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Abstract: Terahertz (THz) radiation has received much attention during the past few decades for its
potential applications in various fields, such as spectroscopy, imaging, and wireless communications.
To use terahertz waves for data transmission in different application systems, the efficient and
rapid modulation of terahertz waves is required and has become an in-depth research topic. Since
the turn of the century, research on metasurfaces has rapidly developed, and the scope of novel
functions and operating frequency ranges has been substantially expanded, especially in the terahertz
range. The combination of metasurfaces and semiconductors has facilitated both new opportunities
for the development of dynamic THz functional devices and significant achievements in THz
modulators. This paper provides an overview of THz modulators based on different kinds of dynamic
tunable metasurfaces combined with semiconductors, two-dimensional electron gas heterostructures,
superconductors, phase-transition materials, graphene, and other 2D material. Based on the overview,
a brief discussion with perspectives will be presented. We hope that this review will help more
researchers learn about the recent developments and challenges of THz modulators and contribute to
this field.
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1. Introduction

Terahertz (THz) frequencies are located in the range from 0.1 to 10 THz, and the corresponding
wavelengths range from 3 mm to 30 µm between the microwave and infrared regions. Due to their
high spatial resolution and time resolution [1], terahertz imaging and terahertz spectroscopy constitute
two key technologies for terahertz applications. Moreover, compared to X-ray, THz waves cause
negligible damage to cells because of their low photon energy and thus can be used for non-invasive
detection of organisms and with broader prospects in the medical field. In addition, terahertz
technology has been widely used for research on the properties of semiconductor and superconductor
materials. More importantly, a transmission rate of more than 100 Gbps can be achieved when utilizing
THz waves for data transmission in communication applications. These properties and potential
applications make terahertz technology a very important cross-cutting frontier in security checking,
wireless communications, imaging, spectroscopy and so on, providing a very attractive opportunity
for technological innovation, national economic development and national security.

Among the potential THz applications, high-speed imaging and wireless communication are two
important research directions that may bring great breakthroughs in modern electronic information
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technology. Therefore, under this background, the effective and ultra-fast regulation of THz waves
makes it possible to apply data transmission in communication and imaging, which is of high
demand and has been the subject of intensive research. Furthermore, the breakthrough of terahertz
modulators would definitely bring important developments to THz communication technology
based on a direct modulation approach. This approach is one of the promising ways to develop
long-distance communication and high-speed and high-resolution THz imaging with compressive
sensing computational algorithms. However, it is difficult to find a material with a high- speed response
to terahertz waves in nature, and the traditional modulation methods are not entirely suitable for the
terahertz wave bands. The modulation of THz waves with high speed and high modulation depth is
recognized as a bottleneck in this research area. Thus, during the past 10 years, THz modulators have
captured worldwide attention. From 2013 to 2018, more than 2000 papers have been presented with
different key words related to THz technology, as shown in Figure 1.
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Among the keywords diagrams in terahertz papers (Figure 2), metasurfaces as a hot keyword,
are two-dimensional (2D) versions of metamaterials with subwavelength thicknesses [2], which are
usually defined as three-dimensional (3D) artificial nanostructures with exceptional electromagnetic
properties. Metasurface designs can be used to develop cloaking, optical vortices [3–5], polarization
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Since 2006, terahertz modulators and other active devices have introduced semiconductor materials
to metallic metasurface structures to achieve the dynamic control of spatialterahertz waves under
external stimuli. Subsequently, different methods, materials and structures have been proposed and
presented. The basic principle involves combining the metasurface with doped silicon, phase change
materials, ferroelectric thin films, superconducting materials, modulation doped heterojunctions,
graphene and so on. The resonant electromagnetic characteristics of the metasurface can be modulated
by applying an excitation method such as a temperature change, illumination or an electric field, thereby
realizing the manipulation of the terahertz waves. Thus, the THz modulators can be classified by the
physical quantity they modulate, e.g., amplitude, phase, spectrum and orbital angular momentum,
or by the different excitations employed, e.g., all-optical modulation, electronic modulation, thermal
modulation and magnetic modulation. However, the core of the THz modulator and dynamic devices
lies in the semiconductor material, which determines the functionality and device performance.
Different semiconductor materials can offer various functionalities in manipulating the spectral and
spatial characteristics of the terahertz waves to form different types of modulator, such as amplitude
modulators, phase modulators, polarization modulator, and programmable modulators. Therefore, we
will focus on terahertz modulators based on the significant and representative semiconductor materials
in this review.

In general, the modulation speed and modulation depth are critical performance indicators for
the modulators. Thus, many outstanding studies have been focused on improving the modulation
speed, modulation depth and phase. More importantly, during the past 10 years, the performance of
THz modulators has developed rapidly, and the modulation speed has increased from kHz to GHz,
while the modulation depth increased from 40% to nearly 100% (Figure 3). The phase modulation
ability of the transmission mode has been improved from 0.5 to 2.4 rad, while the reflection mode can
reach to 2pi [7,8]. New kinds of modulators, such as on-chip modulators and compressing sensor
modulators, have been proposed. Such achievements of THz modulators with active metasurfaces
have already offered unprecedented functionality for manipulating THz waves.Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 33 
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Some of representative results of different kinds of THz modulators are shown in Tables 1 and 2.
Various materials have their own distinctive characteristics, opening new opportunities for terahertz
manipulation. Such as the conventional bulk GaAs and silicon semiconductor modulator, it is easy to
be manufactured and implement with external induced light or electrical field; the two-dimensional
electron gas (2DEGs) and 2D material modulators have high speed and can be integrated; the liquid
materials modulators have great potentials in the phase modulation and switches; the superconductor
and phase transition materials modulators could realize intelligent temperature control switch.
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Table 1. THz amplitude modulator type, materials, and basic performance.

Type Material Mod Speed or
Response Time Mod Depth Ref.

EC MS GaAs 2 MHz 55% 2009 [9]
EC MS GaAs ps range 100% 2019 [10]
PI MS Silicon 20/300 ps 50% 2018 [11]
2D MS Graphene 100 MHz 25% 2016 [12]
2D MS MoS2 100 ps 100% 2017 [13]

2DEGs MS GaN HEMT 1 GHz 85% 2015 [14]
2DEGs MS GaAs HEMT 2.7 MHz 80% 2017 [15]

VO2 MS VO2 1 MHz 88% 2014 [16]
Liquid Crystal MS Liquid Crystal 50 ms 100% 2015 [17]
Liquid Crystal MS Liquid Crystal \ 80% 2017 [18]

Superconducting MS YBCO 80 ps 86%/60% 2018 [19]
Superconducting MS NbN 1 MHz 79.8% 2017 [20]

Spintronics MS BaTiO3 \ 40% 2017 [21]

MS, Metasurface; EC, Electrical controlled MS; PI, Photo-induced MS; 2D, Two-dimensional material; 2DEGs,
Two-dimensional electron gas.

Table 2. THz phase modulator type, materials, and basic performances.

Type Material Mod Speed Phase Mod Ref

EC MS GaAs >2 MHz 0.56 rad 2009 [9]
PI MS GaAs — 0.78 rad 2010 [22]
2D MS Graphene 100 kHz 0.56 rad 2012 [23]
2D MS Graphene 20 kHz 0.73 rad 2014 [24]

2DEGs MS GaAs HEMT 2.7 MHz 0.67 rad 2017 [15]
2DEGs MS GaN HEMT __ 2.39 rad 2018 [25]

VO2 MS VO2 — 1.02 rad 2016 [26]
VO2 MS VO2 __ 2.41 rad 2018 [27]

Liquid Crystal MS Liquid crystal __ 1.03 rad 2017 [28]

MS, Metasurface; EC, Electrical controlled MS; PI, Photo-induced MS; 2D, Two-dimensional material; 2DEGs,
Two-dimensional electron gas.

