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Abstract: Hydroxyapatite (HA) coating is successfully prepared by electrodeposition on the surface
of polyvinyl alcohol (PVA)/polylactic acid (PLA) braid which serves as a potential biodegradable
bone scaffold. The surface morphology, element composition, crystallinity and chemical bonds of HA
coatings at various deposition times (60, 75, 90, 105 and 120 min) are characterized by scanning electron
microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD) and Fourier
transform infrared spectroscopy (FTIR), respectively. Average Surface roughness (Ra) of HA coating
is observed by confocal microscopy. The results reveal that the typical characteristic peaks of the FTIR
spectrum confirm that HA coating is successfully prepared on the rugged surface of the PVA/PLA
braid. The XRD results indicate that the crystallinity of HA can be improved by increasing deposition
time. In the 90 min-deposition, hydroxyapatite has a dense and uniform coating morphology,
Ca/P ratio of 1.7, roughness of 0.725 µm, which shows the best electrodeposition performance.
The formation mechanism of granular and plate-like hydroxyapatite crystals is explained by the
structural characteristics of a hydroxyapatite unit cell. This study provides a foundation for a bone
scaffold braided by biodegradable fibers.
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1. Introduction

Due to excellent mechanical property, biocompatibility, and biological inertia against the body
fluid, bio-ceramics have been commonly used in medical implant materials [1–3]. Hydroxyapatite
(Ca10(PO4)6(OH)2, HA) bio-ceramic which has good bioactivity and osteo-inductivity is a major
component of human bones and teeth [4–6]. Therefore, hydroxyapatite coatings are usually prepared
on the surface of clinical medical implants to facilitate the growth of newborn bones in organism [7,8].
Nowadays, the main bone scaffold materials that are widely evaluated are non-degradable metal
materials such as titanium and its alloys, 316 L stainless steel, etc. [9,10]. Contrary to metallic bone
scaffolds, the bone scaffolds composed of biodegradable fiber bundle braids enable the osteocyte
proliferates with the braids being decomposed. When the impaired bones recover completely,
the temporary braided scaffold is also totally decomposed, which attains spontaneous rehabilitation of
the impaired bones.

In our previous study, we prepared three-layer polyvinyl alcohol (PVA) braid-structure bone
scaffolds and confirmed that the porosity and water stability of the braid could be improved
by crosslinking the braid with glutaraldehyde [11]. Further, we also fabricated a five-layer
core-shell-structure PVA fiber bundles braided bone scaffold on which the hydroxyapatite crystal
was directly coated by freeze-drying method and successfully help the recovery of damaged tibias of
rats [12]. However, the freeze-drying process requires complex equipment and long process cycle, and
the hydroxyapatite crystal is expensive and difficult to commercial application.

The RF-magnetron sputtering [13], the biomimetic method [14], sol-gel process [15], electrophoretic
deposition [16] are all feasible preparation methods for hydroxyapatite (HA) coating, but some of these
techniques are high cost, form uneven coating morphology and could not control the process precisely.
For example, HA coating prepared by RF-magnetron sputtering is compact and uniform, but the
preparation of target is complex and only one side can be deposited [17]. Unlike the aforementioned
methods, electrochemical deposition is not limited to the substrate shape, and has more advantages
of precise control of coating morphology, thickness, and chemical composition by changing ionic
concentration of electrolyte, electrolyte composition, deposition current and deposition time [18–20].

Polyvinyl alcohol (PVA) and polylactic acid (PLA) fibers are two stand-out representative
biodegradable fibers which are widely used in the preparation of biodegradable bone scaffolds [21–23].
In this study, we evaluate the performance of HA coating prepared by electrodeposition on
PVA/PLA braid. HA coatings with different morphologies are prepared at different deposition
time. The morphology of the coating is observed by SEM, and the elemental composition of the coating
is analyzed by EDAX. Average surface roughness of HA coating is observed by confocal microscopy.
The functional groups and chemical bonds of HA coating are characterized by FTIR, and XRD is used
to analyze the phase composition and crystallinity of the coating. Finally, a time-dependent model for
the HA crystal growth during electrodeposition is established from the viewpoint of the cell structure
of an HA crystal. We hope this study can serve as a foundation of braid-structure scaffolds made of
degradable fibers for future studies.

