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Abstract: Shortwave infrared (SWIR) sensors have attracted interest due to their usefulness in
applications like military and medical equipment. SWIR sensors based on various materials are
currently being studied. However, most SWIR detectors need additional optical filters and cooling
systems to detect specific wavelengths. In order to overcome these limitations, we proposed a solution
processed SWIR sensor that can operate at room temperature using lead chloride (PbS) QDs as a
photoactive layer. Additionally, we adapted zinc oxide (ZnO) nanoparticles (NPs) as an electron
transport layer (ETL) to improve the sensitivity of a PbS SWIR sensor. In this study, PbS SWIR sensors
with and without a ZnO NPs layer were fabricated and their current–voltage (I–V) characteristics
were measured. The on/off ratio of the PbS SWIR sensor with ZnO NPs was 2.87 times higher than that
of the PbS SWIR sensor without ZnO NPs at the maximum current difference. The PbS SWIR sensor
with ZnO NPs showed more stable current characteristics than that without ZnO NPs because of the
ZnO NPs’ high electron mobility and proper lowest unoccupied molecular orbital (LUMO) level.
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1. Introduction

Shortwave infrared (SWIR) sensors are currently used in various applications, including
environmental monitoring, military equipment, and medical devices. Previously reported infrared
sensors can be divided into photon detectors and thermal detectors based on their operating principles.
Photon detectors based on materials such as HgCdTe and InSb (that convert electrons generated by
light into signals) are fast and sensitive, but because their operating temperature is low, a separate
cooling device is required and the equipment is quite expensive [1–3]. Thermal detectors based on
materials such as VOx, amorphous silicon (a-Si) and Ti can operate at room temperature, but they
need additional processes that convert temperature changes from infrared rays into signals and their
sensitivity is low [4,5]. In addition, SWIR optoelectronics technology has been used as the structure
for quantum well infrared photodetectors (QWIPs) because of the limitations imposed on integrated
devices by the complicated epitaxial growth process of forming quantum dots (QDs) as well as the
requirement for cooling devices and additional optic devices for stable operation [6–9]. To overcome
the limitations of these types of sensors, many researchers have studied QDs based SWIR sensors
that can be easy fabricated by the solution process [10,11]. QDs are applied to not only light emitting
diode (LED) and solar cell but also various sensors such as gas and bio sensors because of their many
advantages [12–15]. QDs can easily be made to adjust their targeted wavelength bands by controlling
QDs core size due to the quantum confinement effect [16]. Moreover, QDs can be easily applied in
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solution processes such as ink-jet printing, contact printing, and spin-casting process, which are low
cost, large-area process and can apply to flexible devices [17–19]. Among them, PbS QDs, which have
absorbance in the infrared region and for which it is easy to select the absorption wavelength range
through size control during synthesis, have been used as photoactive layers [20,21]. Zinc oxide (ZnO)
nanoparticles (NPs) were used to reduce the high band gap difference between the PbS QDs and the
aluminum (Al) electrode, thereby helping to emit electron-hole pairs formed by infrared rays and to
improve the sensitivity of the sensor. ZnO NPs, which are used as an electron transport layer (ETL)
in many fields such as LED devices and solar cells, can be easily synthesized at room temperature
with facile particle size tuning and effectively transfer the electrons formed in the photoactive layer
because of its high electron mobility and appropriate lowest unoccupied molecular orbital (LUMO)
level (−4.2 eV) [22–24]. In addition, when a thin film is formed, it has high transparency and can
thereby minimize the loss of light entering the device when the photodetector is fabricated. In this
study, we proposed a solution processed SWIR sensor that can operate at room temperature using
PbS QDs as a photoactive layer. To improve the sensitivity of the SWIR sensor, we adapted the ZnO
NPs as an ETL by decreasing the bandgap difference between the PbS QDs and the Al electrode and
improving the electron mobility. It is possible to process at room temperature, and it can operate at
room temperature without a cooling device, which is a problem of the existing IR sensors. Thus, the
optimized PbS SWIR sensor with ZnO showed an on/off ratio of 3.239 at the maximum current change,
which is 2.87 times better than the SWIR sensor using only PbS QDs.

