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Abstract: Zwitterionic polymers are suitable for replacing poly(ethylene glycol) (PEG) polymers
because of their better antifouling properties, but zwitterionic polymers have poor mechanical
properties, strong water absorption, and their homopolymers should not be used directly. To solve
these problems, a reversible-addition fragmentation chain transfer (RAFT) polymerization process was
used to prepare copolymers comprised of zwitterionic side chains that were attached to an ITO glass
substrate using spin-casting. The presence of 4-vinylpyridine (4VP) and zwitterion chains on these
polymer-coated ITO surfaces was confirmed using 1H NMR, FTIR, and GPC analyses, with successful
surface functionalization confirmed using water contact angle, X-ray photoelectron spectroscopy
(XPS), and atomic force microscopy (AFM) studies. Changes in water contact angles and C/O ratios
(XPS) analysis demonstrated that the functionalization of these polymers with β-propiolactone
resulted in hydrophilic mixed 4VP/zwitterionic polymers. Protein adsorption and cell attachment
assays were used to optimize the ratio of the zwitterionic component to maximize the antifouling
properties of the polymer brush surface. This work demonstrated that the antifouling surface coatings
could be readily prepared using a “P4VP-modified” method, that is, the functionality of P4VP to
modify the prepared zwitterionic polymer. We believe these materials are likely to be useful for the
preparation of biomaterials for biosensing and diagnostic applications.
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1. Introduction

Biological pollution [1–4], which is affected by the adsorption and aggregation of proteins,
microorganisms, and bacteria on the surface of materials, is a problem that is often encountered in the
field of medical diagnostics, medical transplantation, and dock materials. For example, the biological
molecules that adhere to biomaterial surfaces and the biofilm formation on material surfaces are
two major causes of implanting operation failure. Therefore, the development of highly efficient
nonfouling materials, such as those resistant to protein and microorganisms/bacteria, is always a focus
of research [5–9].

In recent years, studies have found that the repeating units of zwitterionic polymers contain
a positive group and a negative group, which have excellent resistance to protein and microbial/bacterial
adsorption [10]. Polysulfobetaine (PSB), polycarboxybetaine (PCB), and their copolymers are
zwitterionic polymers that contain similar numbers of negative and positive groups [11–13].
The repulsive forces between the polymers induce the formation of highly hydrated layers, which have
been shown to be responsible for the nonfouling properties of these polymers [14,15]. These hydrated
layers are formed by the electrostatic attractions within these amphoteric polymers, which are
stronger and more stable than the simple hydrated layers present in the poly(ethylene glycol) (PEG)
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polymers that are formed by simple hydrogen bonding forces [16–18]. Therefore, zwitterionic
polymers generally exhibit better nonfouling performance than PEG polymers [14], with zwitterionic
polymers shown to exhibit outstanding resistance against protein and cell adsorption in numerous
biological systems. Even under complicated conditions such in serum or blood, zwitterionic polymers
can exhibit outstanding resistance against protein and microorganisms/bacteria adsorption [15].
In addition, zwitterionic polymers have thermal stability, chemical stability, biocompatibility, and blood
compatibility properties [19,20]. Therefore, zwitterionic polymers are expected to become the new
generation of nonfouling biomaterials.

