5c) sites by transition metals is energetically 
favored. The substituted interface has enhanced visible light sensitivity and photoelectrocatalytic 
activity by reducing the transition energies. The transition metal substitution can effectively tune 
the band gap of the interface, which significantly improves the photo-reactivity. The substituted 
systems are expected to be more efficient in separating the photo-generated electrons-holes and 
active in the visible spectrum. 

Keywords: organic-inorganic perovskites; interface; first-principles calculations. 
 

1. Introduction 

Hybrid halide perovskites as light harvesters have been the focus of the photovoltaic field over 
the past years owing to their impressive power conversion efficiency (PCE) and promising 
commercial applications [1,2]. The CH3NH3PbI3 perovskites dominate this field and have been 
studied extensively [3]. The typical device architecture of perovskite solar cells (PSC) is composed of 
the TiO2-based electron transport layer (ETL), the perovskite (CH3NH3PbI3) absorber-based layer, the 
spiro-OMeTAD hole transport layer (HTL) and the corresponding electrodes [4]. The perovskite/ETL 
interface plays an important role in determining the charge separation and transport properties as 
well as the PSC device performance, which has been widely explored for many years [5–8]. 
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TiO2 is a good candidate material due to its chemical stability, high charge transport property 
and low cost [9]. The electron can be effectively transported from CH3NH3PbI3 to the TiO2 layer 
because the conduction band of TiO2 is lower than that of CH3NH3PbI3 [10]. Generally, the ultra-thin 
compact TiO2 layer is prepared at a high temperature (over 450 °C) [11]. It seriously undermines the 
electrical properties of the ETL in conductivity, mobility, and electronic trap states, thereby affecting 
the efficiency and stability of PSC. Elemental substitution in the compact TiO2 layer is an effective 
solution to improve the electrical properties and device performance [12–21]. Transition metal 
substitution [22] is an effective approach to enhance the photocatalytic activity of TiO2 due to their 
unique d electronic configuration and spectral characteristics. According to previous studies [13–21], 
a wide range of substitutional elements such as Zn2+, Y3+, Nb5+, Ru4+ and W6+ have been investigated 
in TiO2. Research has made remarkable progress in identifying that the substitution of the TiO2 layer 
by the transition metal in PSC is an effective mean to improve the photocurrent and electron-hole 
recombination [14–18]. Substituents in TiO2 film can improve the electrical characteristics of ETL, 
which promote PCE and stability of PSC [13,23]. Therefore, transition metal substituents in the TiO2 
layer are quite important and further characterizations are required to understand the effects of 
substituents in the CH3NH3PbI3/TiO2 interface. Although the electronic properties of perovskite/ETL 
interface have been widely investigated by experiments and density-functional-theory (DFT) 
calculations [24–31], the existence of theoretical studies aiming to understand the fundamental role 
of the interfacial substituents is still rather scarce. In addition to the primary experiments, the first-
principles DFT calculations are highly important to acquire further knowledge concerning the effects 
of transition metal substitution and contribute to new strategies for interface optimization. The main 
contributions of our study are helpful to draw guidelines for substitution mechanism of the 
CH3NH3PbI3/TiO2 interface, thus enhancing the photovoltaic performance in PSC. 

