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Abstract: We present evidence of strong steric interference in bilayer graphene containing offset point
dislocations. Calculations are carried out with Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) using the Long-Range Carbon Bond-Order Potential (LCBOP) potential of
Los et al.. We start by validating the potential in the harmonic response by comparing the predicted
phonon dispersion curves to experimental data and other potentials. The requisite force constants
are derived by linearization of the potential and are presented in full form. We then continue to
validate the potential in applications involving the formation of dislocation dipoles and quadrupoles
in monolayer configurations. Finally, we evaluate a number of dislocation quadrupole configurations
in monolayer and bilayer graphene and document strong steric interactions due to out-of-plane
displacements when the dislocations on the individual layers are sufficiently offset with respect to
each other.
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1. Introduction

Bilayer graphene was reported by Noselov et al. [1], who described graphene configurations
containing one, two and three atomic layers. Interest in monolayer and bilayer graphene stems from
their outstanding electronic and mechanical properties [2–4], including high thermal mobility, above
4000 W/mK [5], high electronic conductivity, above 15, 000 cm2/Vs [6], low mass density, 0.77 mg/m2,
and high breaking strength [7]. Owing to these exceptional properties, in conjunction with ever
improving production techniques, graphene remains a material of interest for potential application in
next-generation electronic devices [8,9].

The physical properties of graphene are strongly influenced by the presence of defects within
the lattice. For instance, partial dislocations in graphene give rise to profound changes in transport
properties [10,11] and interesting topological states [12]. For this reason, graphene defects, such as
dislocations, vacancies, grain boundaries or doped graphene, have been studied using different
interatomic potentials and several computational approaches, from ab initio methods to molecular
dynamics. One of the most common graphene and carbon nanotube defect structures is the
Stone-Wales [13], which is composed of two pentagon-heptagon cell pairs resulting from the rotation
of a single atomic bond through 90◦. Meyer et al. [14] examined this kind of defect using transmission
electron microscopy (TEM). Li et al. [15] calculated the formation energy and the activation barrier of
the Stone-Wales defect using the density-functional theory. Xiao et al. [16] studied the deterioration of
the mechanical properties of graphene due to the presence of this type of defects by using an atomistic
based finite bond element model. It is found that the Stone-Wales defect modifies the chemical [17]
and electronic [18,19] properties of pristine graphene lattices. 7-5 pair structures can also combine
to form dislocation dipoles [20]. Lehtinen et al. [21] have applied high-energy electron irradiation to
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graphene lattices triggering vacancy-type defects, observing that for a certain number of vacancies the
atoms locally reorganize into a dipole terminated by two edge dislocations. Warner et al. [22] have
explained that dislocation dipoles can also be formed during the CVD growth, through the addition of
surface adatoms or to Stone-Wales bond rotations. Jeong et al. [23] studied the stability of dislocation
dipoles using density-functional theory.

Carbon structures have been analyzed using a number of interatomic potentials ranging from
harmonic potentials expressed in terms of force constants [24,25] to nonlinear potentials [26,27], more
accurate but computationally costlier. The latter category includes reactive potentials, e.g., the Reactive
Empirical Bond-Order (REBO) potential introduced by Brenner [28]. The addition of torsion and
non-bonded interactions to this potential further resulted in the AIREBO potential [29]. Subsequently,
Los et al. [30] developed the Long-Range Carbon Bond-Order Potential (LCBOP) and its second version,
the LCBOPII potential [31], which accounts for interatomic interactions up to fourth neighbors. This
latter potential is similar to AIREBO but presumed to be better suited to large displacements, extreme
pressures and temperatures, liquid-solid phases and crystal lattices with topological defects.