2. Materials and Methods

2.1. The Preparation of PVA/PLA Braids

PLA filaments (50 D/6f) and PVA filaments (38D/6f) with a blending ratio of 3:3 (mass ratio of 1:1)
are combined and twisted into PVA/PLA composite yarns with 264 D/36 f fineness and 30 twists/10 cm.
PVA/PLA yarns are provided by Beijing Guanghui Textile Co., Ltd, Beijing, China. Next, the composite
yarns are heated for twist setting at 75 ◦C for 30 min, after which they are cooled to the room temperature.
PVA/PLA composite yarns are braided into 4-mm-diamter five-layer braids using a 3-mm-diamteter
titanium (Ti) rod as the supportive rod on a braiding machine (HSB-1, Dongguan Chenghong Electrical
Material Co., Ltd., Dongguan, China), as shown in the right half of Figure 1. Then the composite braids
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are cleaned with ethanol, acetone, and water separately for 1 h. The composite braids are then dried at
65 ◦C for 3 h.
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Figure 1. Images of PVA/PLA-HA composite braid prepared by electrodeposition.

2.2. The Electrodeposition of HA Coatings

HA coating is prepared by traditional two-electrode system, as revealed in Figure 1. The anode is
a 3-mm-diameter Ti rod and the cathode is the five-layer PVA/PLA braid. The electrolyte solution is
composed of 1 mL/L 30 wt.% H2O2, 0.0048 M KH2PO4 and 0.008 M CaCl2 with a Ca/P ratio of 1.67.
All reagents are analytical pure and provided by Tianjin Fengchuan Chemical Reagent Technology Co.,
Ltd., Tianjin, China. The DC power supply (IT6942A, ITECH, Nanjing, China) has a specified current
of 0.01A. The distance between anode and cathode is 20 mm. The water bath temperature is 50 °C and
the pH value of electrolyte is 4.3. The magnetic stirrer has a rotating speed of 160 rpm. The deposition
time is 60, 75, 90, 105, and 120 min respectively.

2.3. The Characterization of HA Coatings

A field emission scanning electron microscope (FE-SEM, Gemini SEM500, Heidenheimer, Germany)
equipped with an energy dispersive X-ray analyzer (EDAX, Octane Super, Mahwah, NJ, USA) is
used to investigate the surface morphology and elemental composition of HA coatings on PVA/PLA
braids. Before SEM observation, a layer of platinum is sprayed on the sample surface by an ion
sputtering instrument (Blatc SCD005, BAL-TEC, Los Angeles, CA, USA). The chemical bonds of
HA coating are observed by Fourier transform infrared spectroscope (FTIR, Nicolet iS50, Thermo
Fisher Scientific, Waltham, MA, USA) at a resolution of 0.5 cm−1 over the wavenumber range of
400~4000 cm−1. True color confocal microscopy (Zeiss CSM700, Heidenheimer, Germany) is used
to obtain the average surface roughness and 3D profilometry of the HA coating under a 20 times
magnification. The measured area is 60 µm × 60 µm. Calcium ion concentration and total phosphorus
content in the deposition process were measured by inductively coupled plasma atomic emission
spectrometry (ICP-AES, PQ9000 Elite, Jena, Germany). Total phosphorus content includes hydrogen
phosphate ion, dihydrogen phosphate ion and phosphate ion.