2. Methods 

The Vienna ab initio simulation package (VASP) [32] was employed as the first-principles 
calculations platform. The computer software program is based on the DFT approach using plane 
wave basis within a periodic boundary condition. The projected augmented wave (PAW) [33] 
pseudopotentials were applied for efficient computation. The exchange and correlations items were 
treated within the framework of generalized-gradient approximation (GGA) of Perdew-Burke-
Ernzerhof (PBE) [34]. A plane wave basis cutoff energy of 500 eV was used. Integrations in reciprocal 
space were sampled using the Monkhorst-Pack grids [35] with a minimum spacing of 0.2 Å−1. 
Convergence criteria were set as 1.0−6 eV in total energy and 1.0−2 eV/Å in atomic force, respectively. 
Recent theoretical studies indicated that the GW (Green's function G with screened interaction W) 
and hybrid functional approach can provide an accurate description of the electronic structures 
[36,37]. Fortunately, DFT was able to qualitatively reproduce the GW trend. Hence, we performed 
GGA+U calculations on the CH3NH3PbI3/TiO2 interfaces with reasonable computational cost. Based 
on previous research and experiences [38–43], the GGA+U approach with the on-site Coulomb 
interaction correction predicted band gap correctly. The values of parameter U were 6 eV for the Ti4+ 
3d orbit and 4 eV for the d-orbits of transition metal substituents. Gaussian broadening [44] with half-
width of 0.1 eV for the electronic eigenvalues was used to accelerate the convergence in the k-point 
sum. The dipole correction was included because the interface configuration does not have mirror 
symmetry along the c-axis. The spin orbit coupling (SOC) effect [45] was not included because it was 
negligible in the geometry. The atomic structures shown were produced by using the visualization 
for electronic and structural analysis (VESTA) program [46]. 

According to the experimental results [47], there is an ordered lattice structure existing on the 
CH3NH3PbI3/TiO2 interface. The (110) slab of the CH3NH3PbI3 nanocrystal coordinated with the (101) 
slab of anatase TiO2, forming an ordered lattice structure at the interface. The lattice mismatch 
between CH3NH3PbI3 (110) and TiO2 (101) has been evaluated in previous studies [48]. It was found 
that using the experimental results of the CH3NH3PbI3 (110) surface, the band-gap only varies slightly, 
with a corresponding total energy decrease, suggesting that a minimal strain is introduced by the 
lattice mismatch between the two materials. In spite of a relatively large lattice mismatch, we selected 
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the experimental interface [47] between CH3NH3PbI3 (110) and TiO2 (101) to carry out the 
investigation. To construct the aspired interface structures, the CH3NH3PbI3 (110)/TiO2 (101) interface 
was chosen as our objective due to the experimental results [47] and stability of the corresponding 
surface. The (2 × 2) supercell of the CH3NH3PbI3 (110) and the (1 × 3) supercell of the anatase TiO2 
(101) were employed to decrease the misfit. The interface model employed the average size of both 
CH3NH3PbI3 and TiO2 slabs to make a small mismatch. The CH3NH3PbI3 perovskite was composed 
of the CH3NH3I and PbI2 units along the [001] direction; therefore, both CH3NH3I and PbI2 
terminations using five-layer slabs were considered in this work. The anatase (101) supercell contains 
36 TiO2 units or 108 substrate atoms. The interfaces were built by connecting the CH3NH3PbI3 (110) 
slab with the anatase (101) slab and leaving a 20 Å vacuum gap in the perpendicular direction. A 
schematic representation of the interfacial system used in this work is presented in Figure 1. In fact, 
the TiO2 was the substrate to grow perovskite films; hence, apart from the bottom two Ti and four O 
layers, which were maintained in their ideal bulk positions, all atomic coordinates of the others layers 
were fully relaxed. The transition metal-substituted anatase (101) surface model was constructed by 
substituting the surface Ti4+ with substituent atoms. As shown in Figure 2, there are two possible 
surface sites (five/six-fold coordinated Ti4+ cation, hereafter abbreviated as Ti5C and Ti6C) for the 
substituent atoms to replace [49]. Till date, the atomic arrangement of the CH3NH3PbI3/TiO2 is still 
unclear due to limit of the experimental techniques. Based on previous studies of the transition metal-
substituted TiO2 surface [50,51], the interfacial configurations were carefully designed to make the 
substituent effect more prominent at the interface region. We assume that all six different transition 
metal ions partially substituted at the Ti4+ sites (Ti5C or Ti6C) correspond to the substitution 
concentration of 17% and the supercell is represented by Ti0.83M0.17O2 (M = Zn2+, Y3+, Zr4+, Nb5+, Ru4+, 
W6+). The substituents can be classified as 3d transition metal (Zn2+), 4d transition metal (Y3+, Zr4+, Nb4+, 
Ru4+) and 5d transition metal (W6+) ions. 

