## Controlled growth of LDH films with enhanced photocatalytic activity in a mixed wastewater treatment

Zhongchuan Wang<sup>1</sup>, Pengfei Fang<sup>1</sup>, Parveen Kumar<sup>2</sup>, Weiwei Wang<sup>\*1</sup>, Bo Liu<sup>\*1,2</sup>, and Jiao Li<sup>1</sup>

<sup>1</sup>School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China; <sup>2</sup>Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China; wangzhongchuan1994@163.com (Z.W.); 17864373857@163.com (P.F.); kumar@sdut.edu.cn (P.K.); haiyan9943@163.com (J.L.)

\*Correspondence: wangweiwei@sdut.edu.cn (W.W.); liub@sdut.edu.cn (B.L.); Tel.: +8615689078202(W.W.); +86-533-2783909 (B.L.)

| Film No.                    | Peak position (eV) |        |
|-----------------------------|--------------------|--------|
|                             | 2p1/2              | 2p3/2  |
| NiAl-LDH films              |                    |        |
| NiFe-LDH films              | 726.28             | 712.78 |
| Fe-doped NiAl-<br>LDH films | 725.88             | 712.88 |
| Fe-doped NiFe-<br>LDH films | 725.68             | 712.78 |

Table S1. XPS Peak positions for Fe<sup>3+</sup> obtained from LDH films and Fe-doped LDH films.



**Figure S1**. XRD patterns. (a) NiAl-LDH films, (b) NiFe-LDH films, (c) Fe-doped NiAl-LDH films, and (d) Fe-doped NiFe-LDH films.



**Figure S2.** SEM images. (a) NiAl-LDH powders, (b) NiFe-LDH powders, (c) Fe-doped NiAl-LDH powders, and (d) Fe-doped NiFe-LDH powders.



**Figure S3.** XRD patterns. (**a**) NiAl-LDH powders, (**b**) Fe-doped NiAl-LDH powders, (**c**) NiFe-LDH powders, and (**d**) Fe-doped NiFe-LDH powders.



**Figure S4.** EDS elements mapping for Fe-doped NiAl-LDH films after the photocatalytic degradation in the presence of methyl orange (20 mg·L<sup>-1</sup>) and Ag ions (5 mg·L<sup>-1</sup>). (**a**) Area without Ag particles, (**b**) area with Ag particles.



**Figure S5.** EDS spectra for Fe-doped NiAl-LDH films after photocatalytic reaction in the presence of 5 mg·L<sup>-1</sup> Ag ions. (**a**) Area with Ag nanoparticles, (**b**) area without Ag nanoparticles in Figure 7(c).



**Figure S6.** N<sub>2</sub> adsorption/desorption isotherms of (**a**) NiAl-LDH powders and Fe-doped NiAl-LDH powders, (**b**) NiFe-LDH powders and Fe-doped NiFe-LDH powders.

All LDH powders are a type IV isotherm with an H3 hysteresis loop, owing to the aggregation of LDHs nanosheets. The specific surface area for NiAl-LDH powders, NiFe-LDH powders, Fe-doped NiAl-LDH powders, and Fe-doped NiFe-LDH powders are 42.26 m<sup>2</sup>·g<sup>-1</sup>, 43.09 m<sup>2</sup>·g<sup>-1</sup>, 48.37 m<sup>2</sup>·g<sup>-1</sup>, and 42.82m<sup>2</sup>·g<sup>-1</sup>, respectively. The pore size for NiAl-LDH powders, NiFe-LDH powders, Fe-doped NiAl-LDH powders, and Fe-doped NiFe-LDH powders are 14.35 nm, 12.92 nm, 10.38 nm, and 14.27 nm, respectively.