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Abstract: Cesium is a radioactive fission product generated in nuclear power plants and is disposed
of as liquid waste. The recent catastrophe at the Fukushima Daiichi nuclear plant in Japan has
increased the 137Cs and 134Cs concentrations in air, soil and water to lethal levels. 137Cs has a half-life
of 30.4 years, while the half-life of 134Cs is around two years, therefore the formers’ detrimental effects
linger for a longer period. In addition, cesium is easily transported through water bodies making
water contamination an urgent issue to address. Presently, efficient water remediation methods
towards the extraction of 137Cs are being studied. Prussian blue (PB) and its analogs have shown
very high efficiencies in the capture of 137Cs+ ions. In addition, combining them with magnetic
nanoparticles such as Fe3O4 allows their recovery via magnetic extraction once exhausted. Graphene
and carbon nanotubes (CNT) are the new generation carbon allotropes that possess high specific
surface areas. Moreover, the possibility to functionalize them with organic or inorganic materials
opens new avenues in water treatment. The combination of PB-CNT/Graphene has shown enhanced
137Cs+ extraction and their possible applications as membranes can be envisaged. This review will
survey these nanocomposites, their efficiency in 137Cs+ extraction, their possible toxicity, and prospects
in large-scale water remediation and succinctly survey other new developments in 137Cs+ extraction.

Keywords: carbon nanotubes; graphene; Prussian blue; 137-Cesium; water remediation; magnetic
extraction; 137Cs+ selectivity; radioactive contamination

1. Introduction

Cesium-137 is a radioactive element with a half-life of 30.4 years emitting both beta and gamma
radiations. Under normal circumstances, its release is an outcome of radioactive testing of fission
reactions, whereby making it the most abundant radioactive atmospheric pollutant capable of entailing
health hazards. The 137Cs isotope is produced when uranium and plutonium undergo fission after
having absorbed neutrons in a nuclear reactor and is detectable and measurable by gamma counting.
It decays into 137Ba with a half-life of 2.6 min. Small amounts of 137Cs+ are released on a regular
basis in spent fuel ponds through cracks in the fuel rod that reach the coolant and fuel reprocessing
waters, which are all subsequently discharged into the sea as effluents [1]. Today, in view of the
Fukushima-Daiichi catastrophe, the extraction of radioactive cesium from soil and water is a necessity
and calls for the development of new technologies. The projected radiation effects of 137Cs will remain
at their maximum for the next 100 years, seconded by isotopes of strontium and plutonium. Other
sources of 137Cs contamination can be attributed to the Chernobyl accident in 1986; [2] it took 10 years
for the levels to drop but their effects are still being perceived even today [3]. In general, 137Cs is not
very mobile and tends to accumulate on the soil surface and is subsequently absorbed by plants and
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also captured by fungi [4]. A soil cleanup of 40,000 km2 reduced the radioactive contamination to
1/10th of the original value in Chernobyl.

137Cs is the primary cause of water contamination since the recent Fukushima Daiichi catastrophe
posing more far-reaching threats than via soil contamination [5], which tends to be more localized [6].
137Cs decontamination has now become a priority recommended by the International Atomic Energy
Agency [7]. Mobility of 137Cs+ through moving water bodies displaces the contamination to other areas,
thus widening the ‘contamination reduction’ zone. Therefore, aquatic life and fish-farming products
are also contaminated, which are thereafter consumed by humans. Additionally, 137Cs+ behaves
very similarly to K+ and Na+, thus facilitating its digestion and assimilation in living organisms [8].
Consumption of contaminated game and fish would introduce 137Cs in the human body, which would
then emit harmful radiations directly targeting the cell nucleus. Moreover, in aqueous media 137Cs+

ions tend to be rather robust and unaffected by changes in pH and redox conditions, whereby making
them a menace [9].

Several techniques were developed for the extraction of 137Cs+ from water: reverse osmosis [10],
coagulation-sedimentation [11], ion-exchange [12], nanofiltration [13], electro-dyalysis [14] and more
recently, fibrous zeolite-polymer composites [15]. On the other hand, adsorption is a highly efficient
and cost-effective process with very high ion selectivity provided that the right sorbents are used [16].
Various adsorbents: inorganic adsorbents, polymer-inorganic adsorbents [7] and bioadsorbents [17],
have shown efficiency in 137Cs+ extraction. Bioadsorbents however, have several disadvantages
such as low sorption efficiency, especially in the presence of other salts in the aqueous medium viz.,
Na+ and K+. They also suffer from degradation in extreme conditions (high temperature and low
pH). On the other hand, inorganic sorbents have shown large-scale applicability with high cation
sorption capacities (clays viz., zeolites, bentonite and coal). However, activation of sorption sites is
necessary through a surface functionalization treatment, which conversely, increases their production
cost. For nanozeolites, the Qmax or maximum adsorption capacity values could reach up to 69 mg/g,
but on the other hand, it is difficult to recover the exhausted material. Moreover, the Kd value, which is
the ratio of the equilibrium adsorption of the sorbent to the equilibrium concentration of the solute, is
low, implying an ineffectiveness in high solute concentrations [18]. Finally yet importantly, they do not
withstand harsh aqueous environments. Synthetic polymers combined with inorganic materials seem
to be more robust with a better sorption capacity than inorganic sorbents; they also show stability in
harsh environments and have been already applied on a large scale in Fukushima [7].

Among the various methods available for the extraction of 137Cs+ from aqueous solutions,
hybrid materials manifest enormous potential in selectively targeting and extracting 137Cs+ ions [19].
Inorganic ligands such as macrocyclic o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) ligand bonded to
the hydroxyl groups of the mesoporous silica, exhibited a yield of 60% attributed to the Cs-π interaction
of the OBPX22C6 benzene. Zeolite-Poly(ethersulfone) composite fiber having 30 wt % loading showed
excellent properties for the decontamination of radioactive 137Cs+ [7]. The decontamination with
such composites has also been demonstrated for a contamination of 823Bq/L with pH = 12. Other
silicates have also been employed for their known selectivity to 137Cs+; these include crystalline
silicotitanate [20,21], sodium mica [22] and sodium zirconium silicate [23]. Since they are usually in
the form of very fine powders, they are therefore unsuitable for column loading. Moreover, they are
difficult to separate from aqueous solutions by filtration or centrifugation therefore, reclaiming them
once expended becomes problematic.

