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Abstract: The understanding of the relationship between the chemical structure and the hydrophilic
structure is crucial for the designing of high-performance PEMs. Comparative studies in typical Nafion
and sulfonated poly (ether ether ketone) (SPEEK) were performed using a combined experimental
and theoretical method. SPEEK showed suppressed fuel crossover and good mechanical property
but low water uptake, weak phase separation, and inadequate proton conductivity. Molecular
dynamics (MD) simulation approaches were employed to get a molecular-level understanding of the
structure–property relationship of SPEEK and Nafion membranes. In SPEEK membranes, the local
aggregation of hydrophilic clusters is worse, and much stronger electrostatic interaction between
Os–Hh was verified, resulting in less delocalized free H3O+ and much lower DH3O+. In addition,
the probability of H2O–H3O+ association varied with water content. Particularly, SPEEK exhibited
much lower H9O4

+ probability at various relative water contents, leading to lower structural diffusivity
than Nafion. Eventually, SPEEK possessed low vehicular and structural diffusivities, which resulted in
a low proton conductivity. The results indicated that the structure of hydrated hydronium complexes
would deform to adapt the confining hydrophilic channels. The confinement effect on diffusion of
H2O and H3O+ is influenced by the water content and the hydrophilic morphologies. This study
provided a new insight into the exploration of high-performance membranes in fuel cell.

Keywords: nanophase separation; molecular dynamics; proton exchange membrane; proton
conductive channel; fuel cell

1. Introduction

Proton exchange membrane fuel cell (PEMFC) is a type of renewable and sustainable
electricity generation technology with the advantage of high efficiency and zero emission [1–3].
As a performance–limiting component of PEMFC, proton exchange membrane (PEM) plays an
important role in maintaining high intrinsic proton conductivity and insulating electrode [4,5].
Perfluorosulfonic acid (PFSA) ionomers, in particular Nafion, composed of a hydrophobic
polytetrafluoroethylene (PTFE) backbone with pendant hydrophilic side chains terminated by a
sulfonic acid, are the most widely used benchmark PEM materials because of good stability and
high proton conductivity [6–8]. However, they are limited by their low operation temperature,
high cost, and high fuel crossover [9–11]. To address the problems, sulfonated nonfluoroniated
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aromatic materials, such as poly(phenylene)s [12,13], polyphenylenes [14], polyimides [15], poly
(arylene ether sulfone) [16,17], and poly (ether ether ketone) (SPEEK) [18] have been proposed
with good chemical/thermal stability, low cost, and high mechanical stability. However, poor
hydrophilic/hydrophobic phase separation and insufficient proton conductivity were reported [19–21].
It is well known that the macroscopic properties, especially proton conductivity, were dominated
by the chemical structure and nanophase separation morphology [22–24]. The understanding of the
relationship between the chemical structure and the hydrophilic structure is crucial for the design of
novel high-performance PEM.

Polymers with different chemical structures presented different hydrophilic clusters and different
proton transport phenomena [25,26]. It is well established that the polymer membranes consist of
nanophase separation of a hydrophobic matrix and hydrophilic clusters, wherein proton ions transport
through the hydrophilic domain composed of a water molecule, proton, and pendant sulfonate group
(-SO3

−) [27,28]. At the molecular scale, proton transport in confined hydrophilic channels includes
structural diffusion by proton hopping or a Grotthuss mechanism, and vehicular diffusion by a
diffusion mechanism [29,30]. Molecular simulations have been applied to advance the understanding
of the PEM structure and the proton transport at a molecular level [31–37]. It is reported that water
transport was dependent on the structure of polymer chain and the water content [38], and the vehicular
transport of hydronium ions was influenced by the electrostatic interaction between the hydronium
and the pendant -SO3

− [39,40]. Zhang et al. found that the membrane blockage significantly reduced
water diffusivity in the membrane than bulk water [41]. Mabuchi et al. reported that the Grotthuss
mechanism became predominant when the number of water molecules per -SO3

− (λ) surpassed 5.6 [42].
In spite of these valuable experimental and theoretical studies, the detailed mechanism of proton
transport in a hydrated domain remains unclear. Moreover, it is crucial to understand the influence of
different polymer materials on the hydrophilic cluster structure and the proton transport properties.

