

Supporting Information

Properties and Mechanism of Hydroxyapatite Coating Prepared by Electrodeposition on a Braid for Biodegradable Bone Scaffolds

Ting-Ting Li ^{1,2,3}, Lei Ling ¹, Mei-Chen Lin ^{4,5}, Qian Jiang ^{1,2}, Qi Lin ⁶, Jia-Horng Lin ^{1,3,4,5,7,8,9,*} and Ching-Wen Lou ^{3,7,8,10,11,*}

- ¹ Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China; tingtingli@tjpu.edu.cn (T.-T.L.); 1731015027@stu.tjpu.edu.cn (L.L.); jiangqian@tjpu.edu.cn (Q.J.)
- ² Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China
- ³ Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
- ⁴ School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; ritalin2870@mail.fcu.edu.tw
- ⁵ Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan
- ⁶ Fujian Engineering Research Center of New Chinese Lacquer Material, Minjiang University, Fuzhou 350108, China; linqi@mju.edu.cn
- 7 Ocean College, Minjiang University, Fuzhou 350108, China
- ⁸ College of Textile and Clothing, Qingdao University, Shandong 266071, China
- ⁹ Department of Fashion Design, Asia University, Taichung 41354, Taiwan
- ¹⁰ Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- ¹¹ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- * Correspondence: jhlin@fcu.edu.tw (J.-H.L.); cwlou@asia.edu.tw (C.-W.L.); Tel.: +886-424-518-661 (J.-H.L.

Substrate	Electrolyte	Current Density/Voltage	Temperature	Time	PH value	Ca/P Ratio*	Ref.
Ti disc	0.61 mM NH4H2PO4 and 0.36 mM Ca(NO3)2·4H2O	potentiodynamic mode, from -1.4 V to 0 V, scanning rate 0.2 mV/s	50/75 °C	2 h	5	1.63	[S1]
Ti64 alloy	Ca(NO3)2NH4H2PO4 Electrolyte resistivity was 18 MΩ·cm at 25 °C	potentiodynamic mode, from -1.4 V to 0 V, scanning rate 0.2 mV/s	75 ± 0.5 °C	2 h	5/6	1.51	[S2]
Ti	0.008 M Ca(NO3)2·4H2O, 0.005 M NH4H2PO4, 1 M NaNO3 and 6 mL/L H2O2	15 mA/cm ²	65 ± 2 °C		6	1.64	[S3]
Carbon fibers	3.80 × 10 ⁻⁴ M NH ₄ H ₂ PO ₄ , 6.35 × 10 ⁻⁴ M Ca(NO ₃) ₂ and 0.1mol/L NaNO ₃	1.0, 3.0, 5.0, 7.0 and 9.0 mA	98.4 °C	60,120,180 mins	6	1.57	[S4]
Nitinol alloy	0.042 M Ca(NO3)2, 0.025 M (NH4)2HPO4, 6 mL/L H2O2/0.008 M Ca(NO3)2, 0.0005 M (NH4)2HPO4, 6 mL/L H2O2	1.5、3、5 mA/cm ² , 1.5、5、15 mA/cm ²	70 ± 1°C	25 min	6	1.70	[S5]
Titanium plate	0.0006 M Ca(NO3)2, 0.00036 M (NH4)2HPO4, 0.1 M NaNO3/ 0.025 M Ca(NO3)2, 0.015 M (NH4)2HPO4 0.1 M NaNO3	1 mA/cm ²	100 °C	2 h	6	1.67	[S6]

Table S1. The Ca/P ratio of HA coatings obtained by electrodeposition in the past two years by other authors.

* The Ca/P ratio shown in the table is the best value obtained in the article.

Figure S1. Surface morphology of undeposited braids, (**A**) SEM image of ×40 magnifications (**B**) SEM image of ×1000 magnifications.

Figure S2. HA Crystal Diameter at 60 min Electrodeposition.

References

- [S1] Cotrut, C.M.; Vladescu, A.; Dinu, M.; Vranceanu, D.M. Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition. *Ceramics International* 2017, 44, 669–677
- [S2] Vladescu, A.; Vranceanu, D.M.; Kulesza, S.; Ivanov, A.N.; Bramowicz, M.; Fedonnikov, A.S.; Braic, M.; Norkin, I.A.; Koptyug, A.; Kurtukova, M.O.; et al. Influence of the electrolyte's pH on the properties of electrochemically deposited hydroxyapatite coating on additively manufactured Ti64 alloy. *Scientific Reports* 2017, 7, 16819.
- [S3] Fathyunes, L.; Khalil-Allafi, J. Effect of employing ultrasonic waves during pulse electrochemical deposition on the characteristics and biocompatibility of calcium phosphate coatings. *Ultrasonics Sonochemistry*. 2018, 42, 293–302.
- [S4] Liu, Q.; Zhang, C.; Bao, Y.; Dai, G. Carbon fibers with a nano-hydroxyapatite coating as an excellent biofilm support for bioreactors. *Applied Surface Science* 2018, 443, 255–265.
- [S5] Marashi-Najafi, F.; Khalil-Allafi, J.; Etminanfar, M.R. Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy. *Materials Science and Engineering: C* 2017, 76, 278–286.
- [S6] Pang, S.M.; He, Y.; He, P.; Luo, X.S; Guo, Z.Z.; Li, H. Fabrication of two distinct hydroxyapatite coatings and their effects on MC3T3-E1 cell behavior. *Colloids and Surfaces B-Biointerfaces* 2018, 171 40–48.