This review will focus on the recent developments in the extraction of 137Cs+ from water as
depicted in the schematic outline of Figure 1. It will more specifically survey PB-CNT-Graphene based
nanocomposite efficiencies in 137Cs+ extraction. Large-scale applicability in real case scenarios of such
nanocomposites will be probed and their nanotoxicity issues will be discussed. A short summary of
other new materials is also provided at the end, which opens-up new possibilities in combining these
new materials with PB-CNT-graphene based nanocomposites.
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in two oxidation states within the structure: Fe3+ and Fe2+. These ions form two different FCC lattices 
displaced by half a lattice parameter with respect to each other. However, the bi and tri-valent Fe are 
coordinated differently. Furthermore, they are linked to each other via cyanide groups (C ≡ N) i.e., C 
groups are linked to Fe2+ and N groups to Fe3+ with high and low spins respectively, in octahedral 
configurations. The Fe2+ and Fe3+ ratio of 3:4 implies that in order to obtain a charge neutrality within 
the structure a 25% vacancy of [Fe+2(CN)6]4− molecules is necessary [24]. Coordinated water molecules 
occupy the resulting octahedral cavities created by such vacancies; six water molecules are linked to 
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Fe+2 can be replaced by other transition metals with the same +2 oxidation states such as Ni, Mn, 
Cu and Co, coordinated exactly like Fe+2 in the structure and are called PB analogs. However, there 
are reports of Cd and Zn with slightly larger atomic radii also being incorporated into the structure 
owing to their +2 oxidation state [25]. The aim in including different species into the structure is to 
provoke a distortion of the PB lattice by producing vacancies of the high spin state molecule along 
with distortions in the vacant cages, in order to facilitate the capture and sequestration of the 137Cs+ 
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2. Prussian Blue

2.1. Structure

Prussian blue (PB) is a dark blue pigment synthesized by ferrous ferrocyanide salts with chemical
formula Fe7(CN)18. It has a porous structure with the capacity to adsorb the 137Cs+ ions into its pores
and store them there. It is a metal organic framework (MOF) where the inorganic vertices, which
donate electrons in the structure, are linked to each other via organic compounds. The complete
chemical formula is FeIII

4[FeII(CN)6]3·xH2O. The compound has a face-centered cubic structure (FCC)
structure (Figure 2) belonging to the
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Fe+2 can be replaced by other transition metals with the same +2 oxidation states such as Ni, Mn,
Cu and Co, coordinated exactly like Fe+2 in the structure and are called PB analogs. However, there
are reports of Cd and Zn with slightly larger atomic radii also being incorporated into the structure
owing to their +2 oxidation state [25]. The aim in including different species into the structure is to
provoke a distortion of the PB lattice by producing vacancies of the high spin state molecule along with
distortions in the vacant cages, in order to facilitate the capture and sequestration of the 137Cs+ [26].
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2.2. 137Cs+ Ion Capture Mechanism in Prussian Blue

The compound is insoluble in water and the basic mechanism consists of ion exchange of 137Cs+ and
H+ with the former occupying hydrophilic vacancies [28]. PB analogs have very different mechanisms
of ion exchange or capture depending upon the anionic and alkali metal cation concentrations. Since
PB and its analogs contain large amounts of interstitial and coordinated water, 137Cs+ is captured by a
defect created by a [Fe+2(CN)6] vacancy, which creates a spherical cavity whose size is equivalent to
the hydration radius of 137Cs+. Nevertheless, recent calculations have demonstrated that a completely
dehydrated 137Cs+ ion can be incorporated into the structure with the release of a water molecule from
the interstitial sites [29]. This is similar to certain clays, where on dehydrating the interlayers the 137Cs+

selectivity increases [30]. On the other hand, water soluble analogs such as metal hexacyanoferrates
(HCF) consisting of a alkali metal cation with a [Fe+2(CN)6] anion, used for the extraction of 137Cs+

have shown less efficiency. In such compounds Na+ or K+ are incorporated during the synthesis of
the MOF in order to render them water-soluble [31]. In addition to 137Cs+ capture mechanisms for
non-soluble analogs; the water-soluble analogs mainly depend on the Na+ or K+ ion exchanges with
Cs+. Takahashi et al., have studied the 137Cs+ uptake in KCuHCF PB analog in order to understand
their lower adsorption capacity [31]. Three main mechanisms governed the 137Cs+ ion exchange
according to them, with the 137Cs+-K+ ion exchanges being predominant, as also stipulated by other
research groups. In case of low anionic vacancies, the percolation of 137Cs+ through the vacancies was
prevalent. Finally, for low K+ incorporation in the structure, proton exchange between 137Cs+ and K+

ions was evidenced. Ayrault et al., report a degradation in the crystal structure of the KCuHF soluble
compound after 137Cs+ adsorption which was not observed in the non-soluble counterpart [32].

2.3. Nanostructured Prussian Blue

137Cs+ adsorption in PB crystals is a very slow process. Fujita et al., have demonstrated that after
two weeks of adsorption experiments, the depth of 137Cs+ adsorption was at most between 1–2 nm,
irrespective of the crystal size [33]. This implies that most of the adsorption occurs on the surface of the
crystallites. This low diffusion depth is mainly attributed to the blocking of the vacancies by captured
137Cs+ ions, which in turn hinders further 137Cs+ diffusion. Since the diffusion depth appears to be a
constant, increasing the specific surface would therefore be a solution to increasing the 137Cs+ uptake.
One way of augmenting the specific surface is by synthesizing nanoparticles of PB. The surface to
volume ratio of crystallites increases as their size decreases; therefore nanoparticles have an extremely
large surface to volume ratio. For example, a 3 nm nanoparticle will have 50% of its atoms on its
surface. This would also imply that in the case of PB nanocrystals most of the vacancies and sites
responsible for 137Cs+ adsorption would be available on the surface, thus enhancing its specific surface.
To this end, different research groups have produced various PB analogs of type Metal(M)-Co, where
the nature of M defines the efficiency of the uptake. Liu et al., have demonstrated that Zn assisted
Fe-Co PB analogs present high 137Cs+ uptake efficiency [34]. They also observed that the size of the PB
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analog particle reduced with the reduction of Fe in the structure; for pure Zn-Co analogs, a crystallite
size of ~73 nm was calculated, displaying the highest 137Cs+ adsorption as depicted in Figure 3.
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Figure 3. Adsorption efficiency of Fe-Co and Zn-Co prussian blue (PB) analogs as a function of time.
The Zn-Co PB analog exhibits a higher Qt (Qt is the adsorption capacity per unit gram of the sorbent
at a given time t) owing to the reduction in size of the nanoparticles. Adapted from [34] under the
Creative Commons agreement from RSC, 2017.