On the basis of the aforementioned consideration, experiment and molecular dynamics
(MD) simulation were used to study the structure–property relationship using two typical PEMs,
perfluorinated Nafion and nonfluoroniated SPEEK. First, their water uptake, proton conductivity,
methanol permeability, and mechanical properties were compared. Then, MD simulations were
employed to provide insights into experimentally observed phenomena and get a molecular-level
understanding of the hydrophilic structure and proton characteristics in Nafion and SPEEK membranes.
The local aggregation of hydrophilic clusters and the state of hydrated complexes were investigated.
Eventually, the proton diffusion abilities, including vehicular and structural diffusivities, in Nafion
and SPEEK membranes were compared.

2. Experiment and Simulation Detail

2.1. Materials

PEEK powder of VESTAKEEP4000P (density of 1.30 g cm3) was obtained from Degussa Co. Ltd.
(Essen, Germany) Nafion solution of 20 wt% (EW = 1100) was purchased from Sigma-Aldrich Co. Ltd.
(Shanghai, China) N-methyl–2-pyrrolidone (NMP) was provided by Tianjin Kemiou Chemical Reagent
Co., Ltd. (Tianjin, China) Deionized (DI) water was used for all the experiments. All the reagents
were of analytical grade. The repeat units of Nafion, PEEK, and sulfonated PEEK are demonstrated in
Figure 1.
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2.2. Preparation of Nafion and SPEEK Membranes

Sulfonated PEEK (SPEEK) was prepared by sulfonation of PEEK in accordance with our previous
work [43]. First, 10 g PEEK was dissolved in 200 mL 98 wt % sulfuric acid (H2SO4) in a flask at room
temperature. Then, the mixture was heated to 50 ◦C for sulfonation reaction, followed by precipitation
by DI water. SPEEK with DS = 50% (equivalent weight (EW) = 657) was adopted in this research,
which is proven to show the best performance among SPEEK membranes with different DS values.
SPEEK (EW) = 657) and Nafion membranes (EW) = 1100) were fabricated via the solution casting
method described in our previous publication [44,45]. In this study, the higher EW of Nafion than
SPEEK indicated that Nafion possesses lower -SO3H density than that of SPEEK.

2.3. Characterization Methods

Water uptake (ω) of Nafion and SPEEK membranes was tested according to the following
procedure. At 20 ◦C, the membranes were put into DI water for 12 h to reach the equilibrated weights
(Wwet). Dry mass of membranes (Wdry) was measured after drying at 120 ◦C in vacuum oven for over
12 h. Water uptakes (ω) and the number of water molecules per -SO3

− (λ) were calculated according
to Equations (1) and (2):

Water uptake (ω) =
Wwet −Wdry

Wdry
× 100%, (1)

λ(total) =
ω× EW

Mw
, (2)

where Wwet are the weight of the wet membranes, Wdry are the weight of the dry membranes, Mw is
the molecular weight of water (18 g mol−1), and EW is equivalent weight of Nafion (1100 g eq−1) and
SPEEK (657 g eq−1) in this study.

λ(total) is composed of freezable water and nonfreezable water, which were designated as
λ(freezable) and λ(nonfreezable). These two were measured using differential scanning calorimetry
(DSC) in a TA Q10 instrument. Membranes were pat-dried with tissue paper and immediately sealed
in aluminum DSC pans. In a typical run, 4–6 mg of sample is firstly equilibrated at −60 ◦C and then
heated to 50 ◦C at 5 ◦C min−1 under nitrogen atmosphere. λ(freezable) and λ(nonfreezable) were
calculated according to Equations (3) and (4):

λ(freezable) =
∆Hw × EW
∆H f ×Mw

, (3)

λ(nonfreezable) = λ(total) − λ(freezable), (4)

where ∆Hw is obtained by integrating the area under the heating curve, ∆Hf is the heat of fusion for
bulk water (334 J g−1), and λ(total) is the total fraction of water in the membrane, which is the sum of
freezable and nonfreezable water.

