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Abstract: Immobilization of gold nanoparticles (AuNPs) on the surface of zeolite has received
a great interest due to Au@zeolite’s unique characteristics and high performance for catalysis.
In this work we studied the grafting of two different functional molecules; one having
an amine group (3-aminopropyl)triethoxysilane (APTES) and the second having a thiol group
(3-mercaptopropyl)trimethoxysilane (MPTES) on the surface of zeolite using the same wet chemistry
method. The modified zeolite surfaces were characterized using zeta potential measurements; diffuse
reflectance infrared fourier transform (DRIFT) and X-ray photoelectron spectroscopy (XPS). The results
confirmed a successful deposition of both functional groups at the topmost surface of the zeolite.
Furthermore; transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy and
XPS results clearly evidenced that APTES provided a better AuNPs immobilization than MPTES as
a result of; (1) less active functions obtained after MPTES deposition, and (2) the better attaching
ability of thiol to the gold surface.
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1. Introduction

Gold nanoparticles (AuNPs) have been considered as a kind of high performance catalyst in
the last decades [1–5]. Although gold particles with a nano size are very attractive for catalysis,
their aggregation can lead to a decrease in their catalytic activity [6,7]. For instance, the serious
aggregation could strongly decrease the performance of gold to a very low level, even compared to
group VIII metals [8]. In order to maintain a high activity of gold catalysts, support materials that
could provide a uniform dispersion to AuNPs become a feasible solution.

Supported gold has gained attractive interest since its huge benefits in improving gold catalytic
efficiency were reported [8–11]. Initially, reducible metal oxides, such as TiO2, ZnO and Fe2O3 were
preferably employed as supports for gold [12,13]. Thereafter, the attractiveness of silica materials
as supports for gold catalysts increased following reports on high catalytic activity of Au/SiO2 in
reactions [14,15]. Non-oxides, like activated carbon (AC), were also slightly used as supports due to
their unique advantages compared to oxides [16].
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As one of the support material candidates for immobilizing gold, zeolite was used as a highly
efficient support by several research groups in recent years. Due to its rigid structure with
a three-dimensional framework forming channels and/or cages with molecular dimension, zeolite
could atomically disperse a gold catalyst with a high degree of uniformity, consequently keeping
high catalytic performance for AuNPs [17,18]. The gold loaded on Y type zeolite was reported to
performed high activity for CO-O2 reaction [19]. Alternatively, the acid sites on zeolite could modify
the electronic structure of AuNPs [20,21], such a synergistic interaction between the dual-active-sites
of the acid sites and AuNPs was found to be responsible for the excellent catalytic performance in both
experimental studies and theoretical calculations [22,23]. For instance, the good catalytic activity for
alcohol oxidation by using Au@zeolite catalysts was evidenced in Zhang’s work [24]. Moreover, zeolite
was also confirmed as an active phase for some chemical reactions [25–27]. Thus, the immobilization
of AuNPs on zeolite to form Au@zeolite catalyst with synergistic effect is promising for catalysis.

Beside their spatial arrangement, the nature of the interaction between the AuNPs and the
surface of the support also determines the catalytic performance of the gold catalyst. The method of
immobilizing AuNPs on a support, often starts with an intermediate layer that consists in depositing
on a solid surface an organic molecule with a functional group, which is able to attach AuNPs
by covalent or electrostatic interaction [28–30]. On one hand, these connection layers containing
functional groups must be stable for a relative long duration; on the other hand, interaction of the
nanoparticles with the functional groups on the surface should be strong enough, guaranteeing that
the AuNPs anchor to the surface upon reactions. In years, many linkage reagents with various
functional groups were utilized for gold immobilization [28,30]. By adjusting the pH to allow for their
protonation, amine groups can interact with negatively charged gold nanoparticles through electrostatic
interaction. (3-aminopropyl)triethoxysilane (APTES) has been deemed to be one of the most popular
linkage reagents for AuNPs immobilization, as it could provide amine groups for immobilizing gold,
while the three hydrolysable ethoxy groups ensure a robust anchoring of the silane to the surface [30].
Alternatively, another interesting functionality is based on thiol groups, which can also bind gold
surfaces due to strong covalent bonding [28]. Similar to APTES, (3-mercaptopropyl) trimethoxysilane
(MPTES) is an organosilane with three alkoxy groups that could react with the hydroxyl groups on
the surface of substrate to the formation of Si–O bonds, leaving the terminal functional thiol groups
available for immobilizing AuNPs. Both molecules are often used for the immobilization of AuNPs,
however, there are no quantitative proofs that demonstrate which functionality is better for attaching
AuNPs. However, it has been announced that a weak interaction originates from electrostatic bonding,
whereas a strong interaction is obtained from covalent bonding [29].