Considering that the 137Cs+ adsorption depth is only about 1–2 nm, hollow PB nanoparticles
may offer many more advantages. They not only have a very active surface area due to their large
surface to volume ratio but their hollow interior is also capable of capturing and storing 137Cs+ [35].
A surfactant polyvinylpyrrolidone (PVP) was used to stabilize the nanoparticle and increase their
dispersion in aqueous solutions. Figure 4 compares the efficiency of solid and hollow PB cubes of
~200 nm, in the capture of 137Cs+. The elemental mapping of Figure 4B depicts a higher concentration
of captured 137Cs+ ions within the hollow structures than the filled ones in Figure 4A. Nevertheless,
137Cs+ diffusion depth greater than 2 nm would require higher activation energy at room temperature.
Other methods are required to determine the exact diffusion depth in such structures, as these results
are mainly qualitative. Besides, it is well known that the use of a surfactant shields the active sites
and prevents the capture of 137Cs+. In order to avoid such shielding effects, PB could be coated
onto support materials instead through hydroxyl bonds that anchor the PB to the support material.
Carboxylic groups also tend to immobilize the PB particles in a sturdier manner. Wi et al., used a
polyvinyl support surface functionalized with acrylic acid. This allowed converting the OH groups to
COOH and providing a better adhesion of the PB [36]. The PB nanoparticles were immobilized on the
PVP sponge and an increase in 137Cs+ uptake efficiency by five times was reported, compared to the
hydroxyl bond functionalization.
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3. Magnetic Extraction Using Prussian Blue

There are reports of photo-induced magnetism where an electromagnetic radiation induces a
residual magnetization even after the excitation is turned off, [37] due to low and high spin combinations
of the transition metals in PB analogs. On their own PB and its analogs exhibit ferromagnetism at a
Curie temperature of 11 K with a saturation magnetization of 3.4 emu/g as obtained by Tokoro et al., for
Mn-Rb-Fe PB analogs [38]. The presence of Mn in the structure creates a Jahn-Teller distortion [39] by
changing the M–CN–M bond angle and deviating it from 180◦, whereupon inducing ferromagnetism.
Among the various PB analogs, Mn based ones have shown the highest saturation magnetization [40].
One method of decreasing the Curie temperature of PB is by synthesizing nanoparticles of PB. Uemura
et al., have demonstrated a decrease in Tc from 5.5 K in bulk PB to 4 K for PB nanoparticles protected
by PVP [41]. Nevertheless, finding practical applications involving magnetic extraction would require
having a Tc at around room temperature. Also, humidity increases the Curie temperature for Co-Cr PB
analogs, [38] thus making it difficult for their direct application in aqueous media. This implies that
most methods using PB for 137Cs+ extraction, do not prescribe any efficient approach to recover the
exhausted adsorbent.

Literature on nanostructured PB alone is very scarce as they are generally combined with magnetic
nanomaterials like superparamagnetic iron oxide nanoparticles (SPIONs) i.e., Fe3O4 or γ-Fe2O3

nanoparticles. In the past, there have been reviews briefly describing 137Cs+ adsorption employing
magnetic PB-Fe3O4 nanoparticles [16]. However, this review goes further as it not only describes more
recent developments in the latter but also discusses the development of the magnetic nanocomposite
in detail from a nanoscale point of view. In nanostructures, physical properties such as magnetic
moment as well as adsorption vary as a function of the nanoparticle size and further depend upon the
surfactants used to stabilize them during synthesis. In the paragraphs that follow, the efficiency of
magnetic PB nanoparticles and their combination with carbon allotropes are assessed. To the best of
our knowledge, in the literature such nanostructures have not been evaluated in detail.

Core-shell structures with the magnetite constituting the core and the PB active layer constituting the
shell have been employed. Jang et al., have reported that the poly(diallyldimethylammoniumchloride)
(PDDA)@Iron oxide nanoparticles can act as nucleation sites for the precipitated PB, resulting in the
coating of a negatively charged PB on the PDDA@Iron oxide nanoparticle surface [42]. Furthermore,
they have also studied the magnetic properties of Fe3O4 and have observed a decrease in the saturation
magnetization from 56 emu/g for pure Fe3O4 to 12 emu/g for the PB-Fe3O4 nanocomposite. The reduction
was mostly due to the shielding of the superparamagnetism of Fe3O4 by the PB capping. Nevertheless,
successful magnetic extraction was achieved with the nanocomposite [43]. PB analog compounds tend
to show degradation in various applications after successive cycles of reuse. Chang et al., Figure 5A,
have synthesized Fe3O4 (shell)-PB (core) nanocomposites with sizes between 20–40 nm; [44] two different
concentrations of FeCl3 were used during the synthesis. The higher Fe concentrations produced Fe3O4

cores with a higher magnetic saturation moment (Figure 5B), which conversely had an adverse effect on
the 137Cs+ adsorption due to the higher shielding of the active sites in the PB core as depicted in Figure 5C.

Some researchers have also used different ferrimagnetic nanoparticles like CoFe2O4 combined
with PB for the extraction of cesium and have indicated very high efficiencies compared to pure
CoFe2O4, which has some interesting 137Cs+ adsorption capacity by itself [45]. CoFe2O4 possesses the
spinel structure and tends to be physically more robust but is a hard magnetic compound compared to
Fe3O4. The latter is a soft magnet with a very small residual magnetization.
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Figure 5. (A) TEM images of PB and magnetic PB (MPB) nanoparticles. (B) Field-dependent magnetization
of PB and magnetic PB nanoparticles. (C) Adsorption capacity of samples under different Cs+ concentration.
T = 25 ◦C; contact time = 6 h; [Cs+]initial = 50–2500 µg/mL; madsorbent/Vsolution = 4 µg/mL. Adapted with
permission from [44], Copyright RSC, 2016.