The in-plane proton conductivity was tested in a potentiostat (IviumStat). The four electrode AC
impedance method was used. The conductivity was calculated as:

σ =
L

R×W × δ
, (5)

where L and R designate the distance and resistance, and W and δ denote the width and thickness of
the membranes.

The methanol crossover, mechanical properties were measured in accordance with our previous
publication [44].

TEM observations on the nanophase separation and hydrophilic morphology of Nafion and SPEEK
membranes were obtained on a transmission electron microscope. RuO4 and Lead nitrate staining were
used for Nafion and SPEEK membranes respectively to identify the cluster and crystallite morphology.
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2.4. Model Constructions and Simulation Details

Molecular dynamics (MD) simulations were carried out to study the hydrophilic cluster
morphology and the water state of Nafion and SPEEK [46]. The details were in accordance with our
previous work [45]. Both Nafion chain and SPEEK chain consisted of 10 repeat units. In particular,
SPEEK chain (DS = 50%) was composed of 5 sulfonated PEEK units and 5 PEEK monomers. On the
basis of the water uptake results (presented in Figure 2), the λ(total) in Nafion and SPEEK was 16.2
and 8.2, respectively. Considering the huge difference in λ, comparing the properties of SPEEK and
Nafion under the same λ is not appropriate. Therefore, in the present study, four relative water contents
of 0%, 25%, 50%, and 100% for Nafion and SPEEK membranes were defined, corresponding to λNafion

of 0, 4, 8, and 16 and λSPEEK of 0, 2, 4, and 8. When the hydration level was 0, an undissociated sulfonate
group (-SO3H) was defined, whereas a dissociated sulfonate group (-SO3

−) was defined when the
hydration level was above 0 [47]. The simulated densities of Nafion and SPEEK were recorded and
compared with experimental values. With increasing hydration level, the reported experimental and
simulated Nafion density decreased gradually from 2.05 to 1.68 g cm−3 [48–50], while the simulated
density decreased from 2.07 to 1.71 g cm−3. The decrease in density could be attributed to the swelling
of aqueous domains with increasing water content. Meanwhile, the simulated densities of SPEEK
are also well coincident with the reported values [51–53]. These findings proved that the present
simulation reproduces the density of Nafion and SPEEK perfectly.
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3. Results and Discussion

3.1. Water Uptake, Proton Conductivity, Fuel Crossover and Mechanical Performance

The general performances of Nafion and SPEEK membranes are presented in Table 1. As compared
to Nafion, SPEEK showed a smaller water uptake of 22.5%, and the proton conductivity in hydrated
state at 80 ◦C is 0.120 S cm−1, which was substantially lower than that of the Nafion membrane.
However, SPEEK exhibited extremely low methanol permeability, indicating a desired suppressed fuel
crossover. In addition, a much better mechanical performance was revealed for the SPEEK membrane,
which ensured good mechanical durability.

Upon water hydration, the hydrophilic cluster would become bridged proton conductive channels.
Thus, the water uptake is crucial for proton conductivity. The composition of water uptake is shown in
Figure 2. The SPEEK membrane possessed comparable nonfreezable water but much lower freezable
water (8.7) than that of the Nafion membrane (1.9). Within sulfonated membranes, nonfreezable
water was tightly bonded to the -SO3

− of the pendent side chain, whereas freezable water represented
free water and loosely bonded water, which were able to diffuse combining with H3O+ through the
hydrophilic domains [54,55]. Thus, the decrease in freezable water in the SPEEK membrane was
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unfavorable for water and proton transport. The total number of water molecules per sulfonic acid site
of SPEEK was 8.2, which was considerably lower than the value of Nafion membranes (16.2). These
findings suggest a relative low proton conductivity of SPEEK. Notably, the difference of water state
between Nafion and SPEEK membranes might be caused by the phase separation morphology and
-SO3H density.

Table 1. The general performance of Nafion and SPEEK membranes.