Although the antifouling performance of zwitterionic polymers where their resistantance to
nonspecific protein adhesion, microbial/bacterial adsorption, and biofilm formation, can allow them to
effectively avoid bacteria adhering on their surfaces, due to their high water solubility and certain
hydrolysis properties, the film formation of these kinds of polymers is poor, which greatly limits the
application of zwitterionic membranes in antifouling films [21,22]. Zwitterionic polymers exhibit
some disadvantages in poor mechanical properties and strong water absorption, which may result
in the inability to use their homopolymer directly for films. Thus, in recent years, some researchers
have focused their research on the surface grafting technique used for their preparation and the
generation of the polymers’ architecture. In previous work, our group used spin-casting processes to
attach asymmetric amphiphilic PEG/polystyrene(PS) polymer brush coatings to solid surfaces. These
PEG/PS polymers exhibited good nonfouling properties; however further optimization is required
to broaden the range of antifouling properties of these polymers. In this work, we introduced the
bio-inert poly(4-vinylpyridine) (P4VP) to modify zwitterionic polymers for the preparation of biofilms.
The pendant group of P4VP is a six-membered aromatic heterocyclic ring. The N atom has a pair
of unbonded electrons in the SP2 orbital plane [23]. Its water solubility is poor, but the film has
good toughness and high strength. The reaction can easily produce zwitterionic polymers [24–26].
Therefore, this paper uses the functionality of P4VP to modify the prepared zwitterionic polymers,
and optimize the biofouling performance of the film by regulating the degree of polymerization and
modification ratio.

2. Materials and Methods

2.1. Materials

2-(N,N′-dimethylamino)ethyl methacrylate (DMAEM, 98%), 4-vinylpyridine (4VP), 2,2’-Azobis
(2-methylpropionitrile) (AIBN), 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid, 98%,
1-aminopropane (98%), Bovine serum albumin (BSA, 99%), and lysozyme (Lys, 90%) were purchased
from Aladdin (Aladdin Industrial Corporation, China, Shanghai) and the inhibitors were removed
by passing the samples through a plug of activated basic aluminum oxide. AIBN was recrystallized
twice from ethanol. N,N-Dimethylformamide (DMF, 99.8%) SuperDry was provided by J&K Scientific
Ltd (China, Beijing). ITO glasses were purchased from Zhuhai Kaiwei Photoelectric Co., Ltd.,
100 mm × 100 mm × 1.1 mm, <10 ohm/sq. Surface Plasmon Resonance (SPR) Au chips were purchased
from Biosensing Instruments. Dulbecco’s modified Eagle medium (DMEM/HIGH, GLUCOSE 1X)
was purchased from Hyclone, GE Life Science. Fetal bovine serum (FBS) was purchased from Gibco,
Thermo Fisher Scientific. Cell culture reagents were purchased from Invitrogen (China, Shanghai).
Acetone was dried by distillation from anhydrous calcium sulfate (CaSO4). All other chemicals were
used as received unless otherwise stated.

2.2. Synthesis of the P4VPPC-co-PDMAPC Copolymer

Scheme 1 is the synthesis of the antifouling P4VPPC-co-PDMAPC copolymer. The 4VP and
DMAEMA random copolymers were named as P4VP-co-PDMAEMA. After P4VP-co-PDMAEMA
reacted with β-Propiolactone, the copolymers were named as P4VPPC-co-PDMAPC.
The P4VPPC-co-PDMAPC copolymer was synthesized by reacting the P4VP-co-PDMAEMA random
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copolymers, that were prepared according to the method published elsewhere, with β-propiolactone
as follows [27]. A certain amount of β-Propiolactone in dry acetone was added dropwise to
a solution of P4VP-co-PDMAEMA dissolved in dry acetone, and the mixture was stirred under
a nitrogen atmosphere at 15 ◦C for 5 h. The obtained product was rinsed with anhydrous acetone,
dissolved and dialyzed with methanol, and then dried under vacuum conditions. In order to
investigate the effect of the P4VP-co-PDMAEMA molecular weight and β-propiolactone content
on the film-forming and antifouling properties, we prepared polymers with different molecular
weights and different modification ratios. P1, P2, P3 and P4 represent the different molecular
weights of the P4VP-co-PDMAEMA polymers, respectively; CP20, CP40, and CP60 represent
the P4VPPC-co-PDMAPC copolymers with a degree of zwitterionic modification of 20%, 40%,
and 60%, respectively.
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2.3. Synthesis of the Polymer Films