4. Nanostructured Carbon Allotropes in 137Cs+ Capture

Carbon based materials have a large surface area with good ion-exchange capabilities. These
are further enhanced by the presence of functional groups such as hydroxyl or carboxyl groups on
their surfaces, which can trap heavy metals from aqueous solutions. Carbon has various allotropes
such as fullerenes, graphite, and diamond. The 2D carbon allotropes include carbon nanotubes and
graphene [46]. The latter is the building block for graphite, which consists of stacked graphene sheets.
On the other hand, a carbon nanotube (CNT) is a rolled-up graphene sheet and belongs to the fullerene
or C60 family. The number of walls on a CNT is determined by the number of times the graphene sheet
is rolled-up. The defects in graphene include folds and wrinkles operating as active sites towards their
decoration. In a CNT, the edges, bends and breaks in the walls promote the attachment of functional
groups that are subsequently linked to other organic or inorganic nanoparticles. Therefore, CNT and
graphene are attractive nanoscale structures with large surface areas displaying high ion adsorption
capacities and constituting versatile catalytic supports with tailored properties.

There are a few works based on activated carbon or carbonaceous materials in the extraction of
low level 137Cs+ contamination [47]. Mesoporous carbon based magnetic nanoparticles for 137Cs+

sequestration are also being studied [48]. However, activated carbon is more efficient in extracting
organic species than metal ions, [49] with an estimated adsorption efficiency between 0–10% for
inorganic contaminants [50]. Activated carbon and PB analogs have shown moderate efficiency in
137Cs+ extraction with a Qmax = 63 mg/g [51]. PB acts as the active material while as activated carbon
is the support material for the PB analog. On the other hand, nanoscale carbon-based materials are
gaining importance as they can extract heavy metal ions as well as radioactive cesium ions on their
own. PB and their analogs also show a higher efficiency and a greater adsorption capacity towards
137Cs+ when combined with carbon-based nanomaterials. Table 1 lists the various nanocomposites
of CNT/graphene used in 137Cs+ extraction from aqueous solution. All of these nanocomposites are
discussed in the paragraphs that follow.

4.1. Graphene Based Nanocomposites for 137Cs+ Extraction

There is not much work on pristine graphene in the adsorption of 137Cs+ from aqueous solutions.
Only one paper reporting a very high efficiency of 137Cs+ extraction using pristine graphene has been
published [52]. Graphene oxide and graphene functionalized with polyaniline (PANI) have also been
used in radionuclide extraction, including 137Cs+ from aqueous solutions with the former showing a
lower Qmax than the latter [53,54]. Combining graphene with nano PB further increases the efficiency as
described below. Other combinations of graphene and PB with other bioabsorbants are also available
in the literature viz. chitosan and biopolymers such as pectins [55,56]. For practical application,
reclaiming the exhausted nanomaterials is an important aspect to consider. In addition, once the nano
PB sorbent is exhausted it takes a very long time for a small quantity of it to precipitate, as PB has a
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tendency to disperse like a colloid in aqueous solutions. Combining them with graphene nanosheets
cannot really solve the problem of recovering the exhausted materials either, as they too tend to form
a colloidal suspension in aqueous solutions depending upon the pH. One way of overcoming the
problem of reclaiming these PB nanoparticles is to pack them in a graphene oxide foam (Figure 6) that
could be loaded directly into the filtration column [57]. This has already been applied to organic dyes
such as methylene blue where wood was impregnated with graphene, intended for a continuous flow
system. The sorbent showed potential of being regenerated and was reused multiple times [58].Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 21 
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As mentioned earlier, PB nanoparticles have a tendency to agglomerate because of the magnetic
moments generated by the various oxidation states of the transition metals [40]. In general, nanosize
materials tend to agglomerate in order to reduce their surface energy [59]. The superparamagnetic
properties of Fe3O4 allow easy recovery of the PB from the aqueous solution when combined together
to form Fe3O4-PB nanocomposites. Nevertheless, the 137Cs+ uptake efficiency of such nanocomposites
tends to decrease with a higher magnetization of Fe3O4. This is mainly because when the magnetization
increases, magnetic nanoparticles tend to show higher agglomeration, which conversely reduces their
active surface area. To this end, PVP surfactant was employed, which increases the mono-dispersion
of the nanomaterials and provides larger surface areas for adsorption. However, surfactants tend to
reduce the adsorption efficiency as seen previously. In this regard, graphene based nanocomposites
are therefore an alternative to the above-mentioned shortcomings. Firstly, Fe3O4 nanoparticles are
immobilized on the graphene surface in a dispersed manner, whereby reducing their agglomeration.
Secondly, these nanoparticles serve as spacers between the graphene sheets discouraging the graphene
sheets to stick together due to Van der Waals interactions [60]. Thirdly, PB is then directly decorated
onto the graphene without being linked to the Fe3O4 nanoparticles. Here again, PB hosts the
active adsorption sites whereas Fe3O4 aids in magnetically extracting the exhausted nanocomposites.
Graphene mainly serves as a support even though its synergistic interaction with PB cannot be
neglected. Yang et al., obtained the nanocomposite by wet impregnation of graphene with FeCl3
followed by K4[Fe(CN)6] with constant magnetic stirring for 1 h at room temperature. The precipitates
were subsequently recovered with a magnet by them [61].

4.2. Carbon Nanotubes for 137Cs+ Extraction

Similarities in adsorption exist between graphene and CNT despite their opposite extreme aspect
ratios. Like in the case of graphene, CNT also promises exciting 137Cs+ extraction properties. Both
have the capacity to be used either as colloids that can be magnetically extracted or as membranes
which allow reclaiming them easily once exhausted [62]. The mechanism of adsorption is similar to
graphene and relies on electrostatic, hydrogen and π-π interactions between the carbon allotrope and
the contaminant [63]. Moreover, CNT have an additional advantage compared to graphene, which is
the capacity to create mesopores when bundled together. Therefore, it presents several more sites for
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the adsorption of ions: within the walls of the CNT, between CNT or within the mesopores, on the
walls of the CNT and in peripheral grooves [64].