 
Figure 1. Schematic illustration of pristine CH3NH3PbI3/TiO2 interface models: (a) CH3NH3I/TiO2 (b) 
CH3NH3I/TiO2 with rotation (c) PbI2/TiO2 (d) PbI2/TiO2 with rotation. 
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Figure 2. Schematic illustration of the transition metal substituents at Ti5C and Ti6C sites of the 
CH3NH3PbI3/TiO2 interface. 

3. Results and Discussions 

As shown in Table 1, the optimized 0 K DFT lattice parameters of anatase TiO2 crystal are a = 
3.79 Å and c = 9.53 Å, which is in agreement with previous experiments [52]. The atomic positions of 
tetragonal CH3NH3PbI3 are based on the results of the previous report [53,54]. The 0 K DFT lattice 
parameters are a = 8.80 Å and c = 13.05 Å. The strong interfacial interaction in CH3NH3PbI3/TiO2 is 
mainly through iodine and under-coordinated titanium atoms. The stability of the selected interface 
can be evaluated by comparing the calculated binding energies [55,56]. The calculated binding 
energies of different interfaces are listed in Table 2, together with lattice mismatch. The lattice 
mismatch between CH3NH3PbI3 and TiO2 was −12.0% and −13.8%, respectively. The interfacial 
binding energies and lattice mismatch can be predicted by the following equations [25]: 

Ebinding＝Eanatase + Eperovskite – Etotal (1) 

Mperovskite/anatase＝(aperovskite – aanatase)/aperovskite (2) 

where Etotal, Eanatase, and Eperovskite are the corresponding energies of the interface, anatase and 
perovskite surfaces, respectively. The aanatase and aperovskite represent the lattice parameter of TiO2 and 
CH3NH3PbI3, respectively. Zero energy corresponds to the energetically less-stable structure. It is not 
surprising that the perovskite/TiO2 interfaces without rotation are more stable than their 
corresponding rotated ones. This could be because of the difference in lattice mismatches. The strain 
may affect the interfacial stability between perovskite and TiO2. For rotation-free interfaces, the Ebinding 
of the two systems is quite similar. The CH3NH3+ cation interacted with TiO2 partially containing 
weak van der Waals (vdW) interactions. In contrast, the interaction between Pb2+ cation and TiO2 
leads to the formation of stable chemical bonds. This character is similar to previous works [25,54]. 
The interfacial structures of the relatively stable rotation-free perovskite/TiO2 are adopted in 
subsequent calculations. The interface supercell lattice parameters are given by a = 10.95 Å, b = 11.64 
Å and c = 49.95 Å. 
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Table 1. Calculated lattice parameters of TiO2 and MAPbI3 and deviation between experiment and 
simulation. 

 
Anatase TiO2 Tetragonal -MAPbI3 

a c A c 
Experimental 3.785 9.514 8.80 12.685 

Calculated 3.79 9.53 8.80 13.05 
Deviation 0.13% 0.17% - 2.8% 

Table 2. Interfacial binding energy (in eV) and lattice mismatch of the CH3NH3PbI3/TiO2 interfaces. 