Considering some outstanding previous reviews of terahertz dynamic metasurfaces which
concentrated on functional classification [29–33] and different kinds of materials that have been
included in the development of THz modulators, in this review article, we provide a brief overview of
the various materials for the modulation of THz waves that have been investigated and demonstrated
within the last few years.

The contents are organized as follows: Section 2 introduces THz wave modulation in conventional
semiconductors and metasurfaces. In Section 3, we review the principle and application of 2DEG
modulation and discuss recent developments in modulators based on two-dimensional materials in
Section 4. Section 5 highlights recent research studies on VO2-based modulators before overviewing
ferrite material systems and superconducting modulators in Sections 6 and 7, respectively. The final
section concludes with potential future developments.

This review might be useful for researchers who desire more knowledge regarding the
developments and challenges of THz modulators and have devoted themselves to relevant research.

2. Conventional Bulk Semiconductor Metasurface

The earliest concepts of THz modulators based on active metasurfaces combine conventional bulk
semiconductors and split ring resonator (SRR)-type metasurfaces. A bulk semiconductor can construct
a Schottky diode structure with a metallic metasurface to act as the active component of this kind of
THz modulator.
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An external voltage is applied to the Schottky diode structure to tune the depletion characteristics
of the Schottky junction while the depletion zone is modified. Therefore, the carrier concentration
varies with a change in the external voltage, which leads to the modulation of dielectric properties so
that the electro-magnetic resonant intensity of the metasurface can be modulated. With this mechanism,
the amplitude value of the transmitted THz wave can be manipulated by electrically controlling this
bulk semiconductor active metasurface.

Along with this concept, according to the Kramers–Kronig (K-K) relation, electrically controlled
carrier concentration variations in such metasurface-semiconductor Schottky diode structures have
been proposed to manipulate the phase of the transmitted THz waves. The change in the dielectric
properties not only leads to amplitude modulation but also leads to phase modulation.

Moreover, in addition to the electrical diode structure, due to the photoconductivity of the
semiconductor, a photo-induced THz modulator was proposed by applying an external laser beam. In
this mechanism, the external laser will generate photo-induced carriers in the bulk semiconductors,
which can be controlled by varying the incident laser power. By embedding photoconductive
semiconductors within the gaps of the metasurface, the different carrier concentrations could lead to
various resonant modes so that the transmitted and reflected THz waves can be manipulated. Similar
to the electrically controlled modulator, the THz phase and amplitude modulator can also be developed
by this mechanism.

2.1. Electrical Controlled THz Modulator

The combination of metamaterials and doped semiconductors to achieve the amplitude modulation
of THz waves first appeared in 2006 [34]. Chen et al. experimentally demonstrated an efficient THz
modulator consisting of an array of SRRs patterned on a GaAs substrate (Figure 4a). The metamaterial
structures were connected to serve as a Schottky gate; thus, the substrate charge carrier density could
be real-time controlled by applying a voltage between the Schottky and ohmic contacts, thereby
manipulating the THz waves. This device achieved 50% amplitude modulation at 0.72 THz with a
reverse gate bias of 16 V. This work was the milestone step of THz modulator development, which
opened the gate of combining the metasurface research area with the semiconductor materials research
area. Based on the similar principle of the Schottky diode, the same team [9] reported a hybrid
metamaterial phase modulator, obtaining a linear shift of 0.56 rad. Afterwards, researchers realized
that the efficient combination of semiconductors and metasurfaces presents a reliable way to regulate
terahertz waves [35–39]. D.M. Mittleman et al. experimentally demonstrated a THz diffractive
modulator based on a planar metamaterial, which adopts a Schottky structure to adjust the resonance
of structures. This device was composed of a diffraction grating and each column consisted of an SRR
array, providing a dynamic range in excess of 20 dB through an applied alternate column voltage
bias, as shown in Figure 4b [38]. In 2017, the same team designed an electrically modulated nonlinear
metamaterial made of an SRR array grown on n-type gallium arsenide. The interaction between the
electric field in the SRR and the carrier in the gallium arsenide cause a nonlinearity, which could be
modulated by the voltage applied to the device (Figure 4c) [39]. In addition, a metamaterial modulator
with two independent channels can actively modulate the terahertz waves of the corresponding
channel by independently controlling the depletion zone of the two types of the Schottky structure
under a bias voltage. The maximum modulation depth was ~46% and the modulation speed reached
~0.27 MHz [40].
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Figure 4. (a) Schematic of the THz metamaterial modulator. Reproduced with permission from [34],
Copyright Springer Nature, 2006. (b) The diffractive modulator consists of 32 split ring resonator
(SRRs) columns and a THz-TDS system is used to characterize the device. Reproduced with permission
from [38], Copyright AIP Publishing, 2014. (c) Micrograph of the Metamaterial (MM) structure
and incident THz field intensity influence transmission minimum at different applied DC biases.
Reproduced with permission from [39], Copyright AIP Publishing, 2017.

2.2. Photo-Induced THz Modulator

As mentioned above, integrating a metamaterial and the photoconductivity of a semiconductor
can realize an optically active metasurface terahertz modulator [41]. Shen et al. presented a broadband
blueshift switch based on an electric-field-coupled inductor-capacitor (ELC) resonator, implying two
potential resonance states (Figure 5a) [42]. The switch achieved a resonant frequency shift from 0.75 to
0.96 THz under an external laser beam, revealing potential applications of the device in THz systems.
Similarly, a terahertz dynamic perfect absorber consisting of photoexcited carrier-changing silicon
pads and split ring resonators was presented [43]. As shown in Figure 5b, by employing a ground
plane to ensure the scarce transmission of the incident wave, a large reflecting modulation depth in two
absorption bands is obtained. In addition to silicon, other materials such as InSb can also be utilized
in terahertz modulators. A subwavelength InSb grating structure fabricated on a semi-insulating
GaAs (SI-GaAs) substrate is presented (Figure 5c) [44]. Transverse Magnetic (TM) and Transverse
Electric (TE) wave responses are shown when propagating through the grating. By changing the carrier
concentration of InSb with laser pulses, the resonance frequency of the structure can be adjusted over a
broad frequency range. This adjustment enabled the device to have a modulation depth of 46.7% and
modulation speed up to potentially 1.2 GHz.



Nanomaterials 2019, 9, 965 7 of 33

Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 33 

 

structure and incident THz field intensity influence transmission minimum at different applied DC 
biases. Reproduced with permission from [39], Copyright AIP Publishing, 2017. 

2.2. Photo-Induced THz Modulator 

As mentioned above, integrating a metamaterial and the photoconductivity of a semiconductor 
can realize an optically active metasurface terahertz modulator [41]. Shen et al. presented a 
broadband blueshift switch based on an electric-field-coupled inductor-capacitor (ELC) resonator, 
implying two potential resonance states (Figure 5a) [42]. The switch achieved a resonant frequency 
shift from 0.75 to 0.96 THz under an external laser beam, revealing potential applications of the device 
in THz systems. Similarly, a terahertz dynamic perfect absorber consisting of photoexcited carrier-
changing silicon pads and split ring resonators was presented [43]. As shown in Figure 5b, by 
employing a ground plane to ensure the scarce transmission of the incident wave, a large reflecting 
modulation depth in two absorption bands is obtained. In addition to silicon, other materials such as 
InSb can also be utilized in terahertz modulators. A subwavelength InSb grating structure fabricated 
on a semi-insulating GaAs (SI-GaAs) substrate is presented (Figure 5c) [44]. Transverse Magnetic 
(TM) and Transverse Electric (TE) wave responses are shown when propagating through the grating. 
By changing the carrier concentration of InSb with laser pulses, the resonance frequency of the 
structure can be adjusted over a broad frequency range. This adjustment enabled the device to have 
a modulation depth of 46.7% and modulation speed up to potentially 1.2 GHz. 