In the present work, we aimed to bring some answers to this question. APTES and MPTES
molecules were deposited on the surface of zeolite using the same wet chemistry process, and the
efficiency of the two linkage reagents were investigated by a further immobilization step of AuNPs on
the as-deposited surfaces. Zeta potential measurements, diffuse reflectance infrared Fourier transform
(DRIFT) and X-ray photoelectron spectroscopy (XPS) were used to characterize the as-deposited APTES
and MPTES layers. In order to find the better functional group to immobilize AuNPs in terms of
coverage and dispersion of nanoparticles, different methods such as transmission electron microscopy
(TEM), ultraviolet-visible spectroscopy and XPS were employed.

2. Experimental

2.1. Materials and Chemicals

Chemicals were used as received: zeolite (Y type, CBV400, Zeolyst International,
Delfzijl, Netherlands), (3-aminopropyl) triethoxysilane (98%, VWR, Fontenay-sous-Bois, France),
(3-mercaptopropyl) trimethoxysilane (95%, VWR, Fontenay-sous-Bois cedex, France), gold (III) chloride
hydrate (HAuCl4 · xH2O; Mw = 339.79 g/mol; 99.999%, St. Quentin Fallavier, France ) and silver
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nitrate (99%, Sigma-Aldrich, St. Quentin Fallavier, France) and trisodium citrate (99%, Alfa Aesar,
Kandel, Germany ). Millipore water was used in all experiments.

2.2. Preparation of AuNPs

Five mL of Gold (III) chloride hydrate aqueous solution (1 wt.%), 420 µL of silver nitrate aqueous
solution (0.1 wt.%) and 1.5 mL of sodium citrate aqueous solution (10 wt.%) were premixed and injected
into 45 mL of boiling water kept under reflux [31]. The mixture was then heated for 30 min, which changed
the color of the suspension into dark purple. Thereafter, the mixture was heated for another 30 min to
complete the synthesis (no more color variation was observed) and then the suspension was let to cool
down to room temperature. The final pH of the suspension was measured to be 4.2.

2.3. Salinization of the Surface of the Y Zeolite

Y zeolite was calcined at 500 ◦C in an oven with air flow for 12 h before it was used for any
experiments. Hundred mg of as-calcined zeolite with 100 µL of silane reagent (APTES or MPTES)
were mixed in 30 mL of anhydrous dichloromethane. The silanization of the zeolite was carried
out at room temperature for 24 h by magnetic stirring. Then, the APTES/MPTES deposited zeolite
samples were washed three times by centrifugation (4000 rpm) with 40 mL anhydrous dichloromethane.
The collected samples were dried in oven at 100 ◦C for a whole night.

2.4. Immobilization of the AuNPs on Silane Modified Zeolite

Fifty mg of APTES/MPTES modified zeolite nanoparticles (NPs) were dispersed in 20 mL of
a phosphate buffer (pH = 4.2) under sonication, then 10 mL of the AuNPs were added under continuous
stirring at room temperature for 12 h. The AuNPs immobilized on the zeolite NPs were separated by
centrifugation (4000 rpm) for at least three times and washed again with 40 mL water. Then, the AuNPs
immobilized samples were dried in oven at 100 ◦C overnight.