The commercially available ITO glass was cut into a uniform size of 25 mm × 25 mm, soaked
in a deionized water, acetone, and ethanol solution for 30 min, rinsed with ethanol, and dried under
vacuum overnight. A 20 mg/mL solution of the P4VP-co-PDMAEMA and P4VPPC-co-PDMAPC
polymers in ethanol was prepared and the solution was passed through a 0.45 µm filter after thorough
stirring. Before spin-coating, the ITO surfaces were purged with nitrogen gas to remove surface
contaminants. The adjustment speed of the film formation rate was set at 2500 rpm for 30 s. The amount
of surface solution was controlled as consistently as possible. Each copolymer sample was repeatedly
spin-coated on different ITO glasses three times for surface characterization to ensure that the test was
effective. The polymer films were dried overnight in vacuum drying [28,29]. Similarly, the pure gold
chip used in the SPR test was prepared after the pretreatment, using the same polymer concentration
and spin-coating parameters.

2.4. Polymer Characterization

All 1H NMR spectra were recorded on a JEOL resonance ECZ 400S spectrometer (400 MHz,
JEOL Ltd., Tokyo, Japan) and analyzed with MestReNova LITE software. FTIR spectra were recorded
on a Nicolet AVATAR 360 spectrophotometer. The liquid sample was directly tested by the liquid
membrane method; the solid sample was subjected to the KBr tablet method. All infrared spectra
are accumulated 32 times with a 4 cm-1 resolution. Relative molecular weight and molecular weight
distribution were measured by a conventional gel permeation chromatography (GPC) system equipped
with a Waters 1515 Isocratic HPLC pump, a Waters 2414 refractive index detector, and a set of Waters
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Styragel columns (HR3 (500–30,000), HR4 (5,000–600,000), and HR5 (50,000–4,000,000), 7.8 × 300 mm,
particle size: 5 µm). GPC measurements were carried out at 35 ◦C using THF as eluent with a flow rate
of 1.0 mL/min. The system was calibrated with linear polystyrene standards [30–32].

2.5. Surface Characterization

Water contact angles were measured at ambient temperature using a CA system (OCA20,
Dataphysics, Germany) to characterize surface hydrophilic properties. 2 µL water droplets were then
added to the surface using a microliter syringe. Contact angles were determined as the average value of
three different measurements determined at different locations on the surface. XPS analysis was carried
out using a PHI5300 (PerkinElmer) spectrometer using Mg Kα excitation radiation (hν = 1253.6 eV),
with the binding energy scale referenced to the C1s peak at 284.6 eV. Surface morphology of the formed
polymer layers were observed using tapping mode AFM (Multimode 8, Bruker), with 3D images with
a scan size of 2 µm analyzed using Nanoscope software.

2.6. Protein Adsorption Test

SPR sensors were used to measure the protein adsorption on polymer surfaces using a BI-2000
(Biosensing Inc., USA.) Kretschmann SPR system. Bare gold films were soaked in an anhydrous
acetone solution overnight prior to use to prevent possible contamination of the surface of the gold
film. After repeated washing with ultra-pure water, the surfaces of the chips were dried with nitrogen,
before further structural modification was carried out. In these experiments, a sensing chip was placed
above the prism of a SPR system, with optical matching oil used to ensure refractive index matching of
the two components. 0.15 mL of a PBS solution (pH = 7.4) was flowed over the chip surface to obtain
a stable baseline, after which 1.0 mg/mL solutions of BSA and lysozyme in PBS (0.15 M, pH 7.4) were
added at a flow rate of 0.05 mL/min. After the SPR response of the deposited protein substrates had
reached a stable value, the surface was washed with PBS solution and the changes in the SPR response
were determined. The wavelength shifts between the buffer baselines were established before and after
protein injection to determine the changes in the surface protein concentration. The amount of protein
adsorbed on the surfaces was quantified through the resonance angle shift (4θ, mDeg), with a bare Au
substrate used as the control. Each sample of the protein adsorption was tested for three repetitions.