In this paper, we present evidence of strong steric interference in bi-layer graphene containing
offset point dislocations resulting from the out-of-plane displacements of the individual layers.
Calculations are carried on the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [32] of Sandia National Laboratories using the LCBOP [30,31] interatomic potential. We
start by presenting an assessment of the fidelity of the LCBOP potential [30,31], cf. Section 2, in
applications to graphene. In Section 2.1, we start by validating its harmonic response by comparing the
predicted phonon dispersion curves to experimental data of Siebentritt et al. [33], Oshima et al. [34],
Nicklow et al. [35] and Yanagisawa et al. [36] and those of other potentials. The requisite force constants
are derived by linearization of the potential and are presented in full form in [37]. Subsequently, we
turn to the anharmonic behavior of the LCBOP potential. Specifically, in Section 2.2 we evaluate
the potential in configurations involving the formation of dislocation dipoles and quadrupoles in
monolayer graphene and assess its ability to predict accurate and physically meaningful structures.
With the LCBOP potential thus validated, we turn to the characterization of the core structure and
energies of dislocation quadrupoles in bilayer graphene. Remarkably, we find that, if the dislocations
in the individual layers are sufficiently offset, the out-of-plane displacements of the layers give rise
to strong steric interactions which result in high energies. A summary of the main conclusions is
presented in Section 4 by way of closure.

2. Validation of the Theoretical Model

For completeness and subsequent reference, we begin with a brief summary of the LCBOP
potential [30,31]. The potential energy Eb of a system of N atoms is given by

Eb =
1
2

N

∑
i,j

(
Sdown

sr,ij Vsr
ij + Sup

sr,ijV
lr
ij +

1
Zmr

i
Sup

mr,ijV
mr
ij

)
, (1)

where the short-range term Vsr
ij gives the energy of the covalent bonds and Vlr

ij = Vlr(rij) describes
long-range interactions, with rij = |rrri − rrrj| the distance between atoms i and j. Vmr

ij is a term for bond
breaking and formation based on ab initio calculations of the dissociation energy curves for single,
double and triple bonds. It vanishes if the material is in a single phase, as for graphene. The S functions
are switches expressed in terms of the Heaviside step function, Θ. Vsr is a Brenner type bond-order
potential defined as

Vsr
ij = Vsr

R,ij − BijVsr
A,ij, (2)

where Vsr
R,ij and Vsr

A,ij are repulsive and attractive radial pair potentials,

Vsr
R,ij = Asre−αri (3)
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and
Vsr

A,ij = Bsr
1 e−β1ri + Bsr

2 e−β2ri , (4)

respectively. The bond-order term Bij takes into account several many-body phenomena. It takes
the form

Bij =
1
2
(
bij + bji

)
+ Fconj

ij + Tij, (5)

where bij is a bond angle between first neighbors, Fij describes conjugate systems and Tij takes torsion
into account. Long-range interactions are accounted for through the pair potential

Vlr =
[
Θ(r0 − r)Vlr

1 (r) + Θ(r− r0)Vlr
2 (r)

]
Sdown

lr (r), (6)

where Vlr
i (r)(i = 1, 2) are Morse functions,

Vlr
i (r) = εi

(
e−2λi(r−r0) − 2e−λi(r−r0)

)
+ vi. (7)

We note that all these functions are differentiable up to their first order and continuous up to their
second order. Detailed expressions of the first and second derivatives of the potential up to fourth
neighbors may be found in [37]. These derivatives are subsequently used in the calculation of force
constants for the 18 neighbors of a reference atom.

2.1. Harmonic Response

We begin by assessing the LCBOP potential as applied to graphene in the harmonic range. To this,
we consider an infinite and perfect graphene lattice consisting of atoms, bonds and hexagonal cells [38],
cf. Figure 1. We note that there are two types of atoms in the lattice, according to the collection of
bonds connected to the atoms. Following standard notation [39], we label the atoms in the lattice with
the double index (lll, α), where lll = (l1, l2, l3) are integer lattice coordinates and α = 1, 2 designates the
type of atom. The lattice force constants are, then,

ΦΦΦ
(

lll −mmm
α β

)
=

∂2Etot

∂rrr(lll, α) ∂rrr(mmm, β)
, (8)

where Etot is the total energy of the lattice and rrr( l
α) are the spatial coordinates of atom (lll, α). The force

constants depend on lll −mmm only due to translation invariance. A systematic application of invariance
under the symmetry group of graphene shows that the matrices ΦΦΦ( lll−mmm

α β) are necessarily of the form

ΦΦΦi = −

αi 0 0
0 βi 0
0 0 δi


i=1,3

, (9)

Φ2 = −

 α2 γ2 0
−γ2 β2 0

0 0 δ2

 , (10)

Φ4 = −

α4 γ4 0
τ4 β4 0
0 0 δ4

 , (11)
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where the subscripts represent the set of neighbors. Finally, an application of the discrete Fourier
Transform furnishes the representation

ΦΦΦij

(
lll −mmm
α β

)
=

1
(2π)2

∫ π

−π

∫ π

−π
Φ̂ΦΦij

(
θθθ

α β

)
e−iθθθ·(lll−mmm) dθ1dθ2, (12)

where the functions Φ̂ΦΦij(
θθθ

α β) characterize the phonon dispersion curves of the material [39].