2.5. Characterizations

A Zetasizer Nano ZS (Malvern Panalytical, Malvern, UK) was used for zeta-potential measurement
and a phosphate buffered solution (10 mM) with pH value of 4.2 was used for the test. A Tensor
27 spectrometer (Bruker, Ettlingen, Germany) was employed for collecting the diffused reflectance
infrared Fourier transform (DRIFT) spectra, and the recording range was from 4000 to 400 cm−1.
A spectrophotometer (Ocean optics, Winter Park, FL, USA) was applied for obtaining the UV-Vis spectra.
A PHI 5600-ci XPS spectrometer (Physical Electronics, Cambridge, UK) was used for collecting XPS
spectra. The anode used was a monochromatic Al (1486.6 eV) and a Mg K α (1253.6 eV) X-ray sources
at 200 W, respectively. A 2000FX microscope (JEOL, Tokyo, Japan) equipped with an energy-dispersive
X-ray spectroscopy (EDS) was employed for capturing morphology images and identifying the amount
of AuNPs; the operating voltage was 200 kV.

3. Results and Discussion

Zeta-potential analysis was performed to study the effect of grafting of both molecules on the
surface charge of the zeolite, as well as after the deposition of AuNPs. The final pH of the AuNPs
suspension was 4.2, and at such pH the suspension showed a high colloidal stability. All zeta potential
measurements were carried out at the same pH using a phosphate buffer solution with pH = 4.2.
Moreover, the zeolite nanoparticles also showed a high colloidal stability at this pH. The high colloidal
stability of both suspensions is important to allow for a homogeneous assembly between the Au and
the zeolite NPs, and good dispersion of the Au catalyst. The results of the zeta potential measurements
were summarized in Table 1. They indicated that the initial zeta potential of the zeolite before any
modification was about −39.7 mV. Such a negative value showed that they could hardly anchor the
AuNPs, since they were also negatively charged with a zeta potential of about −35 mV at the same
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pH. After the surface functionalization of the zeolite with the silanes, the zeta potential decreased.
When APTES and MPTES were used, the value decreased to −36.4 and −12.2 mV, respectively.
Such a decrease confirmed the effective deposition of functional groups on the surface of the zeolite.
Following AuNPs immobilization to the silanes pre-deposited zeolite, the zeta-potential increased
again to −40.2 and −44.2 mV. The increase in the zeta potential indicated a successful immobilization
of AuNPs, as the surface of AuNPs is negatively charged due to the existence of citrate anions on
gold surface.

Table 1. Zeta potential of original zeolite, silane modified zeolite and AuNPs immobilized zeolite.

Linkage Reagent Original Zeolite (mV) Silane Deposited Zeolite (mV) AuNPs Immobilized Zeolite (mV)

APTES −39.7 ± 2.6 −36.4 ± 1.6 −40.2 ± 2.5
MPTES −39.7 ± 1.8 −12.2 ± 1.1 −44.2 ± 2.4

Furthermore, DRIFT was used to confirm the successful surface anchoring of the functional
molecules on the surface of the zeolite. As shown in Figure 1, new absorption peaks could be
observed after APTES and MPTES deposition. As known, zeolite is formed by T-O units (T = Si or Al
frameworks) that have absorption features in DRIFT spectrum. The band at 1150 cm−1 was ascribed to
the asymmetric stretching modes of the internal tetrahedral, while the band at 725 cm−1 was assigned
to the symmetric stretching modes of the internal tetrahedral. The bands at 1030 and 792 cm−1 could
respectively correspond to asymmetric and symmetric stretching modes of the external linkages [32].
Moreover, the broad peak around 3750~3000 cm−1 and the peak at 1650 cm−1 were ascribed to the
−OH groups on the zeolite surface [33].
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Figure 1. DRIFT spectra of zeolite before and after deposited with APTES or MPTES.