In addition, nitric acid treated CNT have demonstrated efficacy in the extraction of heavy metals
ions such as Cu2+, Mn2+, Co2+, Zn2+, Pb2+ owing to amine groups on the surface. This has motivated
researchers to employ CNT for the extraction of other radioactive ions from aqueous solutions viz.,
U4+, U6+, Th4+ and radioactive Co2+ and Cu2+ ions [65]. Many groups have therefore carried out
treatment or functionalization of CNT in order to make them more reactive to 137Cs+ species. Several
studies have shown that 137Cs+ is attracted to OH groups [66]. CNT easily harbor different groups such
as amine, hydroxyl, lactone, phenol or carboxyl groups on their surfaces post-functionalization [67].
They therefore are ideal candidates for the adsorption of 137Cs+. Yang et al., have therefore prepared
chitosan grafted CNT owing to the abundance of OH groups present in the former [68]. Their study
demonstrated that the pH of the aqueous solution had a very important role to play on the 137Cs+

adsorption by the OH groups of chitosan. They also manifested a higher adsorption than the bare
CNT. Another study determined that increasing the amount of hydroxyl groups does not necessarily
bring about an increase in 137Cs+ adsorption. To this end, Yang et al., combined CNT with bentonite
which are both known 137Cs+ adsorbents linked to each other via chitosan [69]. They demonstrated
that cation exchange is more effective than hydroxyl capture. More importantly, they established that
hydroxyl capture depends upon the host matrix and increasing the number of OH groups will not
increase the 137Cs+ adsorption. This mainly suggests that the OH groups should be linked directly
to the CNT matrix and are therefore limited by the number of active sites on the CNT walls. In this
regard, single-walled carbon nanotube (SWCNT) could be more effective [70] than multi-walled carbon
nanotube (MWCNT) [71], considering that the former possess a higher specific surface. In any case,
the type of functional group also plays a role in 137Cs+ selectivity.

Other groups have studied the effects of Prussian blue and their analogs on the adsorption
efficiency of 137Cs+ when combined with CNT. These tend to have a catalytic effect on the PB analogs
by increasing the adsorption efficiency of the latter [72]. In one study by Li et al., Cu-Co-Ni PB analogs
were combined with CNT [73]. Chitosan was wrapped around the CNT to increase their dispersion
and also to link them to the PB analogs. Two studies have combined CNT with Cu cyanoferrates
linked via different amine groups i.e., propargylamine (Figure 7) and dietheleneamine on SWCNT [74]
and MWCNT [75], respectively. The Qmax increased from 150 mg/g (MWCNT) to 239 mg/g (SWCNT).
These differences could be attributed to the use of different types of nanotubes and to variety of
the amine ligands. In any case, the SWCNT study demonstrated that only 30% of 137Cs+ ions were
adsorbed by the PB nanoparticles. The rest were adsorbed onto other active sites of the functionalized
SWCNT. Tsuruoka et al., have studied ferrocyanides embedded into diatomite nanoparticles encaged
in both MWCNT and SWCNT which were impregnated in a polyurethane spongiform [76]. They have
observed a synergistic effect owing to the porous structures created by both types of CNT. Zheng et al.,
have also demonstrated that it was possible to electrochemically clean the nanocomposite of 137Cs+

ions and reuse them [77]. Water-soluble sodium CoHCF encapsulated in alginate beads reinforced
with highly dispersed CNT was employed in the extraction of 137Cs+. The beads were stable in a broad
pH range of 4–10 and revealed potential for large scale applications [72]. A combination of graphene,
carbon fiber and PB has also been used to extract 137Cs+ directly from a lake in China [78]. Such a
combination therefore allows an increased specific surface area with prospective scalable applications.
A high efficacy of the graphene-CNT nanocomposites has been demonstrated for the extraction of
aromatic compounds and Cu+2 heavy metal ions [79]. These hybrid carbon allotropes exhibit 25%
higher adsorption capacities in both cases than their individual counterparts. They have also shown
high desalination capacities along with adsorption of heavy metal ions [80]. This suggests that alkali
metal ions would tend to have a higher affinity towards the hybrid carbon allotrope compared to PB,
making 137Cs+ extraction by PB more effective in a high salinity aqueous medium such as seawater.
Combining them with Fe3O4 would then be a suitable method of reclaiming the exhausted sorbents.
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Figure 8 provides the schematic of the 137Cs+ extraction mechanism of graphene/CNT/magnetic
PB nanocomposites.Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 21 
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Figure 8. Mechanism of 137Cs+ capture in graphene/CNT/PB nanocomposite. Fe3O4 is used for
magnetic extraction and does not participate in the adsorption of 137Cs+. PB is linked to CNT and
graphene. Some of the possible functional groups that capture 137Cs+ are depicted on the CNT and
graphene surfaces. A sub-cube or unit-cell of PB capturing and sequestering the 137Cs atom is also
provided in the top right corner. The nanocomposite therefore harbors several active sites for the
capture of 137Cs+ ions.
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Table 1. Various Graphene/carbon nanotubes (CNT)/PB/Fe3O4 based nanocomposites arranged in decreasing order of their Qmax. The table provides the 137Cs+removal
efficiency, Kd, intitial concentration, temperature of extraction, isotherm and kinetic models used.