1 2 1

2

3

1

Figure 1. 0-cells (atoms), 1-cells (atomic bonds) and 2-cells (hexagonal areas) in graphene.

Table 1 shows a comparison between the LCBOP constants, as computed from the expressions
given in [37], and those put forth by Wirtz and Rubio [25], Tewary and Yang [27], Ariza et al. [38,40]
and Mendez et al. [18]. As can be seen from the table, there are significant differences between the
various potentials even in the harmonic range. Figure 2 compares the phonon dispersion curves
predicted by the LCBOP and the AIREBO potentials and the experimental data of Siebentritt et al. [33],
Oshima et al. [34], Nicklow et al. [35] and Yanagisawa et al. [36]. As can be seen from the figure, the
fidelity of the LCBOP and AIREBO phonon dispersion curves is comparable.

Table 1. Parameters of the force constants models [N/m] by Wirtz et al. [25], Tewary et al. [27],
Ariza et al. [38,40], Mendez et al. [18] and the present work.

[25] [27] [38] [40] [18] Present Work

α1 399.0 409.7 364.0 527.7 497.2 423.6
β1 135.7 145.0 247.0 68.1 173.7 144.3
δ1 292.8 98.9 100.5 118.3 106.9 75.7

α2 −79.6 −40.8 −30.8 5.8 −41.43 −6.5
β2 67.8 74.2 72.3 32.7 58.1 29.9
γ2 39.2 −9.1 −17.8 26.7 −3.0 −23.7
δ2 0.9 −8.2 −11.5 −16.9 −15.9 −8.8

α3 0.0 −33.2 0.0 −20.64 4.0
β3 0.0 50.1 0.0 34.51 −0.8
δ3 −34.3 5.8 3.7 9.1 −0.8

α4 0.0 10.5 0.0 0.3
β4 0.0 5.0 0.0 0.0
γ4 0.0 2.2 0.0 0.1
τ4 0.0 −2.2 0.0 0.1
δ4 17.1 −5.2 −1.8 0.0
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Figure 2. Comparison between the experimental point values of phonon dispersion obtained by
Siebentritt et al. [33] (empty triangles), Oshima et al. [34] (empty squares), Nicklow et al. [35] (filled
squares) and Yanagisawa et al. [36] (filled triangles); the phonon dispersion curves calculated using the
AIREBO potential [40] and those calculated in the present work.

2.2. Lattice Defects

We proceed to assess the fidelity of the LCBOP potential in a number of configurations including
dipoles and quadrupoles in monolayer configurations.

2.2.1. Method of Analysis

We introduce discrete dislocations in graphene by means of Mura’s theory of
eigendeformations [41], as developed by Ariza et al. [42,43]. Specifically, the dislocations are
introduced by slip on the three effective slip systems in graphene shown in Figure 3. Stable dipolar
configurations are obtained when the unit slips occur across a chain of zig-zag bonds [43]. For an
example, gliding along three consecutive zig-zag bonds leads to a 7-5-5-7 or Stone-Wales defect,
cf. Figure 4.

b1

b2b3

Figure 3. Burgers vectors of graphene.
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Figure 4. Unrelaxed Stone-Wales defect configuration generated by gliding along three consecutive
zig-zag bonds.

We seed calculations by solving for the equilibrium configuration of a prescribed distribution of
lattice defects in the harmonic range using the force constants introduced in Section 2.1. Conveniently,
such solutions can be obtained analytically in closed form in the Fourier domain. Next, in order to
elucidate the fully-relaxed configurations of the defect, we use the harmonic atomic positions as initial
conditions for a LAMMPS [32] calculation using the LCBOP [30]. For each defect configuration, we
conduct two relaxation steps, as shown schematically in the flowchart in Figure 5. The first step consists
of a molecular dynamics NVT relaxation at temperature T = 1K and imposing periodic boundary
conditions. In the second step, a conjugate-gradient molecular-statics iteration is performed, giving
the equilibrium configuration of the defects. In all cases, we have carried out studies in order to ensure
convergence with respect to cell-size. For the harmonic calculations cell-size convergence is attained
for 3360 atoms, while the anharmonic calculations require 18,720 atoms.