APTES deposited zeolite showed differences compared to the untreated zeolite. A new absorption
peak at 1580 cm−1 was obviously seen, which could be assigned to the NH2 absorption feature. Besides,
a decrease of the absorption peaks of the zeolite at 3750, 1650, 1150, 1030, 792 and 725 cm−1 were
observed, implying a good coverage of APTES on zeolite. The spectrum of MPTES functionalized
zeolite showed one absorption peak, representing the C-S stretch at 671 cm−1, with the same trend of
decreasing original zeolite characteristic peaks also revealing the successful deposition of MPTES.

The immobilization of AuNPs by APTES and MPTES was also investigated using UV-Vis
spectroscopy (Figure 2). Due to the surface plasmon resonance [34], the electron cloud can oscillate on
the AuNPs surface, which leads to absorption of the visible light. Thus, an absorption peak at around
520 nm was observed from the spectrum of as-synthesized AuNPs colloid. Based on the literature [35],
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such SPR was coherent with an average diameter of the AuNPs of 10–15 nm. A similar peak was
also observed in the spectra of the AuNPs immobilized zeolite, demonstrating that both APTES and
MPTES are effective molecules for anchoring gold. The characteristic SPR peak shifted to ~528 nm
in the spectrum of APTES deposited zeolite, while the SPR was ~523 nm in the spectrum of MPTES
deposited zeolite. The larger red shift indicated a smaller distance between AuNPs on the attached
surface. Thus, the results suggested a higher AuNPs density on the APTES deposited zeolite.

The supernatants were also collected and analyzed by UV-Vis to qualitatively check the attachment
of AuNPs. After 12 h of contact of the AuNPs suspension with the APTES or MPTES modified zeolite,
the Au@zeolite assemblies were isolated by centrifugation at 4000 rpm for 10 min. The UV-Vis spectra
of the supernatants are presented in Figure 2b. They clearly showed a drastic decrease of SPR peak
intensity of AuNPs after immobilization using APTES deposited zeolite, while the SPR peak was still
observed after immobilization using MPTES deposited zeolite. These results clearly demonstrated that
the APTES are better anchoring molecules for gold immobilization.
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All the samples were further characterized by XPS analysis and the XPS spectra are presented in
Figure 3. After silane deposition, the intensity of the peaks corresponding to O, Al and Si elements
showed an obvious increase as compared with the original zeolite. A new characteristic peak present
at 400/162 eV could respectively correspond to the presence of the N1s/S2p peak. Moreover, the content
of nitrogen and sulfur were calculated from the XPS survey scan spectrum: at%N1s = 6.9, at%S2p = 8.8.
The results indicated that a pretty good deposition of APTES/MPTES has been accomplished [36,37].
Furthermore, a good gold attachment on both surfaces was confirmed, as the Au4f peaks at about 84 eV
were observed in the survey scan spectra of AuNPs immobilized samples [38]. The AuNPs loading
amount could also be seen from the XPS survey scan spectrum and a higher gold amount was obtained
from Au@zeolite-APTES (at%Auzeolite-APTES = 0.3 vs. at%Auzeolite-MPTES = 0.2). Thus, the higher mole
ratio calculated from XPS results (Au/APTES = 0.043 vs. Au/MPTES = 0.023) indicated that less APTES
are required compared to MPTES to immobilize one AuNP.

The high resolution Au4f XPS spectra of Au@zeolite-APTES and Au@zeolite-MPTES are presented
in Figure 4. The deconvolution of the spectra showed Au4f7/2 and Au4f5/2 components at 83.7 and
87.4 eV, respectively. According to literature [39], it might be attributed to Au (0) specie. However,
compared with the BE value of bulk metallic gold of 84.0 and 88.0 eV [40], a shift of 0.3–0.6 eV occurred
in the present work. The slight shift toward lower value could be attributed to the small size and
negative charging of AuNPs. As the work function of Au = 5.27 eV is relatively high, the AuNPs
probably obtain electron from Al (4.28 eV) and Si (4.85 eV) in the frame of Y zeolite [41]. Both gold
immobilized samples revealed the presence of metallic gold species.
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Figure 4. High resolution Au4f spectra of AuNPs immobilized zeolite: (a) Au@zeolite-APTES;
(b) Au@zeolite-MPTES.