PEM Water Uptake
at 20 ◦C

Proton Conductivity
in DI Water at 80 ◦C

(S cm−1)

Methanol
Permeability

(cm2 s−1)

Tensile
Strength

(MPa)

Modulus
(MPa)

Nafion 26.5% 0.167 2.41 × 10−6 13.9 215
SPEEK 22.5% 0.120 1.97 × 10−7 23.9 632

The proton conductivities of the Nafion and SPEEK membranes at various relative levels of
humidity (RH) ranging from 40% to 90% are shown in Figure 3. Compared with Nafion, SPEEK
PEMs exhibited much lower proton conductivity, especially at low relative humidity. Employing
RH = 90% and 40% as examples, the proton conductivity of Nafion was decreased from 0.094 to
0.0125 S cm−1, whereas the proton conductivity for SPEEK was greatly decreased from 0.056 S cm−1 to
6.2 × 10−4 S cm−1.
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3.2. Nanophase Separation Morphology

The nanophase separation morphology of the Nafion and SPEEK membranes is shown in
Figure 4a,b. Both the Nafion and SPEEK membranes represented nanophase separation morphology.
Similar to the hypothesis of the Gierke model [56,57], the hydrophilic regions (dark region) were
distributed in a hydrophobic matrix (white region). These hydrophilic clusters would become proton
conductive channels upon water hydration, while the white matrix constituted the physical support
for mechanical properties. Distinct nanophase separation and continuous clusters with a width of
3–5 nm were observed in Nafion membrane. However, the SPEEK membrane showed poor phase
separation morphology, wherein separated clusters of 1 nm were found.

MD simulation of Nafion and SPEEK with different water contents was carried out. Three relative
water contents of 25%, 50%, and 100% were investigated, corresponding to λNafion of 4, 8, and 16
and λSPEEK of 2, 4, and 8. The hydrophilic groups including -SO3

−, H2O and H3O+ are shown in
Figure 4c. Meanwhile, the backbone matrix was set to be invisible to clarify the hydrophilic domain.
The hydrophilic clusters were isolated at low water content. With increasing water content, neighboring
hydrophilic clusters were bridged to interconnected proton conductive channels, which could facilitate
both the structural and vehicular diffusion of protons. Similar to TEM images, a lower degree of
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nanophase separation with a smaller cluster size was observed for SPEEK. This might be attributed to
the higher steric hindrance of SPEEK backbone and the lower electronegativity of H in SPEEK than
that of F in Nafion.
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3.3. Hydrophilic Cluster in Nafion and SPEEK Systems

In this section, radial distribution functions (RDFs) were carried out by MD simulations to
investigate the water state in Nafion and SPEEK.

The RDF of S–S (S denotes sulfur atom in -SO3
−) for Nafion and SPEEK is presented in Figure 5.

As shown in Figure 5a, both RDFs of S–S (total) displayed a peak at about 4.5 Å. The peak intensity
was largely ascribed to the intermolecular S–S correlation. Nafion exhibited much stronger peaks for
all three types of S–S than SPEEK. In particular, the first S–S (intra) peak (4.5 Å) was missing in the
RDF of SPEEK. This revealed that in SPEEK, the local aggregation of hydrophilic clusters, which was
represented by sulfonate group, was poor, leading to poor cluster morphology, which agrees well with
TEM results.

The relations of -SO3
− and H2O and H3O+ were studied by the RDFs of Os–Hh and Os–Oh (O and