The phase composition of HA coatings is performed by X-ray diffraction (XRD, D8 Discover,
Bruker, Karlsruhe, Germany) with a CuKα radiation (λ = 1.5405 Å) at 2 θ being 20–45◦ with a step size
being 0.1◦. Cell parameters and degree of crystallinity of HA crystals obtained by electrodeposition
are estimated via Jade 6.0 software (MDI, Livermore, CA, USA). Meanwhile, the grain size of crystals
obtained after a 90 min deposition is computed using the Debye–Scherrer equation according to
Ref. [24].
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3. Results and Discussion

3.1. The Surface Morphology and Element Composition of HA Coatings

The application of electrochemical deposition provides a dense and uniform HA coating on the
rugged surface of PVA/PLA braids, as shown in Figure 2. The SEM observation of the braid surface
before deposition is shown in Figure S1. At the deposition time of 60 min, the HA crystal was mainly in
the form of micron-sized particles. The diameter of HA crystals can be observed in Figure S2, which is
about 1.5 µm. This implies that this is the initial stage of electrodepositing the HA crystals [25]. Then,
with the increase of time, the particles aggregate and extrude each other to form flat-like HA crystals
with a smooth and compact plane. When excessively deposited, circular particles are grown on the HA
flat. The EDS mappings at 90 min show that the distribution of calcium and phosphorus elements of
the HA flat was uniform which just proves the uniformity of HA deposition (Figure 3A,C,D).
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The closer the calcium and phosphorus element ratio (Ca/P ratio) is to 1.67 (Ca/P ratio of pure HA),
the less other calcium phosphate phases are contained in the HA coating, which can also reflect the
crystallinity of HA. Table S1 in the supporting information is the Ca/P ratio of HA coatings obtained
by electrodeposition in the past two years by other authors and the values are mostly between 1.55
and 1.70. In this study, the Ca/P ratio of the HA coating gradually increases to 1.34, 1.44, and 1.70
with the increase in deposition time. However, a deposition of 120 min adversely affects the Ca/ P
ratio, which drops down to 1.30 (Figure 3B). The phenomenon may be attributed to calcium deficiency.
Figure 4 shows the change in calcium ion concentration in the electrolyte by ICP-AES and reveals that
with the increase of time, the calcium ions concentration declines near the cathode, which participate
in Equation (5) to form hydroxyapatite. An excessive deposition time decreases the calcium ion
concentration, which in turn results in a lower Ca/P ratio [26].
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Figure 4. Calcium ion concentration, total phosphorus content and pH value of electrolyte as related to
deposition time during electrodeposition.

The low roughness of the HA coating facilitates cell attachment [27,28]. The variation trend of
average surface roughness of HA coatings is consistent with the SEM images. Roughness of HA coating
after 90 min-deposition reached 0.725 µm, which is four times better than that after 60 min deposition.
However, when the deposition time exceeds 90 min, the surface roughness increases slightly. Figure 5
reveals that the increase of deposition time could improve the average surface roughness (Ra).

Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 13 

Nanomaterials 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/nanomaterials 

The closer the calcium and phosphorus element ratio (Ca/P ratio) is to 1.67 (Ca/P ratio of pure 
HA), the less other calcium phosphate phases are contained in the HA coating, which can also reflect 
the crystallinity of HA. Table S1 in the supporting information is the Ca/P ratio of HA coatings 
obtained by electrodeposition in the past two years by other authors and the values are mostly 
between 1.55 and 1.70. In this study, the Ca/P ratio of the HA coating gradually increases to 1.34, 1.44, 
and 1.70 with the increase in deposition time. However, a deposition of 120 min adversely affects the 
Ca/ P ratio, which drops down to 1.30 (Figure 3B). The phenomenon may be attributed to calcium 
deficiency. Figure 4 shows the change in calcium ion concentration in the electrolyte by ICP-AES and 
reveals that with the increase of time, the calcium ions concentration declines near the cathode, which 
participate in Equation (5) to form hydroxyapatite. An excessive deposition time decreases the 
calcium ion concentration, which in turn results in a lower Ca/P ratio [26]. 

 
Figure 4. Calcium ion concentration, total phosphorus content and pH value of electrolyte as related 
to deposition time during electrodeposition. 

The low roughness of the HA coating facilitates cell attachment [27,28]. The variation trend of 
average surface roughness of HA coatings is consistent with the SEM images. Roughness of HA 
coating after 90 min-deposition reached 0.725 μm, which is four times better than that after 60 min 
deposition. However, when the deposition time exceeds 90 min, the surface roughness increases 
slightly. Figure 5 reveals that the increase of deposition time could improve the average surface 
roughness (Ra). 