Figure 5 displays the C1s XPS spectra of original zeolite, silane deposited zeolite and AuNPs
immobilized zeolite. A relative low amount of carbon was detected from the original zeolite (about
%C1s = 5.4), and three peaks were subsequently deconvoluted in Figure 6a: a main peak at 285 eV
relating to C–C/C–H; a lower BE peak at 284.2 eV relating to C–Si; and a high BE peak at 286.6 eV
relating to C–O. The presence of carbon is probably due to the adsorption of CO2 and/or existence of
residual carbonaceous materials used during the synthesis of the zeolite [33,42]. An increase of carbon
amount to %C1s = 25 was observed in the spectrum of APTES treated zeolite in Figure 5b, evidencing
a good coverage of ATPES molecules on the zeolite surface. Five peaks were deconvoluted in the
C1s spectrum: a main peak at 285 eV corresponding to methylene carbons; a low BE peak at 284.2 eV
corresponding to C–Si from silane; three high BE peaks at 286 eV, 286.6 eV and 288.1 eV, corresponding
to C–N from amine, C–O from ethoxy and C=O from amide, agreeing with the as-reported results [43].
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The increase of the carbon amount (%C1s = 33.4) was also seen from the spectrum of MPTES
deposited zeolite in Figure 5d. The C1s spectrum could be deconvoluted into three peaks: a main
peak at 285 eV due to methylene carbon and carbon bonding sulfur [44–46]; a low BE peak at 284.2 eV
according to C–Si from silane; and a high BE peak at 286.6 eV as a result of carbon bonding oxygen [47].
The C1s spectra of AuNPs immobilized zeolite were respectively deconvoluted into the peaks that
were previously mentioned in Figure 5c,e. Interestingly, a new peak at 289.2 eV according to O–C=O
was observed in both spectra, and could probably represent the citrate anions of AuNPs, confirming
that the AuNPs have been successfully immobilized on both surfaces.

As shown in Figure 6, the O1s spectrum could be deconvoluted into two peaks: a peak at low
binding energy of 532 eV assigned to O–Si; and another peak at high binding energy of 533.2 eV
corresponding to O–C and/or O=C [48,49]. It was seen that the contribution of the peak at 533.2 eV
increased after immobilization in both spectra that used ATPES and MPTES. Concerning the citrate
existing on AuNPs, the increase of O–C/O=C bonds is probably due to the successful anchoring of
gold on zeolite-APTES and zeolite-MPTES surface.

The N1s XPS spectra of zeolite-APTES and Au@zeolite-APTES samples are respectively shown in
Figure 7a,b. Two peaks were seen in the spectrum of zeolite-APTES: a peak at 399.7 eV corresponding
to amide or amine functions from APTES; a peak at 401.6 eV corresponding to -NH3

+ from protonated
amines [50,51]. After the immobilization of AuNPs, a decrease of BE peak at 399.7 eV was observed.
Meanwhile, the higher BE peak was seen to shift to 400.9 eV, which is probably due to protonated
amines binding with AuNPs. The contribution of high BE peak also increased after immobilization,
implying more amines are well protonated in the suspension of pH = 4.2. Furthermore, the high BE
peak at 401.6 eV shifted to a low BE position of 400.9 eV. The slight shift of 0.7 eV is probably due to the
attachment between -NH3

+ and Au [52]. All the results evidenced that the pH value of the AuNPs
suspension at 4.2 could promote protonation of the amine groups (pKa = 9) resulting in a successful
anchoring of the AuNPs.
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The S2p XPS spectra of zeolite-MPTES and Au@zeolite-MPTES samples are presented in Figure 7c,d,
respectively. After MPTES deposition, a sole peak at 163.6 eV corresponding to S2p3/2 was observed,
indicating the presence of reduced sulfur [28]. After immobilizing AuNPs, another new peak was
seen at 162.6 eV. Based on as-reported results [47], it could be due to the gold-thiolate binding energy,
as a result of the absorption of thiols on the gold surface. All the results confirmed the formation of
thiol-gold bond and the immobilization of AuNPs with thiol groups.