H denote oxygen and hydrogen atom, the subscripts “s”and “h” represent -SO3
− and hydronium)

in Figure 6. The RDFs of Os–Hh exhibited the first peaks at about 1.39 Å, indicating a formation of
hydrogen bonding between Os and Hh (see the inset scheme in Figure 6a). This agreed well with the
reports by Piyarat et al. [58]. The RDFs of Os–Oh displayed the first peaks at 2.33 Å. As the hydration
level increased, the peak intensities of Os–Hh and Os–Oh decreased for Nafion but increased for SPEEK.
The corresponding average hydronium number around Os was calculated and the results are listed in
Table 1. It is obvious that the average hydronium number around Os in SPEEK was higher than that
in Nafion, indicating a stronger interaction between Os and Hh in SPEEK, especially at high water
content. This was unfavorable for proton diffusion in the hydrophilic domain.
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The RDFs of S–Ow (O denotes oxygen, and “w” represents water) and S–Oh (O denotes oxygen,
and “h” represents hydronium) for Nafion and SPEEK are presented in Figure 7. Because S atoms
cannot contact H2O directly, the first peaks of S–Ow RDFs occurred at about 3.7 Å, suggesting the
existence of the first hydration shell around the -SO3

−. This was similar to the results reported by
Zhang et al. [41]. As the hydration level increased, the peak intensity decreased. The RDFs of S–Oh
displayed the first peaks at 3.7 Å, with the similar position of RDFs of S–Ow, proving that the -SO3

−

attracted both water and hydronium. The hydration number of Nafion and SPEEK around the -SO3
− is

displayed in Table 2. It showed that as the water content increased, the average number of H2O around
S increased, and thus the interaction between -SO3

− and H3O+ was reduced by the water solvation
of -SO3

− and more H3O+ would escape the attraction of -SO3
−. Therefore, with increasing water

content, the average number of H3O+ decreased. In the Nafion membrane, because of the relatively
high hydration number, more H2O gathered around -SO3

− than in SPEEK, indicating largerproton
conductive channels. It should be noted that with increasing water content, the H3O+ number in
Nafion decreased considerably, whereas the H3O+ number in SPEEK decreased slightly, proving the
electrostatic interaction between H3O+ and the -SO3

−- in SPEEK was much stronger. As a consequence,
the generation of more delocalized H3O+ in Nafion would enhance the proton conductivity.
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Table 2. Hydration number around various atomic groups and diffusivity of H2O and H3O+ in Nafion
and SPEEK.

PEM Atomic Types Water Content (25%) Water Content (50%) Water Content (100%)

Nafion

λ 4 8 16
Os–Oh 0.658 0.526 0.384
S–Ow 2.53 3.63 5.70
S–Oh 2.02 1.62 1.16

Oh–Ow 1.41 2.26 2.90

SPEEK

Λ 2 4 8
Os–Oh 0.759 0.712 0.621
S–Ow 1.24 2.52 3.62
S–Oh 2.20 2.12 1.97

Oh–Ow 0.70 1.14 1.81

3.4. Diffusion Coefficients of Water and Hydronium

On the basis of the thermodynamic movement (mean square displacement) of H2O and H3O+ in
Nafion and SPEEK, the corresponding self-diffusion coefficients of H2O (DH2O) and H3O+ (DH3O+)
were calculated according to Einstein relation. The simulated results at various hydration levels are
shown in Figure 8.

The water cluster morphology was strongly dependent on water content. Thus, as the water
content increased, the diffusion coefficients of H2O and H3O+ increased gradually. The simulated
diffusion coefficients of H2O in Nafion were 0.140 × 10−5 cm2 s−1 for λ = 4 and 0.385 × 10 −5 cm2 s−1 for
λ = 8. These values were consistent with the experimental results of 0.184 × 10−5 cm2 s−1 for λ = 3.49
and 0.307 × 10−5 cm2 s−1 for λ = 8.77 [59]. It should be noted that because of membrane blockage,
the diffusion of H2O in the hydrophilic domain was substantially decreased compared to that in bulk
water [60].

Herein, only the vehicular diffusion of H3O+ was investigated, without considering Grotthuss
proton hopping. When the water content increased, the diffusion coefficients of H3O+ increased,
thereby promoting proton conductivity. As compared with Nafion, SPEEK exhibited extremely
lower diffusion coefficients of H2O and H3O+, indicating a lower proton conductivity, which was
consistent with the result of proton conductivity test in Figure 3. We attributed this to the worse cluster



Nanomaterials 2019, 9, 869 9 of 13

morphology (see Figure 4a) and less free H3O+ in SPEEK membranes. These findings were similar to
our previous results by experimental and simulation methods [45].
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The results indicated that the confinement effect of proton conductive channels on diffusion of
H2O and H3O+ is influenced by the water content and the membranes’ morphologies.