Nanocomposite Removal
Efficiency % Kd L/g pH Initial Concentration

mg/L Temperature ◦C Isotherm Kinetic Model Qmax mg/g

Pristine graphene [52] 41 0.115 1–12 10–10000 27 Langmuir NA 465

Fe3O4-GO-pectin [56] NA 50 1–11 9–822 30 Langmuir Freundlich
Tempkin PFO PSO 432

MWCNT-CuHCF [77] 95 568 7 1 28 Langmuir Fruendlich NA 310

SWCNT-DMAD [70] NA NA NA NA 25 NA NA 250

SWCNT-CuHCF [74] NA NA NA NA 25 NA NA 230

Chitosan-PB-CNT [73] NA 42.5 1–9 200 20 Langmuir Freundlich
Redlich Peterson

PFO PSO Boyd
Webbe Morris Elovich 219

GO-PANI [53] 100 94.5 2–10 1–100 25 Langmuir Freundlich NA 185

Bentonite [69] 89 34.2 3–10 10 25 Langmuir Freundlich NA 182.7

MWCNT-Cu ferrocyanide [75] NA NA 1–12 0.027–55 25 Langmuir NA 151

MWCNT-Na-CoHCF-alginate [72] 53 23 2–10 200 25 Langmuir Freundlich PFO PSO 133.33

MWCNT-Amino functionalized [71] 95 7–13 1–9 4.5 × 10−6–2.28 × 10−4 15–35 Langmuir Freundlich
Tempkin PFO PSO 117–136

PB-GO-Carbon fiber [78] 85.48 159.8 2–8 5–80 25 Langmuir Freundlich PFO PSO 81.25

MWCNT [75] NA NA 1–12 0.027–55 25 Langmuir NA 46

Chitosan-MWCNT [68] 25–70 26.7 3–10 1–42 25 Langmuir Freundlich NA 45

Fe3O4-PB-GO- alginate beads [82] 80 48.7 7 25–150 0–30 Langmuir Freundlich PSO 43.5

MWCNT-betonite [69] 80 23 3–10 10 25 Langmuir Freundlich NA 159.4

Fe3O4-PB-hydrogels [81] 99.5 0.4 4–10 100–500 25 Langmuir PSO 41.5

GO [54] 55 481 1–13 10 23 Langmuir Freundlich PFO PSO 40

MWCNT [69] 35 27.8 3–10 10 25 Langmuir Freundlich NA 45.6

Raw MWCNT [68] 12–55 55.6 3–10 1–42 25 Langmuir Freundlich NA 29

RGO-PB [57] 99.5 6.455 NA 0.2 NA Langmuir Freundlich NA 18.67

MWCNT [67] 45 35 1–10 5–20 25 Langmuir Freundlich NA 12.75

Pristine MWCNT [67] NA 14 1–10 5–20 25 Langmuir Freundlich NA 1.63

NA-not available.
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5. Efficiency of Various Carbon Based Materials in 137Cs+ Capture

Various batch tests performed on the different sorbents have shown increased efficiency of the
graphene or CNT based sorbents (Table 1). Adsorption kinetics and equilibrium studies provide
the efficacy of an adsorbent in a given adsorption system and are necessary to understand the
underlying adsorption mechanisms. Most of the equilibrium adsorption studies that are provided
in Table 1, employ the Langmuir and Freundlich adsorption models [67,77]. In the Langmuir model,
the adsorption of 137Cs+ from an aqueous solution onto a graphene-based nanocomposite is mainly
used to obtain Qmax values. The model would hold for graphene-based nanocomposites as only a
single monolayer of adsorption is considered, as defined by the active sites on the graphene/CNT
surfaces. In the Langmuir model, all sites are considered equally favorable. This is contrary to the
Freundlich model, which considers that the active sites possess varying adsorption energies and
such is the case of graphene-PB based nanocomposites. In the Tempkin model it is assumed that the
adsorption energy reduces as and when the sites become saturated [71,77]. The Brunauer-Emmet-Teller
model assumes multilayer adsorption by considering the Langmuir model for each adsorbed layer [75].
Figure 9 provides examples of some of the isotherm models used in CNT/graphene-PB nanocomposites
surveyed in this work. However, graphene and CNT based PB nanocomposites can be regarded
as monolayer adsorption considering that the active sites lie on the surface of CNT and graphene,
implying that all three models, Langmuir, Freundlich and Tempkin are appropriate. These equilibrium
models are seconded by kinetic models such as, the pseudo first order (PFO) and second order kinetic
models (PSO), which define the adsorption rate limiting factors [70,78,81,82]. The Elovich kinetic model
has also been applied to chitosan-CNT-PB composites in consideration of their elemental heterogeneity,
as the solid surfaces under study are energetically heterogeneous also [74].
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Figure 9. Examples of Langmuir, Freundlich and Redlich-Peterson adsorption isotherms models
applied to (A) oxidized MWCNT and CuFC-MWCNT, adapted with permission from [75], Copyright
Springer Nature, 2015, (B) Graphene foam-PB composite, adapted from [57] with permission under
Creative Commons agreement from Nature Research, 2015 and (C) Chitosan-PB analog-CNT, adapted
with permission from [73], Copyright Springer Nature, 2016.

Table 1 below therefore provides Qmax values obtained from batch tests of several different CNT,
graphene, Fe3O4 and PB combinations. Qmax gives a direct indication of the available active sites or the
maximum monolayer capacity for 137Cs+ adsorption. Moreover, the Langmuir equation is valid over a
wide concentration range. The table indicates that PB analogs along with CNT statistically provide
the highest Qmax values reaching 310 mg/g. Pristine CNT or graphene in general do not show much
efficiency compared to their hybrid counterparts. However, when they are decorated with amine
groups their Qmax reaches 240 mg/g. This value is higher than CNT attached with hydroxyl groups
of chitosan. However, chitosan when used as a linker between CNT and PB has a Qmax of 219 mg/g.
Nevertheless, the value of the Qmax depends on various factors such as pH, temperature of the solution,
presence of competing ions and the initial concentration of 137Cs+. The particle size of the sorbent is
also an important consideration but since we are only considering nanosize sorbents in this review, we
can neglect this parameter in our discussions. Various studies on graphene or CNT based materials
in this study show that the temperature of the solvent is instrumental in increasing the Qmax of the
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sorbent [54,71,78]. This is mainly because the process becomes endothermic with temperature increase
and 137Cs+ in the solution is therefore more mobile due to which they attain active sites more efficiently
on the sorbent. This further implies that 137Cs+ capture efficiency and can increase if the number
of active sites obtained by various treatment or functionalization on the carbon-based materials are
increased to their maximum capacity. The adsorption of 137Cs+ is also highly dependent on the initial
pH of the solution, which has mostly to do with the functional groups of the carbon-based materials
becoming protonated at low pH [67,72]. Since an OH group is necessary for the capture of 137Cs+ as
discussed above a reduction in the former due to protonation would decrease the Qmax of the sorbent.
At higher pH, a deprotonation of the functional group and an increase in OH- ions in the solution
makes the 137Cs+ capture process more efficient.