2. Materials and Methods

2.1. Synthesis of Colloidal PbS QDs

The wavelength band of QDs can be tuned by controlling the size of their NPs. This takes
advantage of the quantum confinement effect, a physical phenomenon in which the bandgap changes
as a function of the NP size. In this study, we synthesized PbS QDs, having a wavelength band
of 1330 nm, by using a colloidal method [25–30]. “Colloid” refers to a dispersion of particles in a
gas or liquid that are larger than molecules or ions and they have at least one dimension between
approximately 1 nm and 1 µm. To begin the PbS QDs synthesis, a mixture of 0.36 mmol of sulfur
(S, 99.998%, Sigma-Aldrich, St. Louis, MO, USA) and 0.24 mL of oleylamine (OLA, 70%, Sigma-Aldrich,
St. Louis, MO, USA) was stirred at room temperature for 30 min. After that, a mixture of 3.6 mmol of
lead chloride (PbCl2, 99.999%, Sigma-Aldrich, St. Louis, MO, USA) and 2.4 mL of OLA was stirred
in a 3-neck flask at room temperature under a flow of N2 gas (99.999%, Daeyang Gas, Inc., Busan,
Korea) for 30 min. And the PbCl2–OLA mixture was heated to 160 ◦C for 1 h and it was cooled to
120 ◦C under vacuum for 20 min. Then, the prepared S–OLA solution and 225 µL of trioctylphosphine
(TOP, 97%, Sigma-Aldrich, St. Louis, MO, USA) was quickly injected into the 3-neck flask under N2

gas flow. After allowing the chemical reaction to proceed at 100 ◦C for 1–360 min, the 3-neck flask
cooled to room temperature. To remove the excess reagent that had not been incorporated during the
synthesis, a mixture of the synthesized PbS QDs, 20 mL of butanol (99%, Sigma-Aldrich, St. Louis, MO,
USA) and 10 mL of methanol (99.9%, Duksan Pharmaceutical CO. Ltd., Seoul, Korea) was centrifuged
(FLETA-5, Hanil Scientific, Inc., Gimpo, Korea) at 3000 rpm for 10 min. Finally, the purified PbS QDs
were dispersed in toluene (99.8%, Sigma-Aldrich, St. Louis, MO, USA) at 30 mg/mL.

2.2. Synthesis of ZnO NPs

The ZnO NPs used in this study were synthesized using an optimized sol-gel method. The sol-gel
method is proven to have the advantages of reliability, repeatability, and ease of handling [31]. To
proceed with the synthesis, 2.46 g of zinc acetate dehydrate (Zn(AC)2·2H2O, 98%, Sigma-Aldrich,
St. Louis, MO, USA), as a Zn2+ precursor, was dissolved in 110 mL of methanol at 60 °C. Then, 0.96 g
of potassium hydroxide (KOH, 90%, Sigma-Aldrich, St. Louis, MO, USA) in 50 mL of methanol was
gradually injected into the methanol solution (1 mL/s). After 1 h, the mixture became turbid, and
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the growth of ZnO NPs could be seen. To obtain uniform ZnO NPs, aging and rinsing process was
performed by reacting with 160 mL of 2-propanol (99.9%, Duksan Pharmaceutical CO., Ltd., Seoul,
Korea) and 800 mL of hexane (95%, Duksan Pharmaceutical CO., Ltd., Seoul, Korea) overnight [32,33].
The synthesized ZnO NPs were washed by centrifugation for 10 min at 3000 rpm to remove residues,
such as K+. Finally, the synthesized ZnO NPs were dispersed in ethanol (99.9%, Samchun Pure
Chemical CO., Ltd., Seoul, Korea) at 40 mg/mL, forming a transparent solution.