 
Figure 5. (a) Schematic of the metamaterial embedded with silicon in the gap. The resonant frequency 
shifts from 0.76 to 0.96 THz by changing the luminous flux. Reproduced with permission from [42], 
copyright American Physical Society, 2011. (b) Diagram of the absorber composition and results. The 
absorption intensity is tuned by applying different pump light intensity. Reproduced with permission 
from [43], copyright John Wiley and Sons, 2014. (c) Micrograph of the grating structure. with different 
electron concentrations, the transmission of TE and TM wave responses differently. Reproduced with 
permission from [44], copyright John Wiley and Sons, 2013. 

Figure 5. (a) Schematic of the metamaterial embedded with silicon in the gap. The resonant frequency
shifts from 0.76 to 0.96 THz by changing the luminous flux. Reproduced with permission from [42],
copyright American Physical Society, 2011. (b) Diagram of the absorber composition and results. The
absorption intensity is tuned by applying different pump light intensity. Reproduced with permission
from [43], copyright John Wiley and Sons, 2014. (c) Micrograph of the grating structure. with different
electron concentrations, the transmission of TE and TM wave responses differently. Reproduced with
permission from [44], copyright John Wiley and Sons, 2013.

Recently, besides applying the control of photo-induced carriers in bulk semiconductors,
light-matter interactions have also been used in THz modulators. To avoid inevitable absorption losses
caused by metallic structures, the metasurfaces of the semiconductors have been heavily investigated.
Noble semiconductors, such as GaAs [45,46], Si [47–49] and InAs [50], are the most common candidates
among the dielectric metasurfaces. Yang et al. proposed a transient GaAs metasurface that can achieve
a wide modulation band of the dipole resonance from 0.5 to 2 THz by controlling the carrier density of
GaAs [45]. Although the 1D grating image is chosen to be the pattern, it should be emphasized that the
plasmonic resonance of the metasurface is caused by the localized resonance rather than the grating
effect, as shown in Figure 6a. Another transient plasmonic metasurface consisting of a Si disk array
manufactured on a sapphire substrate was reported in 2018 [47]. The B+ ion implanted and annealed
plasmonic metasurface provides a modulation depth up to 38% and ultrafast all-optical modulation of
THz wave with a switch-on time of 20 ps (Figure 6b).
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Figure 6. (a) Schematic of the optical-induced transient GaAs metasurface and the dimensions of the
structure. The transmission coefficient of the THz wave declines with increasing pump fluence in
the experiment. Reproduced with permission from [45], copyright American Chemical Society, 2017.
(b) Structure of the tunable plasmonic metasurface. The figure on the right shows the experimental
transmission spectra and transient transmission map of the plasmonic metasurface with different pump
probe delay values. Reproduced with permission from [47], copyright John Wiley and Sons, 2018.

2.3. Coding Metasurface THz Modulator

Digital coding and programmable metasurfaces based on PIN diodes have rapidly evolved
since they were initially proposed in 2014 [51]. Cui et al. proposed a new concept of artificial
“coding metamaterials,” which can be described, analyzed and designed in a digital way. The special
metasurface particles are designed as ‘0’ and ‘1’ codes denoting opposite phases (Figure 7a). After
integration with active elements (e.g., PIN diodes and Micro-Electro-Mechanical System(MEMS)),
coding metasurfaces can generate different code sequences in real time under the control of a
field-programmable (FPGA). Thus, compared with conventional metamaterials based on effective
medium theory, the functionality of coding metamaterials can be controlled by binary code sequences,
simplifying the design process and difficulty. Multi-bit coding metasurfaces based on the Minkowski
closed-loop have been experimentally demonstrated to freely manipulate the scattering beams and
the desired broadband diffusion of terahertz waves [52]. The theory and algorithm of information
science have been directly applied to the description and design of coding metamaterials, which
not only builds a bridge between the physical and digital worlds but also brings a series of
novel discoveries and applications, such as reprogrammable holograms [53], vortex beams [54,55],
reflection/transmission arrays [56–60], and diffuse scattering [52,61,62]. In 2018, combining the
digital coding metasurfaces and time-modulated arrays, this team reported a space-time-coding
digital metasurface to simultaneously control electromagnetic waves in both spatial and frequency
domains [63]. By introducing time-dimension coding sequences, the number of conventional
spatially coding can be extended, which reduces the complexity of designing multi-bit programmable
metasurfaces (Figure 7b).
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Compressed sensing imaging based on programmable metasurface is an important development
direction for terahertz imaging. Compressed sensing [64] completes the compression of information at
the same time as information acquisition, breaking through the traditional Quinister sampling law,
which can restore the total amount of information at a low sampling rate [65]. In 2014, Claire M.
Watts published an article on the application of array-encoded modulators combined with compressed
sensing to achieve 64-pixel image imaging [66]. More recently, another approach to form near-field THz
imaging was proposed using a patterned optical pump beam, which induces the carrier distribution
on the silicon wafer to selectively attenuate part of the incident light [67], which also achieves terahertz
compression imaging through an encoded array (Figure 8a). In addition to amplitude modulation
imaging, an important application of phase modulation is hologram [68]. In a conventional digital
holography (CGH) design, the phase profile is controlled by etching different depths on a transparent
substrate, but there is a problem that double image generation cannot be avoided. Metasurface
provides an alternative to a simple and efficient hologram, initially applied in the microwave and
visible light bands [69,70]. In 2017, Cui et al. proposed a coding metasurface-generated hologram
to verify the feasibility of implementing multiple holograms with only one metasurface [53]. After
that, the hologram of the terahertz band has also been greatly developed. A holographic metasurface
that simultaneously regulates phase and amplitude was presented, realizing multiple longitudinal
operations of holograms [71]. Recently, Chen et al. proposed a new method for generating wavefronts
of arbitrary THz beams, as shown in Figure 8b. The hologram and zoom lens can be realized in real
time by dynamically controlling the direction of the resonator [72]. Except as the dielectric metasurface
provided, the metal metasurface also has outstanding performance in holographic imaging [73,74].
Since terahertz digital holography (THz-DH) has good resistance to light scattering and absorption,
these results are expected to promote non-destructive testing of opaque soft materials.
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3. Two-Dimensional Electron Gas Metasurface

In recent years, the amplitude and phase modulation have been realized by metamaterial
devices that rely on conventional semiconductors, showing the application prospects in high-speed
communication [75] and imaging systems [76]. To date, due to the mobility of the materials, the
modulation speed of these terahertz modulators is in the MHz range, which limits the development
of high-speed and low-voltage modulators. To develop high-speed dynamic terahertz modulators,
researchers have focused on 2DEG with high mobility. 2DEG is usually induced by spontaneous
polarization and piezoelectric polarization in the heterostructure [77]. Electrons confined to the
modulation-doped heterostructure exhibit high mobilities since the 2DEG in the potential well is on
the side of the intrinsic semiconductor, mitigating the deleterious effect of ionized impurity scattering.
A high electron mobility transistor (HEMT) with excellent performance is a field effect transistor
that utilizes 2DEG to work. The large-scale commercial application of HEMTs began in 1986 as a
low-noise amplifier used in broadcast satellite receivers. This application laid the foundation for the
development of microwave and millimeter-wave solid state devices, especially in the field of mobile
communication and radar. These applications and studies promote the development of HEMTs and
allow the realization of increasingly more advantages. In recent years, the carrier mobility of the 2DEG
in HEMTs has reached more than 2500 cm/(V·s), while the carrier concentration is above 1013/cm2 and
the operating voltage of the HEMT is usually several volts, which brings an excellent prospect for
developing THz modulators. The 2DEG-based electronically dynamic terahertz modulator is used to
set the HEMT to the critical position of each structural unit, therefore forming a block-shaped dynamic
modulation region. There are thousands of periodic arrays of transistors and artificial microstructure
arrays in the modulator chip. Through this ingenious combination, the artificial microstructure array
acts as both a frequency selective surface and a transistor control circuit, thereby reducing the structural
complexity and greatly reducing the insertion loss.