Harmonic 
deformed lattice

EH, uH

Ei=0=EH
ui=0=uH NVT MD

relaxation
CG energy

minimization ΔE<ΔEmin

Yes

No

Relaxed 
deformed lattice

ENh, uNh
ΔE=|Ei-Ei-1|

ui=uH+u’ ui=uH+u’+u’’

(a)

z x

y

σy=0

σx=0

Periodic Boundary Conditions σy=0

σx=0

Non-rigid PBC

NVT relaxation CG minimizationz x

y

T = 1K

(b)

Figure 5. (a) Flowchart of the nonlinear relaxation scheme and (b) outline of the boundary conditions
for the nonlinear relaxation steps.

2.2.2. Dislocation Dipoles

As a first validation case, we study a periodic dislocation dipole configuration of increasing length
and compute the corresponding harmonic and fully-relaxed equilibrium configurations and energies.
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We use the number n of gliding atomic bonds to measure the size of the dipoles. The linear size d,
measured from the center of the rotating bonds in the undeformed lattice, follows as d =

√
3a(n− 1)/2,

where a = 1.42 Å is the interatomic distance.
We start by constraining the out-of-plane displacements. Under these conditions, the energy

exhibits the expected logarithmic dependence with dipole size, Figure 6, in accordance with previous
studies [38]. As expected, the anharmonic energies are much lower than the harmonic ones. Thus,
the energy of the SW defect, or shortest dipole, decreases from 21.4 eV to 5.0 eV when the configuration
is fully relaxed. This energy value is in keeping with—but lower than—the values 5.96 eV and 5.92 eV
reported in [44,45]. It is also noteworthy that in the presence of defects the LCBOP is considerably softer
than the semiempirical potential of Jain et al., which accounts for second-neighbor interactions only.

0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

 T h i s  w o r k  -  h a r m o n i c
 T h i s  w o r k  -  r e l a x e d  2 - D
 K .  J a i n  e t  a l .  2 - D

 

 

En
erg

y (
eV

)

l o g  ( n )
Figure 6. Dislocation energy as a function of dipole size, n, in 2-D with the force constants model, after
relaxing harmonic configurations and presented by S.K. Jain et al. [44].

Remarkably, the fully relaxed 3-D dipole configurations exhibit two different stable modes: a
symmetric, or S, mode in which the dislocation cores move in the same out-of-the plane direction; and
an antisymmetric, or AS, mode in which the dislocation cores move in opposite out-of-plane directions,
cf. [21], Figure 7. Since the stored energy per dislocation core of the S mode is approximately 10% higher
than the corresponding AS mode, we regard the S mode as metastable, cf. [44]. In calculations, we
prime the AS mode—and eschew the S mode—by applying an initial small out-of-plane displacement
of the order of 0.2 Å to one atom in each core in opposite directions to each other. For the Stone-Wales
defect, we compute a out-of-plane displacement range (∆z = zmax − zmin) of 2.6 Å, comparable to the
value of 2 Å reported by [46].

When out-of-plane displacements are allowed, the energy dependence on dipole size is also
remarkably different than in the planar case, Figure 8. Thus, following an initial increase up to n = 13
approximately, the energy per unit periodic cell attains a constant value ostensibly independent of
the dipole size. In particular, the logarithmic dependence characteristic of the planar solutions is
lost. Correspondingly, the dislocation cores constrict when out-of-plane dislocations are allowed.
The out-of-plane displacements thus effective localize the elastic field of the dislocations, which behave
as non-interacting standing solitons. The results of Chen et al. [47] based on the REBO potential
show similar behavior, although their maximum stored energy value is ∼2.5 eV higher, Figure 8.
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This comparison shows that in the presence of defects the LCBOP is considerably softer than the
REBO potential.