2.3. Device Fabrication

The PbS SWIR sensors were fabricated by spin-coating (LT-MS 200, LTS, Gyeonggi-do, Korea)
method on glass substrates coated with a patterned indium tin oxide (ITO) anode. The ITO anode
had a thickness of approximately 400 Å and a surface resistance of less than 12 Ω. Initially, to remove
contamination on the ITO-patterned glass, the glass was cleaned with acetone, methanol, and deionized
water and then exposed to UV ozone (AH-1700, AHTECH LTS Co., Ltd., Gyeonggi-do, Korea) for
15 min. To form the photo active layer, the PbS QDs solution was coated on the substrate, and annealed
for 30 min at 110 ◦C in vacuum oven (ov–11, JEIO Tech, Daejeon Korea). To fabricate the PbS SWIR
sensor with ZnO NPs, the ETL was formed by spin-coating ZnO NPs solution and annealed at 90 ◦C in a
vacuum oven for 30 min (when fabricating the sensor without ZnO NPs, this process was omitted). The
ETL can effectively transfer the electrons formed in the photoactive layer because of its high electron
mobility and appropriate LUMO level of −4.2 eV. Finally, an aluminum (Al) cathode was deposited via
thermal evaporation (OLED system, ULTECH, Daegu Korea) in a high-vacuum using a metal shadow
mask. The Al electrode was more than 100 nm thick. The emissive area was 9 mm2, as defined by
the cross section between the Al cathode and ITO anode. The current–voltage (I–V) characteristics of
the PbS SWIR sensors were determined using a parameter analyzer (B1500A, Agilent, Santa Clara,
CA, USA). Figure 1 shows the structure, energy band diagrams, and field emission scanning electron
microscope (FE-SEM, SU8220, Hitachi, Japan) image of the fabricated sensors. It was confirmed that
the thicknesses of the layers of the device without ZnO NPs were ITO: 45.6 nm, PbS QDs: 21.8 nm
and Al: 101.2 nm, and those of that using ZnO NPs were ITO: 44.9 nm, PbS QDs: 21.8 nm, ZnO NPs:
17.8 nm and Al: 106.6 nm.
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3. Results and Discussion 

3.1. Characteristics of Synthesized PbS QDs 

Figure 1. (a) Schematic device structure, (b) energy band diagram and (c) FE-SEM image of the PbS
SWIR sensor without ZnO NPs, (d) schematic representation of the device structure, (e) energy band
diagram and (f) FE-SEM image of the PbS SWIR sensor with ZnO NPs.
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3. Results and Discussion

3.1. Characteristics of Synthesized PbS QDs

As shown in Figure 2a, we measured the absorption spectra (Cary 5000 UV-Vis-NIR, Agilent,
Santa Clara, CA, USA) of the synthesized PbS QDs and confirmed that they have an absorption peak
at wavelength λ = 1330 nm. This result means that the synthesized PbS QDs can absorb 1330 nm
wavelength light and generate electron-hole pairs (EHPs) when irradiated by an IR light source. To
confirm that PbS QDs were indeed synthesized and to compare them with previously reported PbS
QDs, X-ray diffraction (XRD, Max-2500, Rigaku, Japan) analysis was performed. The sample for XRD
analysis of PbS QDs was formed by spin-coating process on glass substrate (10 mm × 10 mm). As
shown in Figure 2b, the XRD result showed the same result as reported, confirming that the PbS QDs
were well synthesized [34–36]. The following Equation (1) is the Scherrer equation used to calculate
the nanocrystal size based on the XRD result and the synthesized PbS QDs calculated.

Dhkl (nm) =
K·λ
β cosθ

(1)

where K is the shape constant, λ is the wavelength of the X-ray, β is the full width at half maximum
(FWHM), and θ is the half value between the incident angle and the scattered X-ray wavelength
vector [37–39]. We confirmed that their size calculated by Equation (1) was 4.85 nm.Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 9 
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To confirm the formation and composition of the QDs, field-emission transmission electron
microscope (FE-TEM, Titan G2 ChemiSTEM Cs Probe, FEI Company, Hillsboro, OR, USA) images were
examined. For TEM measurement, the sample was fabricated by spin coating PbS QDs solution on a
10 mm × 10 mm glass substrate and it was cut into 10 µm × 1 µm with width of 70 nm by focused ion
beam (FIB, Versa3D LoVac, FEI Company, Hillsboro, OR, USA). From Figure 2c–e, we can see that the
synthesized QDs were formed uniformly, and the composition analysis of the TEM image showed that
the cores were composed of Pb and S. To determine the size of PbS QDs, we analyzed the TEM image
by ImageJ (National Institutes of Health) program, which shows the area of particles in the photograph
and calculated their diameter. In the results, 28 PbS QDs of 4 nm to 5 nm were identified and their
average size was 4.62 nm, which is similar to the size calculated by the XRD result. The diffraction ring
is consistent with the XRD measurement result and confirmed that the PbS QDs has a plane-centered
cubic structure [40–42].