In 2011, Willie J. Padilla’s group from Boston University first demonstrated a combination of GaAs
HEMTs and metamaterials to prepare terahertz dynamic devices, as shown in Figure 9a. In this work,
the lnGaAs/GaAs HEMT is used as a key control region for the unit cell of metamaterials, and the 2DEG
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concentration in the channel is changed via the gate-voltage to control the metamaterial resonance.
This modulator achieves a 33% modulation depth and operates at a high speed (~10 MHz) with a low
operating voltage (1 V). This design concept promotes the development of terahertz modulators with
respect to integration, low power consumption and high speed [78]. More importantly, this concept
first brought the HEMT metasurface to THz development.
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Figure 9. (a) A unit cell of the high electron mobility transistor (HEMT)/metamaterial device.
The modulation speed of this device is up to 10 MHz. Reproduced with permission from [78]. (b) A unit
cell of the modulator that utilizes voltage to convert different dipolar resonances. The transmission
of the device at different voltages. Reproduced with permission from [14], copyright American
Chemical Society, 2015. (c) Three-dimensional schematic view of the plasmonic terahertz modulator
and modulation depth at different voltages [79], copyright AIP Publishing, 2016. (d) Schematic view of
the modulator. The figure on the right shows the measured reflectance characteristics of this metasurface.
Reproduced with permission from [80].

Following this concept, considering the wide band gap, high electron mobility and saturation
velocity of GaN in comparison to the 2nd-generation semiconductor GaAs, the GaN-HEMT makes it an
ideal candidate for high-performance THz dynamic devices. In 2015, Zhang et al. presented a composite
metamaterial structure based on an InAlN/AlN/GaN/AlN/GaN double-channel heterostructure to
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obtain an ultrafast THz modulator [14]. This work greatly improved the modulation speed and
depth by using voltage to convert different dipolar resonances. Not only was a phase shift of 1.19
rad be realized, but more importantly, a modulation speed of 1 GHz and a modulation depth of
85% were achieved for the first time in the real-time dynamic test (Figure 9b). This was the first
time that the modulation speed of the THz modulator reached 1 GHz. Subsequently, Zhang X. et al.
proposed a single channel AlGaN/GaN HEMT-metasurface THz modulator. This device achieved a 33%
modulation depth and a 20 MHz modulation speed at a higher operating frequency of 0.835 THz [81].

In addition, the capacitive properties of HEMTs are also used for manipulating THz waves.
Nouman et al. fabricated an AlGaAs/InGaAs heterostructure to act as a metal semiconductor metal
(MSM) 2DEG-varactor located at the center of the SRR structure. By varying the applied voltage
(0~3 V) to the MSM 2DEG-varactor, the resonance frequency of the SRR-based metamaterial was
altered from 0.52 to 0.56 THz. This device obtained a 13% modulation depth with an insertion loss
of 4.3 dB at 0.58 THz, and the theoretical 3 dB cut-off frequency was 48 MHz by calculating the
(Resistance-Capacitance) RC constant (3.2 ns) [82]. On this basis, the team combined a metasurface
with the Fabry–Perot cavity to obtain a reflection mode THz modulator to increase the modulation
depth. Benefiting from the resonance enhancement effect of the Fabry–Perot cavity, the modulation
depth at 0.58 THz increased to 30% (Figure 9d) [80].

Huang Y. D. et al. placed a metal deep subwavelength periodic grating gate on the GaN/AlGaN
2DEG channel. As shown in Figure 9c, under a gate bias, the equilibrium electron density can
be periodically modulated, resulting in tunable 2D plasmonic cavities underneath the grating gate.
By manipulating the interaction between terahertz EM waves and 2D plasmons, this collective electron
plasma excitation THz modulator achieved a modulation depth of at least 90% over a spectrum
bandwidth of 83 GHz (435.6~518.4 GHz) and a 400 kHz 3 dB operation bandwidth [79].

Based on these studies, the active HEMT-metasurface elevated THz modulators to a higher step
compared with conventional bulk semiconductors. In addition, phase control is important for the
phase shift keying modulation of THz wireless communication and THz imaging systems, while
high speed and phase tunable terahertz modulators are essential and urgent. On the basis of these
investigations, THz phase modulators based on an active HEMT-metasurface have been proposed in
recent years. Various innovative metamaterial structures combined with 2DEG heterostructures have
been developed to increase the THz phase shift.

In 2017, Zhou et al. implanted a delta-doped double pseudomorphic heterostructure into a
kind of symmetric quadruple-SRRs metamaterial structure to fabricate an electrically controlled
THz modulator [15]. Due to the symmetry of the metamaterial element, all magnetic responses
were cancelled; furthermore, a strong purely electric response was revealed by incident THz waves.
By tuning the conductivity of the HEMT, the LC resonance strength in the metamaterial could be
controlled to modulate the THz wave. A modulation speed of 2.7 MHz with 80% modulation depth at
0.86 THz and a phase shift of 0.67 rad at 0.77 THz were realized under a reverse voltage of −4 V.

In 2018, Zhang et al. performed large phase modulation by enhancing the resonance of an active
HEMT metasurface [25], as shown in Figure 10a. According to the K-K relation, the relationship
between the resonance intensity change and the phase jump change was investigated, and the results
indicate that the stronger resonant intensity corresponds to the larger phase jump [9]. By comparing
various resonant structures, the enhanced inductance-capacitance dipole resonance (LCDR) resonant
structure was embedded with a 2DEG layer of GaN HEMT. Thus, the carrier distribution and density
of the 2DEG can be tuned to dynamically manipulate the resonance intensity and surface current
circuit of the resonance mode, leading to a 137◦ phase shift and a 2.4 GHz modulation speed in the
dynamic experiments.
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Figure 10. (a) Unit structure of THz phase modulator. Phase of incident THz wave can shift by applying
different voltages. Reproduced with permission from [25]. (b) Structure of the terahertz wave-front
modulator. Characterization when sequentially turning “on” each pixel of the spatial light modulator
(SLM). Reproduced with permission from [83].

Based on the previous active terahertz metamaterials, S. Rout reported a transmissive terahertz
spatial light modulator (SLM) consisting of a 2 × 2 pixel array [83] (Figure 10b). Single pixel imaging
experiments were performed, demonstrating spatial modulation with low voltage (1 V) and low power
(<1 mW). However, the design of the modulator circuit cannot achieve high pixel and large array
imaging, while crosstalk still exists between multiple pixels.