2.7. Cell Adhesion Test

The antifouling interactions between the polymer brush coatings and the pollutants were studied
using cell adhesion experiments to determine the interactions with the human embryonic kidney cell
line (HEK-293T) cells. HEK-293T cells were supplied by the Chinese Science Academy (Shanghai,
China) and grown using high-glucose DMEM supplemented with 10% (v/v) FBS and 1% antibiotics
(penicillin/streptomycin, 100 U/mL) at 37 ◦C, under a 5% CO2 atmosphere. All culture equipment was
sterilized in an autoclave before use. Polymer brush films were sterilized by treatment with UV light
overnight and then placed in 35 mm glass-bottomed dishes. HEK-293T cells (1.0 × 104 cell/well) were
seeded into each well and incubated at 37 ◦C for 6 h. Unattached cells were removed by washing three
times with PBS solution, and imaged using microscopy. Each sample of the cell test was tested for
three repetitions.

3. Results

3.1. Characterization of the P4VPPC-co-PDMAPC Copolymer

The P4VPPC-co-PDMAPCs were prepared using a two-step process involving RAFT copolymerization
and subsequent derivatization with β-propiolactone. In the first step, 2-(N,N′-dimethylamino)ethyl
methacrylate (DMAEM) and 4VP side chains were formed through RAFT copolymerization of 4VP and
DMAEMA monomer in DMF at 70 ◦C using AIBN as an initiator, and 2-(dodecylthiocarbonothioylthio)-
2-methylpropionic acid as a chain transfer agent (CTA). The P4VP-co-PDMAEMA random copolymers
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with different 4VP-to-DMAEMA molar ratios (see Table 1) were characterized using 1H NMR
spectroscopy (Figure 1), FTIR (Figure S1), and GPC (Figure S2). Figure 1 shows the 1H NMR spectrum
of the P4VP-co-PDMAEMA (P4) copolymer. The signals at δ 8.5 (peak “1”) and δ 7.0 (peak “2”) originate
from the pyridyl group of the 4VP-repeating unit. The peaks at δ 2.89 (peak “5”) are attributed to the
6 protons of the –N(CH3)2 terminal group of DMAEMA. Compared with the 1H NMR spectrum of
P4VPPC-co-PDMAPC (Figure 2), a resonance signal for the 6 protons of the –N(CH3)2 initiating group is
present at 3.3 ppm and 3.8 ppm, demonstrating that a CBMA fragment has been successfully introduced
into P4VP-co-PDMAEMA during the β-propiolactone functionalization step. FTIR spectra of the
P4VPPC-co-PDMAPC copolymers (Figure 3) are compared to those of pristine P4VP-co-PDMAEMA
(Figure S2), which indicates that all of the polymers contain carboxybetaine methacrylate (CBMA) side
chains (characteristic peaks: 1724 cm−1: C=O stretching; 1594 cm−1: COO- asymmetric stretching and
1388 cm−1: and COO- symmetric stretching) [10,27]. According to the aforementioned results, we can
conclude that well-defined P4VPPC-co-PDMAPC copolymers with different contents of CBMA were
successfully synthesized, and furthermore, the surface behaviors and antifouling properties of the
asymmetric polymers could be distinctly tuned by the CBMA repeated unit.

Table 1. Structural parameters of the P4VPx-co-PDMAEMA polymer.

Entry a [M]:[AIBN] Mn b Mw/Mn b

P4VP 60:1 2540 1.11
P1 60:1 3870 1.31
P2 180:1 4400 1.15
P3 300:1 6600 1.24
P4 540:1 11000 1.36

a Polymerization temperature: 70 ◦C. [4VP]:[DMAEMA] = 1:1. b Measured using GPC analysis at 25 ◦C in THF.
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3.2. Surface Characterization of Polymer Films