The presence of other ions or salts such as Mg, Na, Li and K also affects the 137Cs+ adsorption due
to the inherent competition between them. They all manifest similar affinities to the active sites on the
carbon-PB based nanocomposites. In the case of PB or its analog, a higher affinity to K+ and Na+ has
been observed with a given order of competition: K+ > Ca2+ > Mg2+ > Na+. When combined with
MWCNT, the Qmax value decreased only slightly but showed a higher selectivity towards 137Cs+ [75].
Lin et al., have used CNT-PANI-NiHCF composites for electrically switching ion exchange studies
and have demonstrated a higher affinity towards 137Cs+ than Na+ ions [83]. Such nanocomposites are
also employed for the extraction of Sr2+ at the same time. However, they appear to have a greater
affinity towards 137Cs+ than 81Sr2+, which may have to do with the difference of oxidation states of the
two cations [73]. The contact time between the sorbent and the sorbate are also necessary parameters
towards understanding the adsorption of 137Cs+. Optimal adsorption times are required in order to
evaluate the feasible scalability of the developed methods. This means that the contact time should be
calculated in such a way that optimum adsorption should be obtained with minimum leaching of the
adsorbed 137Cs+ as well as the transition metals and alkali metals constituting the PB framework. Both
adsorption and equilibrium times should be short for large-scale applications. The rate of adsorption
depends on the temperature, number of adsorption sites, and diffusion of the 137Cs+ within the porous
matrix, which in turn depends on the density of the packed material. In the case of MWCNT, a contact
time of 80 min was required to attain equilibrium [67]. A study with graphene oxide required a long
contact time of 24 h [54] similarly to stirred pectin stabilized magnetic PB-GO nanocomposites [56].
For PB-graphene-carbon fiber composite the equilibrium was reached after 8 h [78].

6. Toxicity of Nanomaterials

Toxicity of nanomaterials is a key issue that is under debate [84]. If used in water remediation
systems, their release and disposal need to be properly planned and evaluated. Nanomaterials are
small enough to pass the skin barrier and enter the blood stream. In addition, they can be inhaled
causing lung damage or ingested causing kidney damage. In the case of heavy metals, their ions can
be fatal and can engender life-threatening maladies. Both CNT and graphene have been studied to
evaluate their toxicity and environmental impact. Studies on zebra fish have shown that both their
growth and cardiac rates are affected by these 2D nanocarbon allotropes [85]. The toxicity of CNT is an
important enough issue to incite the development of related counter small-molecule-drugs [86]. CNT
present risks during their entire lifecycle and mainly during occupational exposure. This implies that
their manipulation needs to be regulated. CNT could also interact with biomolecules in the water and
produce toxic effects [87]. The stability of PB needs to be thoroughly evaluated in various aqueous
conditions. Studies have demonstrated the possibility of leaching of cyanide into ground water on
decomposition of the ferrocyanides [88]. This also implies that 137Cs+ could leach out and contaminate
ground water. One method to stabilize PB analogs viz., titanium ferrocyanide and curb leaching of
cyanide and 137Cs+ includes transforming the spent material into lithium titanate, which consequently
immobilizes the 137Cs [89]. In some studies, the release of iron from PB in Fenton type reactions were
studied by Doumic et al. [90]. They studied the catalytic effect in a pH = 3 environment and have
observed that insoluble PB nanocomposites were more stable and showed negligible Fe release (10%
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after 13 cycles). Kim et al., also have observed negligible leaching of Fe during the 137Cs+ adsorption
process in PB-cellulose hydrogel composites [91]. Yang et al., have also carried out a systematic study
of the possible leaching of Fe from PB-Fe3O4-graphene nanocomposites in a wide pH range from 4 to
10 [61]. Even in the highest ionic strength seawater, the amount of Fe leaching ranged from 0.95% to
0.61% while in natural water, Fe leaching as low as 0.0026% was observed. In another study with PB
embedded magnetic hydrogels, leaching of Fe was studied over a period of two weeks and only a
0.3% increase in Fe was observed in the solution [81]. Graphene is also considered a chemically stable
material. Nevertheless, changes in pH affect the protonation of the carbonyl or hydroxyl groups. At
high pH graphene dissolves like a salt while at low pH, it tends to form aggregates and at neutral pH
it stays suspended in the solution [92]. This also implies that the stability of graphene oxide depends
upon the functional groups on its surface and their particle sizes [93]. In such a scenario, the dose
related toxicity could vary. Overall, the formation of colloids should be absolutely avoided. However,
the effect of graphene on the human body is still unknown; on the other hand, graphene oxide has been
known to accumulate in the lungs of mice when inhaled, but no pathological outcome was further
reported. Nano-graphite and Fe3O4 were also tested for Fe leaching. A very low pH < 3 showed an
exponential increase of Fe release. Fe3O4 are linked to graphene via electrostatic forces or via functional
groups on their surfaces similar to CNT therefore, the risk of nanoparticles being loosely bonded does
exist. Nevertheless, in general, many studies have shown that linking Fe3O4 to graphene and CNT
exhibit exceptionally high stability with very little leaching of Fe [94]. In any case, the exhausted
nanoadsorbent has to be removed from the water and presently; magnetic extraction appears to be the
most adapted solution.

7. Conclusions and Perspectives

7.1. The Road so Far for 137Cs+ and the Prospects of Graphene/CNT-PB Based Nanocomposites Towards
Its Extraction

Research on 137Cs+ contamination has taken giant leaps since the Chernobyl catastrophe. Cesium
is known to damage soft tissue, bones and provoke bone cancer. Today, eight years after the Fukushima
Daiichi disaster, cesium still seems to be prevalent in soil and water; a large-scale cleanup at both fronts
is still being pursued. Radioactive 137Cs+ has also been detected in tap waters of Tokyo. Salty ground
water containing 137Cs+ is one artery for land contamination to reach the sea. Even though there is
some on-site storage capacity at Fukushima Daiichi of the contaminated water, a large amount of the
least contaminated water has already been rejected into the sea. There has been some progress in the
cleansing of waters, however the problem is still at large. Tokyo Electric Power Company (TEPCO)
forecasts the decontamination procedure to continue for the next 30–40 years. Therefore, new materials
and methods towards the capture and sequestration of 137Cs+ are being developed at an accelerated
pace in order to quickly reply to the concern.