4. Graphene and 2D Material Metasurfaces

Graphene was the first successfully isolated and atomically thin 2D material, opening the door to
the world of 2D materials [84]. Due to its linear wave-vector relationship with zero bandgap, graphene
has unique optical and optoelectronic properties, such as tunable carrier densities and negative dynamic
conductivity under optical pumping [85–87]. Furthermore, the mobility in graphene film can be as high
as 105 cm2/Vs at room temperature [88] with carrier concentration modulations up to 1014 cm−2 [89].
These properties make graphene attr active because of their potential in the development of high-speed
electronic devices. The optical conductivity of graphene considering only the intra-band contribution
at THz frequency is closely related to the Fermi energy. In practical applications, varying the Fermi
energy of graphene causes the carrier concentration to change, which means that the conductivity can
be controlled to modulate the transmission characteristics of terahertz waves.

Generally, graphene modulators are classified by electrically driven or optically driven modulators.
In 2012, Sensale-Rodriguez et al. reported some significant studies on graphene THz modulators
igniting the field [90,91]. At the same time, an integrated device based on gate-controlled active
graphene metamaterials was demonstrated [23]. This device was composed of a single layer of graphene
fabricated on a hexagonal metallic frame and top/bottom thin metallic wire array electrodes embedded
in a dielectric material, as shown in Figure 11a. The measured modulation amplitude and phase of the
transmitted wave reached approximately 47% and 32.2◦, respectively. Although this work was the
first to propose a compact modulator that can be implemented on an integrated printed circuit board,
its driving voltage is as high as ~350 V, which severely limits any possible application of this device.
To address this issue and improve the modulation depth, various groups have conducted a series of
studies and have achieved outstanding results [92–96]. In a very recent study, Chen et al. demonstrated
that the Brewster angle of a graphene/Al2O3/TiOx sandwich structure can be tuned by varying the
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conductivity of the graphene, as shown in Figure 11b. In this way, an ultra-broadband THz intensity
modulation with amplitude modulation larger than 99.3% and a phase tunability up to 140◦ from
0.5 to 1.6 THz was achieved [94]. Arrays of graphene modulators can be employed for THz imaging
applications [97]. Graphene is also a favorable material in plasmonic structures for manipulating
terahertz waves due to its primitive frequency response [98]. Hybrid metamaterial structures
comprising graphene resonators and metallic SRRs are employed as high-speed THz modulators,
exhibiting 60% modulation of the peak transmission (Figure 11c) [99]. The graphene-localized SP
resonance is tuned to achieve strong near-field coupling with a C-SRR LC-resonance by electrically
varying the carrier density. Metamaterial structures with graphene [100–103], stacked multilayer
structures [104], plasmonic waveguide structures [105,106] and other hybrid structures [107–109] have
attracted considerable attention for light modulation and improved modulation performance.
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Figure 11. (a) Schematic view and device images of the active graphene modulator. Reproduced with
permission from [23], copyright Springer Nature, 2012. (b) The Brewster angle as a function of gate
voltage and modulation speed of the modulator. Reproduced with permission from [94], copyright
Springer Nature, 2018. (c) Transmission modulator of C-SRR-GR hybrid metamaterials. Reproduced
with permission from [99]. (d) Transmission spectra of the device and the transient dynamics of
MoS2 for different pump intensity. Reproduced with permission from [13], copyright John Wiley and
Sons, 2017.
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In addition, all-optical graphene modulators have been extensively studied as an important
supplementary modulation method because they enable direct modulation in optical fibers or
waveguide systems. Here, some all-optical active modulators including graphene-clad microfibers [110],
all-fiber modulators with Mach–Zehnder interferometer structures [111] and other structures [112],
were mainly demonstrated.

Other 2D Materials

Although the existence of a Dirac point gives graphene a number of interesting properties, it also
hampers its application in the semiconductor field. The FETs made of graphene are not well used in
practice with their small switching ratio. To further explore the world of 2D materials, a variety of
2D materials have been successively isolated, including hexagonal boron nitride (h-BN) with a wide
bandgap [113], transition metal dichalcogenides (TMDs) with a direct bandgap [114,115], and black
phosphorus [116]. There are similarities and differences in the properties between graphene and other
materials. For instance, similar to graphene, monolayer TMDs have mechanical flexibility, thermal
stability and high electron mobility. However, owing to the band gap resonance, the optical absorption
in 2D TMDs is stronger than that in graphene, reaching up to 10%.

In principle, other 2D materials beyond graphene can also be effective for the active modulation of
terahertz waves. As a typical TMD, molybdenum disulfide (MoS2) has already been heavily reported
for its unique properties in THz applications [117,118]. Cao et al. reported a terahertz modulator
based on multilayer MoS2 and silicon with higher modulation performance than a graphene-based
modulator [119]. The optical modulator had a modulation depth of 96% under a pump power of 4.56
W. In 2017, Srivastava Y K et al. demonstrated that the ultrasensitive active switching and modulation
of Fano resonances can be realized by integrating MoS2 with metamaterial [13]. The Fano resonance
amplitude gradually decreased with increasing optical pump power and eventually disappeared,
achieving a 100% modulation depth at a pump power of 200 mW. Notably, the drop-casted MoS2 active
metamaterial device can switch the Fano resonance on the time scale of 100 ps, as shown in Figure 11d.

5. Vanadium Dioxide Metasurface

Among the THz modulators, a vanadium dioxide (VO2) metasurface is one of the hottest topics.
VO2 exhibits an insulator-to-metal transition upon heating, which was reported by Morin, F.J. in
1959 [120]. This phenomenon is due to the atomic rearrangement of VO2, which transforms from the
low-T monoclinic phase to the high-T rutile phase when the temperature increases. Then, experiments
showed that this transition can also be triggered by femtosecond light pulses [121,122] and an electric
field [123]. Compared with transistors and 2D materials, the ease of fabrication and sub-picosecond
response time of VO2 provide a promising approach for tunable devices in the terahertz range.
By applying the phase transition characteristics, T. Driscoll’s group first presented the THz memory
metamaterial based on the VO2 metasurface in 2009 [124]. Later, ultra-strong THz pulses were proposed
to induce the phase transition of the VO2 metasurface within an ordinary SRR structure [125]. Such
advanced work made us realize that VO2 metasurfaces can be utilized to reconfigure the meta-unit
structure and achieve mode conversion at the surface so that we can manipulate the THz waves.
Therefore, by applying the phase transition characteristics, an increasing number of THz dynamic
devices have been proposed. Research on THz modulators based on VO2 has mainly focused on
amplitude modulation and phase modulation.