 CH3NH3I/TiO2 PbI2/TiO2 CH3NH3I/TiO2 

with rotation 
PbI2/TiO2 

with rotation 
Binding energy 2.16 2.07 0.00 1.44 

Lattice mismatch −12.0% −12.0% −13.8% −13.8% 
Charge transfer −0.29 −0.28 −0.16 −0.16 

To explore the influence of transition metal substitution on the interfacial stability of the 
CH3NH3PbI3/TiO2 interface structure, the Nb-substituted interfaces were systematically investigated. 
The dependence of Nb5+ substituent on the depth within the interface layers were evaluated based on 
the total energies (seen Table 3). The six-coordinated Ti6C substituted interface with the lowest total 
energy is accepted as the most stable configuration. Despite the cleaved and unsaturated bond, the 
five-coordinated Ti5C substituted interfaces still show relative low total energy. The Nb5+ substituent 
was energetically favorable at the Ti5C and Ti6C sites of the TiO2 surface. Therefore, to characterize the 
effect of substitution at the CH3NH3PbI3/TiO2 interface, both Ti5C and Ti6C substitution sites are 
considered in subsequent calculations. The substitution of Nb5+ at both Ti5C site and Ti6C sites in the 
top TiO2 layer was considered. For each situation, two different configurations, namely 
CH3NH3I/TiO2 and PbI2/TiO2, were considered in this study. The calculated interfacial binding 
energies and Bader charge were listed in Table 4. The interfacial binding energies become stronger 
after substitution, which indicates that substituting Ti4+ with Nb5+ could enhance the stability and 
strength of the perovskite/TiO2 interface. The CH3NH3I/TiO2 interface has a larger energy than the 
PbI2/TiO2 interface. The degree of charge transferring is evaluated by the Bader charge analysis [57]. 
The negative value means the transfer of excess electrons from the perovskite to TiO2 because the 
perovskite layer has a higher average potential than the TiO2 layer. As can be seen in Table 4, there is 
less charge transfer in the PbI2/TiO2 than that of the CH3NH3I/TiO2. This can be explained by the fact 
that the PbI2 layers have a relatively lower potential than the CH3NH3I layers. Moreover, it also can 
be seen that the Nb5+ substituents located at the Ti5C site have a larger charge transfer than that of the 
Ti6C site. Liu et al. reported that the potential drop on the CH3NH3I/TiO2 is deeper than that of the 
PbI2/TiO2 [25]. As a result, a strong accumulation region can be formed at the CH3NH3PbI3/TiO2 
interface, leading to a better electron-hole separation in the PSC. To emphasize and compare the 
influence of more different transition metal substituents on the CH3NH3PbI3/TiO2 interface, we make 
the approximation that only the Ti5C-substitute interface will be considered in subsequent 
investigations. 

Table 3. Total energy (in eV) of CH3NH3PbI3/TiO2 with substitution of one Nb5+ for Ti4+. 

Position surface 
 (Ti5c) 

sub-surface 
 (Ti6c) 

inner-surface 
(third Ti layer) 

inner-surface 
(fourth Ti layer) 

Total energy −1401.71 −1401.94 −1401.52 −1401.72 

Table 4. Interfacial binding energy (in eV) of the Nb-substituted and pristine CH3NH3PbI3/TiO2 
interfaces. 

 
Ti5c site Ti6c site 

CH3NH3I/TiO2 PbI2/TiO2 CH3NH3I 
/TiO2 PbI2/TiO2 CH3NH3I 

/TiO2 PbI2/TiO2 
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Binding 
energy 