1.85 Å

-2.28 Å

(a)

3.29 Å

-3.48 Å

(b)

Figure 7. Symmetric (a) and antisymmetric (b) stability modes in graphene. The color code indicates
the out-of-plane position of the atoms.
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 S .  C h e n  e t  a l .  3 - D
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)

n
Figure 8. Dislocation energy as a function of the size of the dipole for the 3-D fully relaxed
configurations compared with the results presented by Chen et al. [47].
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2.2.3. Dislocation Quadrupole

Dislocation quadrupolar arrangements are composed of two parallel dislocations of equal length
and opposite Burgers vector, and thus encompassing four dislocation cores (Figure 9). Here, the
periodic configurations are characterized by two parameters: the dipole length n and the dipole
separation m, measured as the number of arm-chair bonds between the dipoles. The lowest energy state
is always achieved when the out-of-plane displacements of the dislocation cores are the antisymmetric
mode shown in Figure 10, corresponding to the periodic cell shown in Figure 9.

n

m

Figure 9. Deformed configurations of periodic quadrupolar arrangement of discrete dislocations for
the harmonic solution exhibiting pentagon– heptagon core structures (n = 15, m = 11).

6.58 Å

-3.69 Å

Figure 10. More stable mode of deformed configurations of periodic quadrupolar arrangement of
dislocations in graphene.

Proceeding as in the dipole calculations, we have computed the harmonic and nonharmonic
atomic positions and stored energy per unit periodic cell of several quadrupolar configurations.
We specifically aim to ascertain how the energy depends on the geometric of the quadrupoles, i.e.,
on n and m. The planar energies, Figure 11, exhibit the expected logarithmic or dipole-dipole elastic
interactions, depending on geometry. Figure 12 shows the energy per unit periodic cell of the fully
relaxed quadrupolar configurations. As in the case of dipoles, the out-of-plane displacements confer
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the dislocations a standing soliton character, with the result that the dislocation interactions are lost for
sufficiently large quadrupoles.

0 5 1 0 1 5 2 0 2 5 3 0

4 0

5 0

6 0

7 0

 

 

 m = 5
 m = 1 5
 m = 2 3
 m = 2 7En

erg
y (

eV
)

n
Figure 11. Stored energy of periodic dislocation quadrupoles as a function of dipole sizes, n,
for different separation between dislocation lines, m, using the harmonic model.
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8

1 0

1 2

1 4

1 6

 

 

 m = 5
 m = 1 5
 m = 2 3
 m = 2 7

En
erg

y (
eV

)

n
Figure 12. Stored energy of dislocation quadrupoles for the nonharmonic relaxation scheme as a
function of dislocation lengths, n, for different separations between dislocation lines, m.

3. Dislocations in Bilayer Graphene

In bilayer graphene, the out-of-plane displacements induced by dislocations can give rise to
complex steric interactions between the layers. If the dislocations in both layers are in registry, steric
interactions are minimized and the energy of the bilayer is approximately double the energy of one
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monolayer. An example is shown in Figure 13, corresponding to two n = 9 dipoles. The energy of
the dipoles in a single layer is 7.96 eV, whereas the bilayer energy is 15.70 eV, or almost double the
monolayer energy. The deficit between twice the monolayer energy and the bilayer energy is indicative
of a modest attractive interaction between the layers.

B

B

B

7.20 Å

-3.90 Å

x

z

y

x

y
z 3.34 Å

Figure 13. Front (top) and diagonal view B (bottom) of a bilayer arrangement with one n = 9 dipole in
each layer, both at the same position in the xy plane. The color code indicates the out of plane position
of atoms.

The preferred stacking of the layers is illustrated in Figure 14. The figure shows the relaxation of
a bilayer containing two unmatched dislocation dipoles. In the initial condition, the stacking sequence
of the bilayer is AA, Figure 14a. Upon relaxation, the bilayer effects a transition into an AB stacking
sequence, Figure 14b, which is the known ground state of bilayer graphene [48].

By contrast, the introduction of unmatched defects in the layers results in strong steric interactions
as the layers deflect out of their planes. For example, in a configuration with a n = 3 dipole in the
bottom layer and a n = 11 dipole in the top layer, with the center of both dipoles at the same planar
location, the energy of the bilayer defect is 15.3 eV, whereas the sum of the energies of the monolayer
defects individually is 3.3 eV lower. Increasing the size of the top dipole to n = 21 further increases the
energy difference to 4.0 eV. This effect also occurs when only one layer contains a defect. For instance,
the n = 15 dipolar configuration in a monolayer has a stored energy of 8.5 eV, whereas the same defect
in one of the layers of a bilayer has an energy of 13.7 eV.
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(a)

(b)

Figure 14. (a) Initial AA stacking of bilayer graphene with matching dipoles. (b) Relaxed configuration
showing dislocation core structure and AB stacking.