The surface property of the P4VP-co-PDMAEMA and P4VPPC-co-PDMAPC films prepared by
spin-casting on ITO glasses were evaluated using water contact angle measurements (see Figure 4).
The water contact angle for P1, P2, P3, and P4 was 82.7◦, 65.9◦, 56.4◦, and 77.0◦, which were much
smaller than that of P4VP on the ITO surface (95.8◦) [32,33]. The contact angle of P4VP-co-PDMAEMA
decreased but the effect is not obvious. After reaction with β-propiolactone, the contact angles for
CP20, CP40, and CP60 were decreased to 20.8◦, 20.5◦, and 19.1◦, respectively. It seems that the films
from P4VPPC-co-PDMAPC were more hydrophilic than those from P4VP-co-PDMAEMA. Meanwhile,
CP60 had a lower contact angle than that of CP40, which could be attributed to the subsequent higher
degree of quaternization. In order to increase the surface hydrophilicity, we need to finely control the
content of 4VP and DMAEMA side chains, which would affect the quaternary ammonium salting
reaction with β-propiolactone.
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XPS analysis of the polymer surfaces revealed elemental signals for C, O, N, and Si for all of the ITO
adsorbed P4VP-co-PDMAEMA and P4VPPC-co-PDMAPC polymers (see Table 2) [10,34]. As shown in
Table 2, an increase in N 1s and a decrease Si 2p signals were observed after polymer adsorption, which
indicates that the polymers were adsorbed onto the ITO surface. The surface C/O ratio was greater
for samples containing adsorbed polymers, whose values could be used to further demonstrate the
presence of polymers on the surfaces. Increased CBMA branching in P4VPPC-co-PDMAPC surfaces
resulted in the molar ratio of C/O changing from 4.23 to 3.42 and the N 1s decreasing from 5.61 to
4.41. CP20 gave higher surface C/O ratios than CP60, thus confirming that adsorption efficiency was
dependent on the length of the CBMA side chains. The above-mentioned results are consistent with
the 1H NMR spectrum and water contact angle on the surfaces.

The morphologies of the bare ITO glass and the polymer surfaces were determined using
tapping mode atomic force microscopy to provide information on the surface ordering of the
P4VP-co-PDMAEMA and P4VPPC-co-PDMAPC films (see Figure 5) [30]. The root-mean-square
(rms) roughness value of the bare ITO surface was 3.73 ± 0.22 nm, and decreased when the ITO surface
was coated with polymers. The roughness value of P4VP was 12.23 ± 1.42 nm. Increasing DMAEMA
amount of P4VP-co-PDMAEMA resulted in a decrease in roughness (P1 0.79± 0.08 nm, P2 0.70± 0.11 nm,
P3 0.68 ± 0.12 nm, and P4 1.37 ± 0.87 nm), with similar results observed for P4VPPC-co-PDMAPC,
the roughness values of CP20, CP40, and CP60 were 0.43 ± 0.09 nm, 0.41 ± 0.11 nm, and 0.44 ± 0.08 nm.
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These observations are consistent with previous results that high levels of CBMA produced films with
more flexible hydrophilic side-chains that could decrease the roughness of the film surface [35,36].

Table 2. XPS-analysis of surface atomic concentrations and molar ratios of bare and polymer-modified
ITO surfaces.

Sample Si 2p (%) N 1s (%) C:O

ITO 11.57 0.86 2.36
P4VP 4.97 6.97 8.72

P1 4.85 5.93 4.83
P2 3.76 6.22 5.53
P3 5.10 5.89 4.77
P4 4.02 6.13 4.59

CP20 5.79 5.61 4.23
CP40 5.47 4.57 3.94
CP60 0 4.41 3.42
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3.3. Antifouling Properties of Polymer Thin Films