3.59 3.05 2.77 2.54 0.09 0.00 

Charge 
transfer 

−0.44 −0.28 −0.26 −0.15 −0.29 −0.28 

Both the interfacial charge transfers and Ebinding of the transition metal-substituted 
CH3NH3PbI3/TiO2 interfaces in Figure 3 were combined to evaluate the influence of transition metal 
substitution in the PSC. Transition metals can be divided into three types: n (Nb5+, W6+), p (Zn2+, Y3+) 
and isovalent (Zr4+, Ru4+) substitutions. Zero energy (pristine) corresponds to the energetically less-
stable structure. It can be seen that the transition metals have different Ebinding while the values of each 
substituted interface are positive. It also can be discerned clearly from Figure 3 that the transition 
metal-substituted interface has a much higher binding energy. This suggests that substituting 
transition metals M (M = Zn2+, Y3+, Zr4+, Nb5+, Ru4+, W6+) for Ti4+ at the interface layer could significantly 
enhance the interface strength between perovskite and TiO2. In addition, Figure 3 displays the 
comparison of charge transfers at the perovskite/TiO2 interface substituted with various transition 
metals. One can clearly see that the charge transfer in the interface becomes larger with the addition 
of transition metals. It should be pointed out that Zn2+ and Y3+ substitution for Ti4+ at the interface 
layer is energetically favorable in terms of binding energy (16.6 and 13.5 eV) and charge transfer (−5.8 
and −3.1 e) for the PbI2/TiO2 interface. This enhancement can be attributed to the optimized energy 
band alignment, which could improve the electron transfer behavior between ETL and perovskite. 
The theoretical results can provide support for future experimental design and synthesis of a stable 
perovskite/TiO2 interface, possessing strong electron transfer capacity. Due to their relatively 
stronger binding energies, the interfacial structure of PbI2/TiO2 is selected for subsequent 
investigations. 
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Figure 3. Relationship between the interfacial charge transfers and binding energies of transition 
metal-substituted CH3NH3PbI3/TiO2: (a) CH3NH3I/TiO2 (b) PbI2/TiO2. 

The degree of the total potential drop across the CH3NH3PbI3/TiO2 interfaces reliably indicates 
their photo-excited charge separation capabilities [58]. To clearly show their difference, the planar 
averaged electrostatic potential of the seven perovskite/TiO2 heterostructures was calculated to 
estimate the electronic level positions (Figure 4). The Fermi level differences between CH3NH3PbI3 
and TiO2 build the driving force for the electron to transfer from the CH3NH3PbI3 to the TiO2 slab. 
Actually, a substantial amount of charge gather at the TiO2 side due to the abrupt potential drop near 
the interface. Then, the built-in electric field in the interface hampers more electron transfer across 
the interface, and the electronic charge transfer equilibrium is reached. It is known that the built-in 
electric fields originate from the surface-surface interactions, particularly for the Pb2+ movement and 
the CH3NH3+ orientation [58]. The incorporation of transition metals M (M = Zn2+, Y3+, Zr4+, Nb5+, Ru4+, 
W6+) enhances the polarization and the built-in electric field across the interfacial heterostructure. As 
shown in Figure 4, it is worth mentioning that the Zn- and Y-substituted interface models (x = 10Å) 
exhibit a substantial slope of electrostatic potential, while the others show the parameters’ 
electrostatic potential. The potential drop in the Zn- and Y-substituted interfaces is notably steeper 
than that in the other interfaces, which serves as a reservoir for electrons. Hence, a substantial number 
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of electrons gather at the TiO2 surface, implying that the Zn2+ and Y3+ substituents are more efficient 
in separating the photo-generated electrons and holes. 
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Figure 4. Planar averaged electrostatic potential across the optimized transition metal-substituted 
CH3NH3PbI3/TiO2. 

To scrutinize the electronic property differences in various transition metal-substituted 
CH3NH3PbI3/TiO2, the bonding characteristics were analyzed by electron localization function (ELF), 
which can illustrate the type of bonding and delocalization of electron density in the interfacial 
system [59]. Figure 5 depicts the interfacial structures and ELF contour plots at (010) planes crossing 
the Pb2+ and I- with color scheme for various interfacial systems. The ELF ranges from 0 to 1, where 
red corresponds to a full localization, blue indicates a full delocalization, and green implies the 
uniform electron gas. The ELF slice exhibited lesser electron localization for the transition metal 
substituents than Ti4+, which indicates a more covalent nature of the substituent-O interaction 
compared to the Ti–O interactions [60,61]. As can be seen, Figures 6a and 6d–g are quite similar, 
which explains why there is no variation in their geometry. By contrast, substitution with Zn2+ and 
Y3+ produced larger geometrical modification and electronic change in the CH3NH3PbI3/TiO2 interface. 
The ionic radius of transition metal substituents explains why there is no geometrical change with 
regard to the pristine and substituted systems. Compared with the Ti4+ cation (~0.6 Å) [62], the 
relatively large ionic radius of Y3+ (~0.9 Å) [63] and Zn2+ (~0.7 Å) [63] leads to distortions in the 
CH3NH3PbI3/TiO2 interface. Moreover, the binding energy and charge transfer analysis also led to the 
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same conclusion. Interfacial bond strength varied with the ionic radius of transition metal in the 
substituted interfacial systems. 

