Supporting Information

Molybdenum Disulfide Quantum Dots Prepared by Bipolar-Electrode Electrochemical Scissoring

Yang Li¹, Xiaoxia Wang¹, Mengli Liu^{1,2}, Heng Luo³, Lianwen Deng³, Lei Huang², Shuang Wei¹, Congli Zhou¹, and Yuanhong Xu^{1,2,*}

- ¹ College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; liyang4875@outlook.com (Y.L.); wxx@qdu.edu.cn (X.W.); 15705420340@163.com (M.L.); 11181011018@stu.ouc.edu.cn (S.W.); 2017021070@qdu.edu.cn (C.Z.)
- ² College of Life Sciences, Qingdao University, Qingdao 266071, China; lei_hl@126.com
- ³ College of Physics and Electronics; Institute of Super-Microstructure and Ultrafast Process in Advanced Materials; Central South University, Changsha 410083, China; luohengcsu@csu.edu.cn (H.L.); denglw@csu.edu.cn (L.D.)
- * Correspondence: yhxu@qdu.edu.cn; Tel.: +86-532-83780128

Figure S1. FL emission spectra with various excitation wavelengths of the supernatant under different peeling conditions. (**A**) 0.2 M NH₄F, 5 V, 20 h; (**B**) 0.2 M H₂SO₄, 5 V, 20 h; (**C**) 0.2 M PBS (pH = 7.4), 3 V, 20 h; (**D**) 0.2 M PBS (pH = 7.4), 7 V, 20 h; (**E**) 0.2 M PBS (pH = 7.4), 5 V, 10 h; (**F**) 0.2 M PBS (pH = 7.4), 5 V, 30 h.

Figure S2. XPS spectra of the S 2p peak regions of MoS_2 precursor (above) and MoS_2 precipitate (below) samples.

Figure S3. (A) Bright-field and (B–D) fluorescent images of cotton fibres stained with MoS_2 QDs. The fluorescent images were obtained at the excitation wavelengths of (B) 510–550 nm, (C) 330–385 nm, (D) 450–480 nm. Scale bar: 50 mm.

Table S1. To further elucidate the novelty of this work, compari	ison of previous works with this one.
--	---------------------------------------

Method	Precursor	Experimental Condition	Quantum Yield	Application	Advantage	Ref.
Ultrasonication	Natural Molybdenite	Ethylene glycol	-	-	Easy, efficient, cheap and environmentally benign preparation method; MoS2 nanosheets maintaining the semiconducting properties; low toxicity.	43
Lithium (Li) intercalation	2H-MoS2 powder	2.2 M n-butyl lithium solution in hexane	-	-	Effective and controllable preparation of luminescent monolayer MoS ₂ QDs with a narrow size distribution.	44
Electrochemica l exfoliation	MoS2 flakes (as electrode)	Lithium bis- (trifluorosulfon)imide (LiTFSI)	-	hydrogen evolution reaction	MoS2 QDs with narrow size distribution; MoS2 QDs exhibit excellent electrocatalytic activity towards hydrogen evolution	13
Electro-Fenton reaction	MoS2 crystalline powder	Sodium cholate, 0.05 M FeSO4 (pH = 3)	-	-	Simple, cost-effective, efficient, and controllable method. Simple preparation method:	8
Hydrothermal method	Sodium molybdate and Cysteine	Water	2.6%	PL sensor for detection of TNP	Constructed a high sensitivity photoluminescence (PL) quenching sensor for detecting TNP.	24
Na intercalation reaction	Bulk MoS2 (diameter of particles <2 µm)	Na	11%	fluorescent probe for long-term live cell tracing	Without using any toxic organic reagents during the preparation process; The as-prepared MoS ₂ QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols	45
Bipolar-elect-ro de (BPE) electrochemical method	MoS2 powder (Mol. Wt. 160.07, purity 98.0%)	0.2 M PBS (pH = 7.4)	13.9%	MoS2 QDs (fluorescent staining and cell imaging), byproduct (electromagnet ic wave absorber)	A new method for preparing MoS2 QDs and MoS2 electromagnetic wave absorbents; Without using any toxic organic reagents during the preparation process; High quantum yield; Simple	this wor k

Experimental Section

Quantum yield (QY) measurements: QY of the MoS₂ QDs was determined by previously established procedure [21]. Typically, quinine sulfate (literature quantum yield: 0.54) in H₂SO₄ (0.1 M) was chosen as a standard [26]. To minimize the re-absorption effects, the absorbance of the MoS₂ QDs dispersion and reference sample should be kept below 0.10 and 0.05 when excited at 310 nm, respectively. Quinine sulfate was dissolved in H₂SO₄ (0.1 M) while the MoS₂ QDs were dissolved in deionized water. The quantum yield of the MoS₂ QDs was calculated using the equation below [24]:

$$\Phi_{X} = \Phi_{ST} \left(\frac{Grad_{X}}{Grad_{ST}} \right) \left(\frac{\eta_{X}^{2}}{\eta_{ST}^{2}} \right), \tag{1}$$

Where the subscripts ST and X refer to quinine sulfate and MoS₂ QDs, respectively, Φ represents the fluorescence QY. Grad stands for the gradient from the plot of integrated fluorescence intensity vs absorbance, and η is the refractive index of the corresponding solvent.

*The intracellular uptake of MoS*₂ *QDs, bio-imaging and MTT assays*: MTT assays were used to evaluate the MoS₂ QDs doses on the viability of the bamboo fibre cells. The cells were treated with

various concentrations of MoS₂ QDs (0, 50, 100, 150, 200, 250, 300 μ g mL⁻¹) in fresh DMEM for 24 h. Treated cells were mixed with DMEM containing MTT (10 mL, 5 mg mL⁻¹ in PBS solution) and further incubated at 5% CO₂, 37 °C for 4 h. Then the MTT containing medium was added to each well with 100 μ L DMSO to solubilize the formazan crystals precipitate. The viability of untreated control cells was arbitrarily defined as 100%. Finally, the absorption at 490 nm of each well was measured by an EL808 ultramicroplate reader (Bio-TEK Instrument, Inc., Winooski, VT, USA). Bamboo fibre cells (106 cells per sample) were plated onto 35 mm glass chamber slides. The storage concentration of as-prepared MoS₂ QDs dispersion was about 300 μ g mL⁻¹. MoS₂ QDs dispersion at the concentration of 60 μ g mL⁻¹ in DMEM was then freshly prepared and placed over the cells for 4 h at 37 °C. Subsequently, the cells were washed thoroughly three times with PBS to remove the free and physically absorbed MoS₂ QDs. Finally, the cellular images were taken by a Leica TCS SP2 confocal laser scanning microscope (CLSM) (Leica Microsystems Heidelberg GmbH, Germany) with an excitation wavelength of 360 nm from the Ar laser.