Using an early design, pure VO2 film, which was shaped into cut-wire structures fabricated on a
semiconductor substrate, construct a simple but practical THz amplitude modulator [126]. When an
external laser or temperature source is not loaded, the VO2 film acts as a transparent material to the
incident THz wave, and the loss is approximately –1.4–1.8 dB. When the phase transition is triggered,
the VO2 film transfers into the metallic state so that the THz wave cannot transmit through the film.
This approach is a very practical way to realize the modulation of THz waves. More importantly, the
modulation operating band is sufficiently wide.
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Hybrid metamaterial terahertz devices, which combine the static frequency response of the
metamaterial to the electromagnetic wave with the phase transition of VO2, have realized the real-time
dynamic modulation of THz waves via various excitations [127–129]. For instance, a THz amplitude
modulator combining a VO2 film and a dual-resonance metamaterial was proposed [16]. The phase
transition under illumination of the VO2 films between the metallic structure and substrate results in a
change of the transmittance of the THz wave. At the same time, the symmetric dual-resonance units
allow high transmission over the designed ultra-wide band during a static experiment (Figure 12a) [16].
However, the modulation speed is limited by the phase change recovery rate of the VO2 in the
dynamic test. More recent work has demonstrated that the electrical bias tuning effect is attributed to
ohmic heating [130]. A multifunctional integrated device is very desirable for optical devices in any
frequency band. Mayer et al. demonstrated a hybrid metamaterial platform that achieved electrically
switchable reflection, pixelated light manipulation and memory effect control in the mid-infrared
region [131]. In the terahertz range, a multifunctional meta-device based on VO2 has also been
proposed recently (Figure 12b) [132]. The dynamic device exhibits ultrafast switching excited by a
femtosecond pulse, which is much faster than the electrical type in the second level. Furthermore,
due to the hysteresis characteristic of VO2, the hybrid metasurface plays another important role of the
THz memory device. More recently, a square-loop metamaterial based on W-doped VO2 was reported,
which realized transmission modulation with a lower transition temperature than that of pure VO2,
while the modulation depth was lower as well [133]. In addition to the metasurface, a photonic crystal
waveguide coated by a VO2 film [134] and an undulated waveguide integrated with a VO2 film [135]
have also been reported.

THz phase modulation is an attractive but difficult research direction for terahertz modulators,
aiming to achieve large and continuous phase modulation with low loss. In 2016, according to
Babinet’s principle, a reconfigurable metamaterial converts the metal structure to the corresponding
complementary structure through the VO2 phase transition, obtaining a π/2 phase shifter for terahertz
waves in the same polarization direction [136]. In 2018, by optimizing the design of artificial
microstructures and analyzing various coupling resonant modes, Zhang et al. proposed a ring-dumbbell
hybrid meta-nanostructure combined with VO2 nanostructures (Figure 12c) to realize phase shifting [27].
With different laser powers, the phase transition of VO2 changes the resonant mode of the metasurface,
leading to a remarkable phase shift up to 138◦ at 0.6 THz. An average phase shift of 130◦ over 55
GHz is a considerable improvement that has not been previously reported, but the high loss is also a
problem that needs attention. Another electronically controlled phase shifter with a similar structure
was also reported in the same year [137].

Metasurfaces integrated with VO2 not only enable amplitude and phase modulation of terahertz
waves, but also realize other functionalities, such as a THz quarter-wave plate and chirality
manipulation [138,139]. In another example, the switchable metasurface is composed of different
functional layers with diversified functionalities, which can realize a wide-band absorber or a reflective
wide-band half-wave plate by utilizing the phase transition of VO2 [140]. The absorption of this device
exceeded 90% in the range of 0.562 to 1.232 THz, as shown in Figure 12d, or it can obtain a high
conversion efficiency of the linear polarization wave with over a 60% reflectance at a 0.49 THz-width
band while VO2 turns into metallic-state.
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Figure 12. (a) Schematics for one unit. The transmission of the device decreases with increasing
laser-power. The planes on the right shows the output of a 1 MHz pump laser signal. Reproduced with
permission from [130]. (b) Schematic of the multifunctional metasurface and experimental transmission
with different applied currents. Reproduced with permission from [132], copyright John Wiley and
Sons, 2018. (c) Three dimensions of one cell and experimental results of the transmission spectra and
phase spectra with TDS. Reproduced with permission from [27], copyright, American Chemical Society,
2018. (d) Structure of the multifunctional metasurface and the simulated data of vanadium dioxide
(VO2) in an insulating state and a fully metallic state are also illustrated. Reproduced with permission
from [140], copyright John Wiley and Sons, 2018.

6. Liquid Crystal Metasurface

Both fluidity and molecular order co-exist in a liquid crystal [141]. Thus, the director distribution
and optical properties of liquid crystals strongly depend on the surface effect and ambient temperature,
and its dielectric anisotropy covers a wide frequency range. Additionally, as a tunable electro-optic
material, it is dielectric anisotropic from ultraviolet to microwave, which renders it an excellent tunable
electro-optic material. The liquid crystal has a birefringence effect [142]. When natural light is incident
on a liquid crystal, it will be decomposed into two kinds of polarized light, whose vibrating surfaces
are perpendicular to each other. The one whose vibration direction is perpendicular to the optical
axis is called ordinary light, and its refractive index is n0. The vibration direction of the other kind
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of light, which is called extraordinary light, is parallel to the optical axis, and the extraordinary light
refractive index is ne (Figure 13a). The large birefringence characteristic (∆n = ne − n0) makes the
liquid crystal sensitive to the polarization of light. Furthermore, these materials have good electrical
controllability in the terahertz frequency band [143]. The liquid crystal molecular array tends to the
lowest potential state and can orient a molecular arrangement to the applied electric field, pointing in
the same direction as the electric field line (Figure 13b). Due to the dielectric and optical anisotropy,
liquid crystal materials have great application potential. The direction of liquid crystal molecules can
be adjusted through an external field to effectively regulate the intensity, phase, and polarization of
electromagnetic waves in various frequency bands [18,28,144–148]. In the terahertz range, although
the large absorption loss and scattering are problems, the birefringence characteristics of liquid crystals
is much larger than that of ordinary anisotropic materials. Therefore, liquid crystals have a quite high
research value in the terahertz bands.

The birefringence characteristics of liquid crystals and the remarkable electro-optic tunability
have been applied to terahertz modulators. In recent years, liquid crystal-based terahertz electronically
controlled absorbers have been developed. In 2016, David Shrekenhamer added the liquid crystal
into the metamaterial unit, achieving a wide range of absorption tuning and a certain resonance
broadband absorption tuning [142], indicating that the all-electronic method can dynamically control
the basic light interaction with the surface (Figure 13c). In addition, there are some similar metamaterial
structures combined with liquid crystals, such as complementary SRRs [146], hybrid re-configurable
3D structures [147] and cross-shaped metamaterials [18]. Although a high modulation depth can
be obtained through the combination, the response time of a conventional liquid crystal is long. To
make full use of the high birefringence of a liquid crystal and improve the liquid crystal response
time, Yin introduced a dynamic metamaterial absorber with a polymer network liquid crystal (PNLC)
in 2018 [149]. The peak resonant frequency of the absorption spectra shows a shift by electrically
controlling the direction of the PNLC embedded in the metamaterial. Furthermore, the adjustment
time (10 ms) and recovery time (85 ms) of the PNLC-based metamaterial absorber are significantly
faster than those of traditional nematic liquid crystal tunable metamaterial devices. In addition to the
metal metasurface, a liquid crystal can also be combined with the metasurface of the medium. Zhou
proposed an absorber structure in which graphene was used as an electrode that sandwiched a liquid
crystal embedded in a silicon column [150]. By changing the bias voltage, the liquid crystal orientation
could be adjusted continuously. Under the condition that the bias was saturated, the liquid crystal was
driven vertically, reaching an absorption peak of 0.86 at 0.79 THz with a modulation depth of 47%.