 
Figure 5. ELF of the optimized CH3NH3PbI3/TiO2 interfaces at (010) plane: (a) pristine, (b) Zn-
substituted, (c) Y-substituted, (d) Zr-substituted, (e) Nb-substituted, (f) Ru-substituted, (g) W-
substituted. 

The optical properties, including optical reflectivity, refractive index and absorption efficient can 
be obtained by dielectric function [64]. Taking into account that the PCE of CH3NH3PbI3 mostly 
originates from the efficient use of visible light in the solar spectrum, only the calculated electronic 
absorption spectra of the CH3NH3PbI3/TiO2 interfaces have been investigated. The optical absorption 
coefficients (α) of different interfaces based on the obtained electronic structures are presented and 
compared in Figure 6. The absorption spectra parallel to x-axis were selected to examine the influence 
of transition metal substituents on the optical properties. The shapes of each absorption curve are 
close. As depicted in Figure 6, the CH3NH3PbI3/TiO2 interfaces have two absorption peaks—around 
3.5 eV and 7.5 eV. The peak around 3.5 eV mainly comes from the conduction-to-valence band 
transition from I 5p or Pb 6s states to Pb 6p states [65]. On the other hand, the peak around 7.5 eV can 
be ascribed to the intrinsic band gap of pristine TiO2 and the electron shifting from the O 2p to Ti 3d 
orbitals [66]. It has also been reported that the absorption of pure TiO2 is limited to ultraviolet (UV) 
light and exhibits inefficient response for visible light. In case of the pristine CH3NH3PbI3/TiO2, our 
theoretical calculation is consistent with the experimental values and theoretical studies [67,68]. In 
case of the substituted CH3NH3PbI3/TiO2, the substituted interface still shows poor photoactivity in 
the visible-light region for solar light harvesting. However, it has an extra absorption peak in the low 
energy region (less than 2 eV). The incorporation of the transition metal substituents into the 
CH3NH3PbI3/TiO2 interface leads to an obvious red-shift effect. The distinct absorption peak at 0.3 eV 
in the low energy region can be attributed to the band gap near the Fermi level. The decrease in 
intensity of transition energies is caused by the split intra-band transitions between the impurity 
states, rendering the more obvious red-shift [68]. Compared with the pristine CH3NH3PbI3/TiO2 
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interface, the transition metal-substituted CH3NH3PbI3/TiO2 interface is expected to be more active 
for efficient visible-light photo-catalysis. 
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Figure 6. Comparison of the optical absorption of the transition metal-substituted CH3NH3PbI3/TiO2 
interfaces. 