 

Figure 5. Average surface roughness (Ra) and 3D profilometry of HA coating on PVA/PLA braids 
with deposition time of (A) 60, (B) 75, (C) 90, (D) 105, and (E) 120 min. 

Figure 5. Average surface roughness (Ra) and 3D profilometry of HA coating on PVA/PLA braids with
deposition time of (A) 60, (B) 75, (C) 90, (D) 105, and (E) 120 min.
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3.2. The Chemical Bonds and Phase Composition of HA Coatings

Figure 6 reveals the typical FTIR characteristic peaks of HA on PVA/PLA braids, involving P-O
bending vibrations (υ4) of PO4

3− at 602 cm−1 and 561 cm−1, the P-O stretching vibrations (υ3) of PO4
3−

at 957 cm−1 and 1033 cm−1, the internal hydroxyl band at 3230~3550 cm−1. The PVA/PLA braids as a
substrate also show some characteristic peaks, such as 1185 cm−1(carboxyl group in PLA), 1377, 1457
and 1745 cm−1 (methyl group in PLA/PVA). Meanwhile, 870 cm−1 (CO3

2−) means the B-type or A-type
carbonated hydroxyapatite (CHA), suggesting that a small amount of PO4

3− is replaced by CO3
2−

produced by the carbon dioxide in the air dissolving in water [29]. In Table 1, we list some chemical
bonds and phases corresponding to the characteristic peaks in Figure 6.
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Table 1. Assignment of FTIR spectra of PVA/PLA-HA braid presented in Figure 6.

Phase IR Absorption Bands (cm−1) Description Ref.

P-O
561,602 bending vibrations (υ4) [30]

957,103.3 stretching vibrations (υ3)
-CH2 753 PVA [31]

CO3
2− 870 carbon dioxide dissolving in water [32]

CH2-OH 1082 PVA/PLA, stretching vibrations [33,34]
C-OH 1185 PVA, stretching vibrations [35]
C-H 1,385,145.4 deformation vibrations [22]
C=O 1744 PLA, stretching vibrations [36]

-OH...HO- 3230~3550 internal hydroxyl band [37]

Figure 7 shows the XRD patterns of HA coatings on the PVA/PLA braid surface at various
deposition times (60, 75, 90, 105 and 120 min). All the diffraction peaks are consistent with the ICDD
database diffraction file #09-0432, which proves that the highly crystalline HA coating is obtained
by electrodeposition on the PVA/PLA braid surface. We also compared the relevant standard files
for the possible calcium phosphate, such as dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O,
#09-0077), tri-calcium phosphate (TCP, Ca3(PO4)2, #09-0169) and Calcium carbonate (CaCO3, #17-0763).
None of the main diffraction peak of substances mentioned above is found in the XRD patterns from
the coatings obtained in this experiment, indicating HA coating presents a single-phase crystal via
electrodeposition. The significant diffraction peaks at 2 theta degrees of 22.9◦, 25.9◦, 28.9◦, 31.8◦ and
32.2◦ correspond to the HA crystallographic plane (111), (002), (210), (211) and (112), respectively.

The increase in diffraction peak intensity also implies that prolonging deposition time elevates the
crystallinity of HA coating. The estimated crystallinity degree increases from 33.30 to 57.55% when
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deposition time increases from 60 min to 120 min. Meanwhile, the grain size of crystals obtained after
a 90 min deposition is computed using the Debye–Scherrer equation according to Ref. [24] and shown
in Table 2. The average grain size of HA coating is 10.10 nm, which is one half as small as the average
grain size (20 nm) obtained by the precipitation method [24]. In particular, at a crystallographic plane
(0 0 2), the grain size is 15.42 nm, which is distinctively larger than that of other crystallographic
planes. This result suggests that the formation of HA crystals shows a preferred orientation along
the c-axis [38]. Table 3 shows calculated cell parameters of HA crystals at different deposition time.
Compared to the standard cell parameters of HA crystals according to the ICDD database diffraction
file #09-0432, the value of the calculated c (Å) of HA crystals prepared by electrodeposition slightly
increases, and a slight decrement of a (Å)/b (Å) is detected. Moreover, with the increase of deposition
time from 60 min to 120 min, the unit cell parameter a (Å)/b (Å) decreases first and then increases,
while the value of c (Å) increases first and then decreases [39].

Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 13 

Nanomaterials 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/nanomaterials 

The increase in diffraction peak intensity also implies that prolonging deposition time elevates 
the crystallinity of HA coating. The estimated crystallinity degree increases from 33.30 to 57.55% 
when deposition time increases from 60 min to 120 min. Meanwhile, the grain size of crystals 
obtained after a 90 min deposition is computed using the Debye–Scherrer equation according to Ref. 
[24] and shown in Table 2. The average grain size of HA coating is 10.10 nm, which is one half as 
small as the average grain size (20 nm) obtained by the precipitation method [24]. In particular, at a 
crystallographic plane (0 0 2), the grain size is 15.42 nm, which is distinctively larger than that of other 
crystallographic planes. This result suggests that the formation of HA crystals shows a preferred 
orientation along the c-axis [38]. Table 3 shows calculated cell parameters of HA crystals at different 
deposition time. Compared to the standard cell parameters of HA crystals according to the ICDD 
database diffraction file #09-0432, the value of the calculated c (Å) of HA crystals prepared by 
electrodeposition slightly increases, and a slight decrement of a (Å)/b (Å) is detected. Moreover, with 
the increase of deposition time from 60 min to 120 min, the unit cell parameter a (Å)/b (Å) decreases 
first and then increases, while the value of c (Å) increases first and then decreases [39]. 

 

Figure 7. XRD patterns of HA coating on braid at different deposition time. 

Table 2. Grain size and Miller indices of main 2-Theta angles of HA crystals obtained after a 90 min 
deposition. 

2-Theta (deg) Grain Size (nm) Miller Indices (h k l) Standard 2-Theta (deg) 
22.862 9.62 (1 1 1) 22.752 
25.863 15.42 (0 0 2) 25.298 
31.778 7.37 (2 1 1) 31.839 
39.198 7.97 (1 2 2) 39.253 

Average 10.10 ± 5.32 — — 

Table 3. Calculated cell parameters of HA crystals obtained at different deposition time. 

Sample a (Å) b (Å) c (Å) 
HA60 9.3902 9.3902 7.0644 
HA75 9.3531 9.3531 7.0832 
HA90 9.2818 9.2818 7.2429 
HA105 9.3318 9.3318 7.1110 
HA120 9.3799 9.3799 7.1220 

Standard HA 9.4180 9.4180 6.8840 

Figure 7. XRD patterns of HA coating on braid at different deposition time.

Table 2. Grain size and Miller indices of main 2-Theta angles of HA crystals obtained after a
90 min deposition.

2-Theta (deg) Grain Size (nm) Miller Indices (h k l) Standard 2-Theta (deg)

22.862 9.62 (1 1 1) 22.752
25.863 15.42 (0 0 2) 25.298
31.778 7.37 (2 1 1) 31.839
39.198 7.97 (1 2 2) 39.253

Average 10.10 ± 5.32 — —

Table 3. Calculated cell parameters of HA crystals obtained at different deposition time.

Sample a (Å) b (Å) c (Å)

HA60 9.3902 9.3902 7.0644
HA75 9.3531 9.3531 7.0832
HA90 9.2818 9.2818 7.2429
HA105 9.3318 9.3318 7.1110
HA120 9.3799 9.3799 7.1220

Standard HA 9.4180 9.4180 6.8840
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3.3. The Formation Mechanism of HA Coatings Prepared by Electrodeposition

Formation mechanism of hydroxyapatite based on chemical reaction is showed as follows.