Adsorption and ion exchange have been found to be efficient methods in the capture of 137Cs+.
The contamination in Fukushima has been cleaned by the Kurion process, which consisted of effective
capture of the ions (81Sr2+ and 134,137Cs+) via an extremely porous aluminosilicate based zeolite [95].
Areva, the French nuclear company then further treated the water with a nickel ferrocyanide (NiHFC)
and sand-polymer mixtures [96], which reduced the contamination by at least more than 1000 times.
Advanced liquid processing system (ALPS) technology uses different combinations of resins, zeolites,
titanates, activated carbons and hexacyanoferrates with a selectivity towards 62 radionuclides but is
only applicable after 137Cs, 134Cs and 90Sr quantities are reduced by the Kurion and Areva methods [97].
Therefore, the Prussian blue analog or hexacyanoferrates have already shown efficiency at a large
scale and a total of 482,000 m3 of water has been decontaminated so far. The major drawback of the
methods was the similarity between Na+ and 134,137Cs+ affinities thus, making the whole process less
efficient. The storage of sludge obtained via such processes was initially planned in large underground
tanks on the Fukushima-Daiichi premises with no radioactive leaching detected. The waste was then
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immobilized by cementation treatment [98]. The major disadvantage of cementation was the increase
in volume of the waste to be stored in a nuclear repository along with the risk of the cement cracking.
To this end, vitrification has been proposed as a method that not only immobilizes 137Cs more securely
without the risk of breaking or cracking but also compresses the quantity of stored radioactive waste.

Graphene based nanomaterials seem to have a catalytic effect on PB as the Na+ and K+ selectivity
decreases compared to that of 137Cs+. This selectivity towards 137Cs+ can be further enhanced on
electrical switching as in the case of PB with CNT. In addition, 81Sr2+ and 134Cs+ ions are also extracted
simultaneously with 137Cs+. Nevertheless, PB does show a higher affinity to 134,137Cs+ than 81Sr2+,
which can be further enhanced by using high specific surface materials such as graphene, CNT or
hollow nano PB and their analogs, which exhibit higher Qmax values than their bulk counterparts.
These nanopowders can be dispersed into a water body to be decontaminated and recovered via
magnetic extraction on attaching Fe3O4 nanoparticles to the graphene surfaces. The drawback of Fe3O4

is that the saturation magnetization is rather low for large-scale applications as they usually contain
surfactants. This would imply a risk of leaving behind some nanomaterial uncaught by the applied
magnetic field. Another scenario could consist of making membranes of functionalized graphene and
CNT with PB, which could then be easily recovered once exhausted. The main drawback of using PB is
an increase of alkali metal content in the water due to ion exchange. This would not have detrimental
effects on seawater; however, increased salinity in ground water could render it unsafe to drink.

Graphene and CNT are resistant in harsh environments and further offer recycling capabilities.
Moreover, carbon is the fourth most abundant element in the Earth’s crust implying continuous availability
for large-scale applications. However, no publications reporting large-scale use of graphene or CNT in
water filtration are available. This suggests that new technologies and methods employing them are
potential candidates. Nevertheless, large-scale applications require large cost-effective production and
functionalization capacities. Moreover, a choice between fixed bed and batch adsorption has to be made
when employing graphene. In certain cases, batch methods appear to be more efficient for contaminant
adsorption than fixed bed methods. Such a choice would allow obtaining maximal adsorption with
minimal amounts of absorbent, thereby reducing the quantities of radioactive wastes to be treated [99].
Further studies on the toxicity of these carbon-based materials are also required. The most important
parameter is the contact time of the adsorbent with the adsorbate, which should be as low as possible for
large-scale applications especially considering the thousands of cubic meter waiting to be remediated.
Regeneration of graphene and CNT has been studied using acids and bases, making the recovery of the
metallic contaminants feasible. However, from an industrial point of view, there is much work that needs
to be conducted in this very promising field.

7.2. Development of Other Nanocomposites

Different materials need to be combined in order to increase the 137Cs+ selectivity and hence
its extraction efficiency, as already proven by the Kurion-Areva-ALPS combinations. With regards
to other potential materials, PB has also been combined with zeolites for the adsorption of 137Cs+

ions [100,101]. Zeolites were seen as promising materials [101] for 137Cs+ adsorption [102,103] and
were subsequently combined with fibrous polymer adsorbents to enhance their 137Cs+ extraction
capacity. These zeolite-polymer composite fibers were initially studied for heavy metal ion removal
such as Pb2+, Cu2+, Ni2+, and Cd2+ [104,105]. One advantage is that the surface to volume ratio could
be tuned through the zeolite fibrous polymer ratio with a specific surface value of 145 m2/g. The study
suggested that with such zeolite polymer composite fibers, the Pb2+ extraction takes place by both ion
exchange and inclusion mechanisms. Zeolite and poly(ethersulfone) were then combined for 137Cs+

extraction with 30 wt% of zeolite in porous fibrous polymer [15]. These composites were applied to
the decontamination of radioactive 137Cs+ in the city of Fukushima for a period of 28 days. A total of
7700 Bq/kg of radioactive Cs was extracted during this period, while with the zeolite alone only 33 Bq/kg
was extracted [7]. The main advantage of this composite is that water can flow unobstructed through
the composite compared to the zeolite powders. Fiber based porous structures seem to be more adapted
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for large flow extraction than magnetic extraction that needs a specific set-up. The latter nevertheless
has the advantage of limiting the quantity of nuclear waste produced during the radioactive 137Cs+

extraction process. Functionalized graphene and CNT could very well be included in such porous
structures without clogging the pores and increasing the 137Cs+ selectivity during extraction.
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