The refractive index of liquid crystals is also temperature adjustable. In 2018, Kowerdziej
demonstrated the tunability of thermally induced liquid crystal metamaterials [151], as shown in
Figure 13d. The thermal tunability of this metamaterial device is attributed to the temperature sensitivity
of the liquid crystal dielectric constant contained in the metamaterial cavity. The experimental results
showed that the resonant response of a metamaterial device can be effectively tuned with respect
to its size and wavelength, and its spectral tunability is close to the theoretical limit of 8 GHz. The
development of single-function liquid crystal metamaterials has also promoted the emergence of
multifunctional liquid crystal metamaterials. Shen proposed an integrated device for the EIT device
in the transmission mode and the absorber in reflective mode. The liquid crystal was used as an
intermediate medium with an adjustable refractive index. Through a variation in the voltage, the
liquid crystal could be redirected to achieve fast active tuning, whose modulation depth is 37% at 1.27
THz, and the tune of absorption was 15% at 1.30 THz [152].
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Figure 13. (a) Schematic diagram of the interaction between polarized light and liquid crystal molecules.
Reproduced with permission from [153], copyright Elsevier, 2009. (b) Structure of the electrical
adjustability of liquid crystal molecules. Reproduced with permission from [143]. (c) The device
consisting of an electrically controlled liquid crystal and metamaterial absorber structure provides an
absorption tuning of 30% at 2.62 THz. Reproduced with permission from [142], copyright American
Physical Society, 2013. (d) Schematic diagram and resulting temperature control structure combining
the liquid crystal and metamaterial transmission modulator. Reproduced with permission from [151].
(e) Electrically controlled phase shifter composed of the liquid crystal and metasurface can obtain phase
shifting with varying electric field power. Reproduced with permission from [28].

Liquid crystals can be applied to phase shifters by controlling the switching between n0 and
ne with voltage. Altmann demonstrated that a phase shift could be achieved over 2.5 THz with
a polymer-stabilized liquid crystal of 95% liquid crystal and 5% polymer and a reduced response
time [144]. A phase shift of 360◦ was achieved at 684 GHz when the threshold voltage ranged from 5
to 45 V. In previous studies of liquid crystal phase shifters, the alignment processing of liquid crystal
molecules is required to reduce losses. Tomoyuki proved that a graphene electrode and a randomly
arranged liquid crystal cell are suitable for voltage-controlled phase shifters, obtaining a phase shift of
0.11 rad at 1.5 THz [145]. In the terahertz band, the phase modulation depth of a liquid crystal under
an external voltage is still limited, which causes the response to be slow, so a high voltage is needed.
Thus, the combination of a liquid crystal and a metamaterial will be one of the research directions
of new tunable terahertz devices. Yun realized a large artificial birefringence effect by combining a
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metasurface and a liquid crystal and obtained a phase shift of 0.33π at the bias voltage [28]. Compared
with silicon without a metasurface, the artificial structure can enhance the liquid crystal phase shift in
the terahertz band, as shown in Figure 13e.

7. Superconducting Metasurface

The ohmic loss of a metasurface is a nonnegligible problem as the frequency is pushed towards
the terahertz region. Considering the unique advantages that a superconducting material brings to a
metasurface, such as loss reduction, a higher figure of merit (FOM), and new phenomena of switching
or modulation, superconducting materials have been widely used in the field of THz [154–156].
Furthermore, once the superconductor is in the superconducting state, it is highly sensitive to external
excitation and easily tuned by illumination [157], electric current [158], magnetic field [159] and
temperature [160], indicating a new opportunity for application in terahertz functional devices. Typical
features of superconductors are the disappearance of the DC resistance and perfect diamagnetism
below the critical temperature (Tc). According to the transition temperature, superconductors are
classified into high-Tc superconductors (HTS), which are usually made from yttrium-barium-copper
oxide (YBCO) films [161–163] and low-Tc superconductors, represented by niobium nitride (NbN) and
niobium (Nb) [159,164–167]. Superconductors can also be introduced to superconducting metamaterials
with a negative refractive index instead of metallic materials [168].

7.1. High-Tc Superconductors with a Dynamic Tunable Metasurface

As a typical high-temperature superconducting material, YBCO was the first material discovered
to become superconducting above 77 K, which lowered the cost of cooling the material below the
critical temperature. However, the surface impedance of YBCO increases faster with frequency
compared with metal, which is higher than that of Au above 0.5 THz at 4.2 K [169,170]. Thus, terahertz
metamaterial devices based on YBCO can realize the manipulation of terahertz waves. Terahertz
superconductor metamaterial devices consisting of SRR arrays have been demonstrated to modulate
the transmission of waves, achieving resonance switching effects and frequency tuning by varying
the temperature [155]. In 2010, H. T. Chen et al. of the Alamos Laboratory in the United States
achieved a 35% amplitude modulation of the terahertz wave by etching the YBCO material into an
artificial microstructure resonant ring, and they also found that the resonant frequency shifted when
the thickness of the YBCO film changed (Figure 14a) [161]. In 2016, Keiser etched YBCO thin films
into SRR arrays and designed a terahertz saturated absorber [171]. Under low electric fields, the
adsorption reached 80% at a temperature of 10 K, and decreased to 20% at a temperature of 70 K.
Impedance matching and the peak absorption of the absorber are reduced by changing the temperature
or field intensity, which changes the complex conductivity of the SRR arrays. In 2018, considering
that the Cooper pairs of YBCO dissociate and recombine in an extremely short time under irradiation,
Ranjan et al. designed a two-channel ultrafast photonic switch using a terahertz asymmetric split
ring metamaterial (Figure 14b). Their team conducted an all-optical modulation experiment using
a two-channel and ultrafast device and demonstrated good performance. In terahertz high-speed
wireless communication, dual-channel switchable devices have broad application prospects [19]. In the
same year, Jing et al. used a low temperature scanning laser microscope (LTSLM) to image the transition
from a superconducting to a normal state of a superconducting terahertz modulator by applying
different bias voltages, proving that the thermal effect plays an important role in THz transmission
modulation (Figure 14c). This characteristic has some reference value for improving the modulation
speed [164].
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Figure 14. (a) Transmission amplitude spectrum at different temperatures, when the thickness of the
yttrium-barium-copper oxide (YBCO) film is 180 and 50 nm [161], copyright American Physical Society,
2010. (b) An optical pump ultra-fast switch with YBCO based on a terahertz asymmetric Fano resonant
ring [19], copyright John Wiley and Sons, 2018. (c) The measured I−V curve at 4.9 K and the low
temperature scanning laser microscope (LTSLM) scan images at different DC bias voltages [164].

7.2. Low-Tc Superconductors with a Dynamic Tunable Metasurface

Nb and NbN are typical low-temperature superconducting materials. Nb has extremely low
surface resistance in the superconducting state, and its energy gap frequency is approximately 0.7 THz.
NbN has a relatively high Tc and gap frequency. The gap frequency of NbN thin films is approximately
1.2 THz, much higher than that of Nb, which indicates that NbN can maintain low loss characteristics
at higher frequencies [170].

In 2012, V. Savinov first designed a terahertz electrical modulator with a 100 kHz modulation rate
and a 45% modulation depth based on a high-Q Fano resonance using a Nb film (Figure 15a) [172].
The magnetic field generated by controlling the current suppresses the superconductivity of the Nb.
In a weak magnetic field, the transmission modulation is proportional to the amplitude of the control
current, while the relationship between them is quadratic at a low modulation frequency with a thermal
effect. Compared to Nb, NbN is a more suitable terahertz superconducting material with a higher
gap frequency and wider tuning property [166]. In 2017, Chun Li and Biaobing Jin et al. proposed
a switchable superconducting NbN metamaterial device with high switchable ratios (Figure 15b).
Due to the quench property and the heat dissipation of the device, the modulation speed is 1 MHz
which is the highest speed of the superconductive metasurface THz modulator [20]. There has been
unique research on superconductors. Keller et al. found that superconducting properties may be
altered by the presence of a two-dimensional electron gas (2-DEG). The system design is composed of
a switchable THz superconducting metasurface forming the cavity which can be seen as an LC-circuit
and can achieve high Q factors (Q = 54), and a two-dimensional electron gas (2-DEG) as the matter
(Figure 15c) [173].
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Figure 15. (a) A superconducting terahertz electrical modulator with a 100 kHz modulation rate based
on the Fano resonance [172], copyright Physical Review Letters, 2012. (b) A superconducting terahertz
modulator based on the electromagnetic induction transparent metamaterials [20]. (c) The light-matter
coupling experimental device. The transmission of the switchable THz superconducting metasurface
on a 2DEG changes by varying frequency and temperature [173], copyright Springer Nature, 2017.