To further estimate the amount of AuNPs on the surfaces of the zeolite after immobilization,
the samples were investigated using TEM and EDS. As presented in Figure 8, the dark spots representing
spherical AuNPs were clearly observed on APTES and MPTES treated zeolite surfaces, showing
a range of particle size of 10~15 nm (Figure 8c,d), in accordance with UV-Vis results. In comparison,
the surfaces of APTES deposited zeolite exhibited a denser dispersion of AuNPs (Figure 8a vs.
Figure 8b). Furthermore, a higher amount of AuNPs (6.8% vs. 4.8%) was also observed from the EDS
results in Figure 8e,f. These results are in good agreement with the results obtained by UV-Vis and XPS.
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As reported by other groups [29,53], thiol functional groups could provide a covalent link to
AuNPs, which has been announced to have a better ability than amine functional groups for attaching
AuNPs. On the contrary, the amines groups of APTES provide higher gold loading amount on the
zeolite in our study. Based on the XPS results, at%N1s = 6.9 and at%S2p = 8.8 were obtained from
APTES and MPTES functionalized zeolite. As each APTES or MPTES molecular only owns a N or S,
it seems likely that more thiols were deposited on the surface. As a result, there should be more AuNPs
anchored on the MPTES deposited zeolite surface. However, it has been highlighted in many reports
that organosilanes—as used herein for surface functionalization—are able to polymerize, especially in
presence of water, forming a number of possible 2D and 3D surface structures [54–57]. As shown in
Figure 9, APTES/MPTES molecules deposited on the surface could enable the appearance of various
surface structures with different number of active functions for immobilization. Hence it means that
not every amine or thiol group deposited on the surface is active for anchoring AuNPs. Thus, the less
AuNPs immobilized on MPTES deposited zeolite could be due to less active functions existing on the
as-functionalized surface for further immobilizing AuNPs. On the other hand, it is known that sulfur
derivatives, such as thiols, are one of the most effective components enabling for the formation of
self-assembled monolayers (SAMs) on gold. Aliphatic thiols, in particular, are considered as the most
powerful agents in SAMs formation [58,59]. The most important difference between the as-reported
results and the results in the present study are: (1) the difference in the structure of a metal oxide and
a zeolite; and (2) in this study, our approach is based on a self-assembly approach, where preformed
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gold NPs attached to the surface of the zeolite, while others formed the gold NPs by impregnation
of the support with the gold salt hydrate Au (3+) followed by its reduction to Au (0) [60]. Therefore,
thiols are also able to form SAMs on the surface of gold during the AuNPs immobilization process in
our work. Compared with amine, more thiols are preferred to attach onto the surface of a single gold
nanoparticle, which decreases the number of immobilized AuNPs in accordance with the molar ratio
obtained from XPS.
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4. Conclusions

In this work, we studied the potentiality of APTES and MPTES to functionalize zeolite surface
and the ability of amine/thiol attached surfaces further immobilizing gold nanoparticles. A successful
deposition of APTES or MPTES on the zeolite surface was confirmed using Zeta potential, DRIFT and
XPS characterizations. Spherical AuNPs were subsequently immobilized upon these as-deposited
layers. TEM images revealed a higher density of gold nanoparticles covering APTES deposited zeolite.
Moreover, EDS results showed a higher amount of AuNPs (at%APTES = 6.8 vs. at%MPTES = 4.8), which is
in agreement with UV-Vis and XPS characterizations. The results suggested that APTES with amine
showed better AuNPs immobilization ability than MPTES with thiol. The higher gold loading could
be attributed to as follows: on one hand, the less active functions for immobilization were obtained
during functionalization; on the other hand, thiols with the powerful ability to form SAMs were
preferred to attach to the surface of a single preformed gold nanoparticle, resulting in the decrease of
immobilized AuNPs.
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