3.2. Characteristics of Synthesized ZnO NPs

In order to confirm the size and characteristics of the synthesized ZnO NPs, we measured the
absorption spectrum (Cary 5000 UV-Vis-NIR, Agilent, Santa Clara, CA, USA), the photoluminescence
(PL) characteristics (QE 65000, Ocean optics Inc., Large, FL, USA), and XRD patterns. Figure 3a shows
the UV-vis absorption spectra of the ZnO NPs. We confirmed that the synthesized ZnO NPs has a
broad absorption band with absorption peak of 323.5 nm in the UV region. Figure 3b shows the PL
characteristic of the ZnO NPs has two peaks at 365 nm and 500 nm. The UV radiation, at around
365 nm, originated from the direct bandgap of the ZnO NPs. The other peak, at around 500 nm,
originated from the deep trap state on the surface of the ZnO NPs, including oxygen vacancies [43]. To
verify the crystal structure, the XRD result of the synthesized ZnO NPs was measured. As shown in
Figure 3c, the peak values of the ZnO NPs were measured at 31.7 (100), 34.4 (002), and 36.25 (101),
indicating that the synthesized ZnO has a hexagonal wurtzite structure [44,45]. Using the XRD results,
the size of the NPs was calculated by the Scherrer Equation (1) to be 4.79 nm.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 9 
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3.3. Performance of the SWIR Sensors

To measure the performance of the fabricated PbS SWIR sensors, the I–V characteristics were
measured. When IR light irradiated the PbS SWIR sensor, the EHPs generated at the photo active layer
were extracted to the electrodes by the external electric field. The dark current was measured when
the IR light source (SL-5, StellarNet, Inc., Tampa, FL, USA) was turned off, and the light current was
measured when the IR light source was turned on. The voltage was swept in the range of −3 V to 3 V.
Figure 4a,b show the I–V characteristics of the fabricated PbS SWIR sensors. The on/off ratio of the PbS
SWIR sensor without ZnO NPs was 1.147 at the maximum current difference, with a dark current of
−4.1409 mA and a light current of −4.7533 mA. The on/off ratio of the PbS SWIR sensor with ZnO NPs
was 3.293 at the maximum current difference, with a dark current of −2.6899 mA and a light current of
−8.8582 mA. In addition, the PbS SWIR sensor with ZnO showed a more stable current characteristic
than that without ZnO. As these results show, PbS QDs can detect IR light and ZnO NPs can improve
the sensitivity and current stability of the PbS SWIR sensor because of the ZnO NPs’ high electron
mobility and proper LUMO level.
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4. Conclusions

We synthesized PbS QDs and ZnO NPs to improve the sensitivity and current stability of SWIR
sensors. Then, a solution-processed PbS SWIR sensor was fabricated with ZnO NPs and compared to a
PbS SWIR sensor without ZnO NPs. The sensor with ZnO NPs had a more sensitive and stable I–V
characteristic than the PbS SWIR sensor without ZnO NPs. From measuring the I–V characteristics
according to voltage sweep from −3 to 3 V, the on/off ratio of the PbS SWIR sensor with/without ZnO
NPs were 1.147, 3.293, respectively, at the maximum current difference. These results confirmed that
the on/off ratio of a PbS QDs SWIR sensor using ZnO NPs is 2.871 times higher than that of a PbS SWIR
sensor without ZnO NPs. Moreover, the PbS SWIR sensor with ZnO NPs presented a more stable
current characteristic than the PbS SWIR sensor without ZnO NPs.
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