Based on the pioneering studies mentioned above, more novel modulation effects of superconducting
metamaterials have been proposed to develop superconducting terahertz modulators, such as a nonlinear
response [159,167,174,175] and superconducting plasma photonics and superconducting metamaterials
with quantum effects [176–178].

8. Spintronics Metasurface

With the development of spintronics, a branch called THz spintronics has been emerging.
Antiferromagnets have been intensively studied for a resonance frequency in the THz band. Thus, this
kind of material has been proposed to be utilized in exploiting new types of THz modulators.

Antiferromagnets exhibit ultra-fast dynamic properties [179] in the terahertz range, which can
produce a spin effect to tune terahertz waves by external factors and realize the switching of modes
and the spin precession of the antiferromagnet [180]. Based on this feature, antiferromagnets are
widely used in the research of spin reorientation, coherent control and nonlinear dynamics combined
with metamaterials. In the tilting antiferromagnetic structure of RFeO3 (R = Y, Nd, Dy, etc.), the
quasi-ferromagnetic mode (F mode) and quasi-antiferromagnetic mode (AF mode) are excited by the
magnetic field of the THz pulse. THz-TDS can detect the spin reorientation process of the macroscopic
magnetization direction under external triggering [181,182].

Nakajima et al. studied the coherent control of ferromagnetic and antiferromagnetic modes in
c-cut and b-cut YFeO3 crystals using two THz pulses [183]. By adjusting the delay time of the THz
pulse pair, it is possible to selectively enhance or diminish a certain spin mode. Then, these authors
demonstrated the energy transfer between spin waves and photon spin systems in dual-pulse coherent
control [184]. A single pulse to achieve coherent control is based on the birefringence effect of the
material [185].
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Based on the above mentioned studies, considering that an SRR can generate a circulating current
by an LC circuit that is excited by the electric field of a THz wave to generate a magnetic field, the
combination of metamaterials and an antiferromagnet will increase the controllability of the spin
wave. In 2014, Kurihara et al. demonstrated the resonant excitation of the spin precession of ErFeO3

with a magnetic field produced by the SRR [186], as shown in Figure 16a. When the resonance
frequency of SRR was similar to the resonance frequency of the spin precession, the amplitude of
the spin wave was greatly increased. The SRR resonant magnetic field was 20 times stronger than
the incident THz-pulsed magnetic field [173]. Mukai et al. reported on the nonlinear magnetization
dynamics of HoFeO3 crystals based on the strong terahertz magnetic field of a split-ring resonator
(Figure 16b) [187]. A strong THz magnetic field can cause a large magnetization change of 40%, and the
change in magnetization can remain sufficiently large to cause a redshift even after the magnetic field
disappeared. Kurihara et al. demonstrated a combination of the terahertz magnetic field of the SRR
and femtosecond laser excitation to break the symmetry of the light-induced spin reorientation path in
ErFeO3 [188]. By controlling the arrival time of the optical and terahertz pump pulses, the final state
reaches more than 80% of the total magnetization in the optional direction. The strong magnetic field
provided by metamaterials can bring a new approach to the study of antiferromagnets (Figure 16c).
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Figure 16. (a) Exciting the antiferromagnetic mode using the terahertz magnetic field of the SRR.
The right figure shows that the spin precession measures the internal (black solid curve) and the outer (red
dotted curve) SRR. Obvious 180 phase differences and amplitude changes were observed [186], copyright
IEEE, 2012. (b) Schematic setup of THz pump-visible MOKE measurements. The relationship between
the magnetization change and time is obtained by experiment and simulation [187]. (c) Experimental
configuration using the SRR structure. The right side shows the dominant process of symmetry
destruction in the terahertz magnetic field. The magnetization tilt is caused by the free spin precession
and non-resonant field excitation forced oscillation [188], copyright American Physical Society, 2018.
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In addition to the magnetic field, ferrous materials also play an important role in modulating
electromagnetic waves through an electric field. The permittivity of the ferroelectric material can be
adjusted by DC electric field, thereby modulating the phase of the electromagnetic wave. Yin et al.
designed a metasurface based on a resonator of ferroelectric material that enables adjustment of the
resonant phase of the resonator over a dynamic range [189]. The permittivity of the ferroelectric
material is varied by applied electric field, causing a phase shift of the reflected wave, up to 2π.
This resonator can be used as a planar lens to focus the reflected wave. Yu et al. studied the dielectric
properties of barium titanate ferroelectric thin films by illumination and found that the permittivity
increases with the increase of optical power [21]. The device can achieve a modulation depth of 40% at
0.2 THz by varying the illumination power.

9. Conclusions

Dynamically tunable metasurfaces based on different functional materials can offer various
functionalities in manipulating the spectral and spatial characteristics of terahertz waves to form
different types of modulators, such as amplitude modulators, phase modulators, polarization
modulators, and programmable modulators. In this article, we have briefly reviewed the latest
developments of THz modulators with dynamic tunable metasurfaces based on representative
materials. As the active elements and the performance of the THz modulator greatly depend on the
material, each category of dynamic tunable metasurfaces was organized and discussed according
to the material characteristics. For the THz modulators, high modulation speed and high efficiency
are the eternal goals. Thus, we found that many outstanding studies have focused on improving
the modulation speed, modulation depth and phase. During the past 10 years, the development of
active metasurfaces has promoted the performance of THz modulators to a high level. The modulation
speed has been improved from kHz to GHz, the modulation depth has reached nearly 100%, the phase
modulation has broken through 130◦ in the transmission mode, and new kinds of modulators, such as
on-chip modulators and compressing sensor modulators, have been proposed. Such achievements of
THz modulators with dynamic tunable metasurfaces have already offered unprecedented functionality
for manipulating THz waves.

However, until now, the existing performance of the THz modulator cannot satisfy the need for
the practical application systems. Most of the THz modulators remain in the laboratory or research
settings. It is difficult to achieve a balance of high resolution and real-time imaging for modulators,
especially in complex imaging scenes. Additionally, modulators with modulation speed higher than
10 Gbps are necessary for practical high-speed communication systems, and transmissive phase
modulators currently cannot achieve a phase modulation of 2π, which cannot satisfy the need of
practical applications. Large arrays of terahertz spatial modulators will inevitably face the problem
of monolithic integrated matching circuits and the like. In the future, new resonant mechanisms,
diverse modulation methods and the design of the new resonant structures are expected to further
improve the performance of the terahertz modulators. Due to the maturity of semiconductor materials
in the fabrication process, we believe materials, such as graphene, 2DEG materials, superconducting
materials, vanadium, etc., with excellent characteristics will facilitate a bright future for the THz
modulators. With rapid progress in the terahertz field and the development of high-performance
THz applications, we envision that coding metasurfaces, miniaturized or on-chip active metasurfaces,
and hook face active metasurfaces will be developed and THz modulators will play a key role in
THz systems.
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