Figure 14. (a) Initial AA stacking of bilayer graphene with unmatched dipoles. (b) Relaxed
configuration showing dislocation core structure and AB stacking.

Figure 15 shows an additional example of a bilayer with a n = 9 dipole in each monolayer
displaced 15 Å relative to each other. The energy of the defects in this configuration is 23.0 eV, whereas
the sum of the energies of the monolayer defects is 15.9 eV. The strong steric interference between
the deformed monolayers is evident in Figure 15. Figure 16 depicts the energy of two n = 9 dipoles,
one in each monolayer, as a function of the initial offset distance between dipoles. Remarkably, up
to an initial distance of ∼13 Å, the steric interference between the monolayers results in a strong
attractive interaction between the dipoles, which relaxed to a zero-distance configuration of energy
15.7 eV. For greater initial distances, the attractive interaction of the dipoles is not strong enough and
the dipoles remain offset to each other, resulting in comparatively larger energies.
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5.57 Å

-2.16 Å

~15 Å

z x

y

x

z

y

Figure 15. Top (top) and front (bottom) view of a bilayer arrangement with one n = 9 dipole in each
layer, separated 15 Å. The color code indicates the out of plane position of atoms.
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Figure 16. Energy of two n = 9 dipoles interacting through different layers in bilayer graphene, as a
function of the initial distance between them.

4. Summary and Concluding Remarks

On the basis of calculations carried out on LAMMPS [32] using the LCBOP [30,31] interatomic
potential, we have documented the emergence of strong steric effects in bi-layer graphene containing
offset dislocations resulting from the out-of-plane displacements of the individual layers.

We have built confidence in the calculations by carefully evaluating the fidelity of the LCBOP
potential in a number of configurations. In the harmonic range, we find that the LCBOP potential
matches closely the phonon dispersion curves experimentally measured by Siebentritt et al. [33],
Oshima et al. [34], Nicklow et al. [35] and Yanagisawa et al. [36]. The predicted phonon dispersion
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curves are also in good agreement with those predicted by the AIREBO potential [40]. We have
also tested the LCBOP potential for dislocation dipole and quadrupole configurations in monolayer
graphene. We find that the LCBOP potential is considerably softer, and allows from more complete
core relaxation, than other interatomic potentials.

With the LCBOP potential thus validated, we have turned to the characterization of the core
structure and energies of dislocation quadrupoles in bilayer graphene. Remarkably, we find that, if the
dislocations in the individual layers are sufficiently offset, the out-of-plane displacements of the layers
give rise to strong steric interactions which result in high energies. By contrast, if the dislocations are
in registry the steric interference between the individual layers is minimized and low energies are
attained. We find that there is a critical offset distance between defects in the individual layers that
separates both regimes. If the offset between individual-layer defects is less than a critical value, the
defects migrate and come into registry in order to minimize their energy. By contrast, if the offset
distance is sufficiently large the offset configuration is stable and the steric interaction energy is not
relaxed.

Fully coupled thermomechanical-electronic structure calculations of defects in monolayer
graphene, including grain boundaries, have been presented in previous work [19]. As noted by
numerous authors, the presence of lattice defects profoundly influences the electronic transport
properties of graphene, including its band gap structure. However, mechanical free-energy
minimization, an effect that has often been neglected in previous analysis, is determinant of—and
limits—the geometry and structure of the defects that can arise and be sustained by lattices. This points
to the need to account for models of thermomechanical relaxation, of the type presented in this paper,
in electronic-structure calculations. Evidently, isolated defects do not exhaust the broad range of lattice
defect structures that do occur stably in bilayer graphene. For instance, antiphase boundaries are
found to separate AB and BA domains [10,49] and intricate atomic and electronic reconstructions are
found to arise in twisted bilayer graphene [50,51], among other structures. These and other similar
phenomena suggest they could be worthwhile directions for further study.
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