3.5. Hydrated Hydronium Complexes

For a particular PEM, the state of hydrated hydronium complexes was dependent on proton
conductive channels, which in turn was dominated by the water content. The RDFs of Oh and Ow

are shown in Figure 9. The curves can be integrated within a certain radial distance to calculate the
number of H2O molecules (designated as n) around H3O+ to form a hydrated complexes H3O+

·(H2O)n,
which indicated the hydration degree of H3O+. According to Figure 9, a distance of 3.2 Å between
Oh and Ow was chosen, which includes most of the H2O lying within the first peak around H3O+.
A water number of 3.78 was reported for bulk water within 3.2 Å [61]. However, the H2O number
around H3O+ decreased considerably because of membrane blockage. Moreover, as the water content
increased, the hydration degree of H3O+ increased from 1.41 to 2.90 for Nafion and from 0.70 to 1.81
for SPEEK. A higher degree of hydration level led to abatement of electrostatic interaction between
-SO3

− and H3O+, thus making it beneficial for higher vehicular transport for proton.
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To further clarify the types of hydrated complexes H3O+
·(H2O)n, e.g., H3O+, H5O2

+ (denoted as
Zundel ions), H7O3

+, and H9O4
+ (denoted as Eigen ions), the probability of H2O–H3O+ association

as a function of relative water content for Nafion and SPEEK is shown in Figure 10. The structure of
hydrated hydronium complexes would deform to adapt the confining hydrophilic channels. As the
relative water content increased, the hydrophilic channels were broadened and the probability to
form larger hydrated complexes increased. These results were in good accordance with published
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reports [41,47]. It was revealed that hydronium ions had a lower probability of being surrounded by
more H2O molecules, proving the hydrophilic clusters were less connected in SPEEK.
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It is noteworthy that the structural diffusion occurred when n was above 3, i.e., H9O4
+. Particularly,

with increasing relative water content, the probability of forming hydrated complexes with n higher
than 3 increased for both Nafion and SPEEK, which contributed to higher structural diffusivity.
Moreover, SPEEK exhibited much lower H9O4

+ probability at various relative water contents, leading
to lower structural diffusivity than Nafion. Combining the smaller vehicular diffusivity in SPEEK
deduced from mean square displacement analysis, the total proton conduction would be much lower
than that in Nafion. This was accordant with the experimental results shown in Figure 3.

4. Conclusions

In this work, comparative studies of the fuel cell property and hydrophilic structure of Nafion
and SPEEK were performed using an experimental and simulation method. Generally, the SPEEK
membrane exhibited weak phase separation and poor hydrophilic cluster morphology, leading to low
water uptake and inadequate proton conductivity. Molecular dynamics (MD) simulation approaches
were employed to get a molecular-level understanding of the structure–property relationship of
the SPEEK and Nafion membranes. As compared with Nafion, local aggregation of hydrophilic
clusters in SPEEK, represented by -SO3

−, was inferior, contributing to poor proton conductive channels.
Because the electrostatic interaction between Os and Hh was much stronger in SPEEK than that in
Nafion, more H3O+ were bonded to -SO3

−, resulting in less delocalized free H3O+ for proton vehicular
diffusion. Consequently, the diffusion coefficient of H3O+ in SPEEK (0.00628 × 10−5 cm2 s−1) was
lower than that in Nafion (0.191 × 10−5 cm2 s−1). As the water content increased, the probability of
forming lager hydrated complexes, i.e., H3O+

·(H2O)n, increased significantly. The lower n value of
H3O+

·(H2O)n in SPEEK suggested lower structural diffusivity than that of Nafion. Eventually, SPEEK
possessed low vehicular and structural diffusivities, leading to a lower proton conductivity. This study
indicated that the interaction between Os and Hh should be carefully tuned to maintain an effective
proton conduction.
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