In order to further elucidate the charge carrier separation mechanism of the CH3NH3PbI3/TiO2 
interfaces, partial density of states (PDOS) have been calculated for pure and substituted 
CH3NH3PbI3/TiO2 interfaces. As seen in Figure 7, the PDOS is split into contributions from 
CH3NH3PbI3, TiO2 and transition metal substituents. The substituent component is magnified five 
times for better visibility. It is already known that the band gap of TiO2 is wider than that of the 
CH3NH3PbI3 perovskite [25,26]. Besides, the conduction band minimum (CBM) of TiO2 is lower than 
that of CH3NH3PbI3. They can excite electrons from the valence band of CH3NH3PbI3 (I 5p and Pb 6s 
orbitals) to conduction band of CH3NH3PbI3 (Pb 6p), and then transfer to conduction band of TiO2 (Ti 
3d). The difference between Pb 6p and Ti 3d decided the efficiency of charge transfer across the 
interface [69]. The interfacial band gaps can be tuned by n, p, and isovalent substituents using the 
selected transition metals. As shown in Figure 7, n substitution agents such as Nb5+ and W6+ pushed 
the Fermi level into the conduction band and made the system metallic. The intensity of the Fermi 
levels entering into the conduction band should be increased as the d states of substituents changes 
from 4d to 5d transition metals. By contrast, in the p substitution agents (Zn2+ and Y3+) modified 
interfaces, the Fermi levels shifted from valence band to conduction band, leading to obvious band 
gaps compared with the pristine system. For the isovalent substituted (Zr4+, Ru4+) interfaces, the PDOS 
shape of substituted interface is wider than that of the pristine interface, which implies that the 
electronic nonlocality becomes quite obvious. The delocalized transition metal d state contributes to 
the electron–hole pair separation in the PSC and supports carrier migration within the photo-catalysis 
process. 
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Figure 7. DOS of pristine and transition metal-substituted CH3NH3PbI3/TiO2 interface. 

Schematic diagrams of the energy levels of various elements’ substitution TiO2 are shown in 
Figure 8. The vacuum level of the system was set to 0 eV for comparison. The CBM of pristine TiO2 
was found to be located at −4.1 eV. It can be seen that the substituent ion effectively modified the 
CBM state of the TiO2. In all the cases, the CBM gradually up-shifts to the vacuum level as the 
substituent change from n to p. The Fermi level shifts downward with p substituent and the electron 
injection from perovskite to p substituted TiO2 will be hindered. On the other hand, the optimal band 
alignment between perovskite and n substituted TiO2 could effectively improve the charge transport 
and suppress charge recombination. From this point of view, Nb5+ and W6+ substituted interfaces are 
expected to have better device performance. Tuning energy level alignment by element substitution 
(M = Zn2+, Y3+, Zr4+, Nb5+, Ru4+, W6+) is confirmed to be an effective way to optimize charge 
transportation and thus enhance the PCE of PSC. 
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Figure 8. Schematic energy level diagram of element substituted TiO2. 

4. Concluding remarks 

First-principles computations were utilized to characterize the structural, electronic and optical 
properties of the transition metal-substituted CH3NH3PbI3/TiO2 interface. Through density functional 
calculations for binding energy and charge transfer of various configurations, we found that the 
substitution of Ti4+ at the Ti5c sites by transition metals is energetically favored. Especially, the p 
dopings of Zn2+ and Y3+ for Ti4+ at interfaces are the most energetically favorable among the transition 
metals, which lead to improved interfacial stability. Electrostatic potential investigations revealed 
that the potential drop in the Zn- and Y-substituted interfaces is notably steeper than that in the other 
interfaces, indicating that the substituents are more efficient in separating the carriers. The relatively 
large ionic radius of Y3+ and small ionic radius of Zn2+ lead to distortions in the ELF calculations. The 
calculated absorption spectra indicate that the transition metal-substituted CH3NH3PbI3/TiO2 
interface retains an enhanced visible light photocatalytic ability owing to the decreased transition 
energies. Closer comparisons between pristine and substituted CH3NH3PbI3/TiO2 indicate that the 
interfacial band gaps can be tuned by n, p, and isovalent substituents using the selected transition 
metals. Due to their optimal band alignment, the Nb5+ and W6+ substituted interface have better device 
performance. Theoretical studies predict that the varied mechanisms depending on transition metal 
substations will exert different effects on properties of CH3NH3PbI3/TiO2 interfaces. Our calculations 
explain why transition metals M (M = Zn2+, Y3+, Zr4+, Nb5+, Ru4+, W6+) could enhance device 
performance and why it is helpful for the potential commercialization of planar heterojunction PSC. 
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