The antifouling properties of the P4VP-co-PDMAEMA and P4VPPC-co-PDMAPC films surfaces
were tested using protein adsorption and cell attachment assays. Different proteins exhibited different
adsorption patterns for the same surface, with their isoelectric point (PI) playing an important role in
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their deposition processes. The protein resistance properties of the polymer brush P4VP-co-PDMAEMA
and P4VPPC-co-PDMAPC films were investigated using fluorescently labeled BSA and Lys (PI for
BSA = 4.8; PI for Lys = 10.7) [12,37]. These results showed that BSA was adsorbed onto the bare ITO
and polymer films (Figure 6), thus demonstrating a strong interaction between this protein and the
surfaces of these polymer films. However, the P4VPPC-co-PDMAPC films were found to be effective in
reducing BSA and Lys absorption. The antifouling effects toward BSA and Lys were found to increase
as the amount of CBMA side chain increased. When the zwitterion content was increased to 60% for the
CP60 polymer, the BSA adsorption decreased to 3.6% of the levels measured for bare Au, with a similar
trend observed where the adsorption of Lys decreased to 0. This result illustrates that the CBMA side
chain alone possesses good resistance against proteins. All of the P4VPPC-co-PDMAPC zwitterionic
films exhibited almost no adsorption of Lys, with the protein binding levels significantly less than for
only P4VP-co-PDMAEMA films. Therefore, the observed reduction in adsorption levels is due to the
presence of the zwitterion regions in the films.
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CP60 polymers.

Based on these results, the antifouling property of the polymer-based films was investigated
by evaluating the adhesion of HEK-293T cells via microscopy (Figure 7). The P4VP-co-PDMAEMA
polymer films of P4 showed a 50% increase in adsorbed cells in comparison with bare ITO surfaces.
The zwitterionic P4VPPC-co-PDMAPC films reduced 90% of HEK-293T cells adhesion. Meanwhile,
it was reported that PCB-coated surfaces could reduce the P. aeruginosa and P. putida biofilm formation
by 95% in comparison to the bare glass for ATRP biofilms [10]. More impressively in this study,
the P4VPPC-co-PDMAPC-coated ITO surface CP60 was shown to reduce cell adsorption by 99%.
Figure 8 shows the number of single and clustered cells, quantified to assess the prevalence of
nonspecific protein adsorption on the surfaces. The P4VP-co-PDMAEMA polymer surfaces of P4
(283 ± 24) showed a more than three times increase in the increment of adsorbed cells in comparison
with ITO surface (86 ± 15). The zwitterionic P4VPPC-co-PDMAPC coating (CP60) reduced 99%
of HEK-293T cells adhesion. These results indicate that high antifouling property was established
on the basis of control over the polymer architecture, and the addition of 4VP side chains could
effectively solve the problem of the hydrolysis of zwitterionic polymers. Through the comparison of
their antifouling properties, the polymer containing both 4VP and zwitterionic side chains (CP60)
exhibited a pronounced antifouling property against human kidney cell absorption.
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4. Conclusions

A new strategy has been developed to optimize the protein resistance properties of P4VP modified
zwitterionic polymers on ITO surfaces that were prepared using the RAFT copolymerization and
quaternary ammonium salting reaction with β-propiolactone processes. The water contact angle and
AFM measurements have revealed the smoothness and high hydrophilicity of P4VPPC-co-PDMAPC
films, with their protein and cell resistance properties found to be dependent on the ratio of their 4VP
and zwitterionic side chains. The P4VPPC-co-PDMAPC copolymer surfaces were shown to display
high nonfouling activity against BSA and Lys proteins and human kidney cells, when compared to
P4VP or P4VP-co-PDMAEMA polymer surfaces. This study describes a simple but effective approach
for preparing nonfouling surfaces, with the antifouling properties of their zwitterion components
suggesting that these materials are likely to be useful for the preparation of biomaterials for biosensing
and diagnostic applications.
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Survey XPS data for P3 polymer surface, Figure S8. Survey XPS data for P4 polymer surface, Figure S9. Survey
XPS data for CP20 polymer surface, Figure S10. Survey XPS data for CP40 polymer surface, Figure S11. Survey
XPS data for CP60 polymer surface.
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