2H2O + 2e− → H2 ↑ +2OH−1 (1)

H2O2 + 2e− → 2OH− (2)

H2PO−4 + OH− → HPO2−
4 + H2O (3)

HPO2−
4 + OH− → PO3−

4 + H2O (4)

10Ca2+ + 6PO3−
4 + 2OH− → Ca10(PO4)6(OH)2 (5)

The presence of bubbles nearby the cathode is observed, which is consistent with the hydrogen
production shown in Equation (1). According to Equations (1) and (2), hydroxyl radicals are generated.
Following the increase in hydroxide ion concentration, both of the hydrogen phosphate ions and
phosphate ions have a greater concentration (Equations (3) and (4)). Simultaneously, calcium ions
move to the proximity of the cathode and start reacting with phosphate groups and hydroxyl radicals
to generate HA (Equation (5)) [40]. The production of a small amount of carbonate (CO3

2−) detected in
the FTIR spectrum is as follows:

CO2 + H2O→ H2CO3 (6)

H2CO3 + OH− → HCO−3 + H2O (7)

HCO−3 + OH− → CO2−
3 + H2O (8)

Phosphate in HA is easily replaced by carbonate (CO3
2−) which is generated by carbon dioxide

dissolved in water, forming carbonized hydroxyapatite (CHA) [41,42]. However, this process is so
weak that the presence of CHA cannot be observed in XRD patterns. In fact, the large amount of
hydroxyl radicals produced in Equations (1) and (2) can also promote the formation of phosphoric acid
groups and HA in Equations (3)–(5).

Figure 8A shows the schematic diagram of the forming mechanism of granular and plate-like HA
crystals during electrodeposition. The HA crystal is a regular hexagonal prism and belongs to the
p63/m hexagonal space group. The ball-and-stick model diagram shows that the calcium ion and the
phosphate group are located at upper and lower planes of hexagonal prism, and the hydroxyl group
lies on the left and right sides of the prism portion. The hydrogen bond between the hydroxyl groups
forms the connection to the HA unit cell, while the calcium phosphate group connects with the HA
upper- and lower-unit cells [43,44].

In Figure 8B, the rugged PVA/PLA braid served as the substrate for electrodeposition is simplified
into a rectangular model with an upper notch (0 min). Deposition time before 60 min belongs to the
nucleation stage of HA crystals, and HA particles form very little. There is still a large part of space to
be filled inside the model. After 60 min, it belongs to the growth period of HA crystal, and the HA
crystal grows rapidly. When the deposition time increases to 90 min, all the indentation of the banding
has been filled. The HA particles are formed on the HA coating surface again at 120 min, which is
consistent with the change of HA surface morphology in SEM images (Figure 2).

At the initial stage of deposition (<60 min), HA crystals nucleate on the braid surface; after nuclei
completely covers with the surface of PVA/PLA braid (>60 min), HA crystals begin to grow, and then
aggregated to a smooth plate-like plane; when deposited for long time (>90 min), circular HA particles
are formed on the plate-like plane again, resulting in a slight increase in roughness (Figure 5E) [45,46].
The hydroxyl radicals produced by electrolysis react with phosphate and calcium ions to form HA
immediately. Such that no obvious fluctuation in the pH value is found during electrodeposition,
indicating that the concentration of hydroxyl radicals in electrolyte is stable (Figure 4).Calcium ion
and total phosphorus content in electrolyte as related to deposition time show that when deposition
time is less than 90 min, there is high concentration of calcium and phosphorus ion, and the HA
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crystals thus preferentially grow along the c-axis. This outcome conforms well to the high intensity of
diffraction peak of (002) crystal plane in XRD (Figure 7). However, when exceeding 90 min, calcium
ion concentration and total phosphorus content in the electrolyte decreases, and the crystals grow
preferentially along the a- or b-axis. At this time, a new diffraction peak is appeared on (211) (210)
(301) crystal planes, thus forming the plate-like HA morphology [47].Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 13 
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models, in which the surface of braid can be simplified to a rectangle with a notch in the upper part
before deposition (0 min).

4. Conclusions

In conclusion, HA coating is successfully electrodeposited on the rugged surface of a PVA/PLA
braid. Deposition time affects the dynamic crystallization process of electrodeposited HA, and proper
deposition time helps to improve the quality of HA coating. The main conclusions in this paper
are as follows:

(a) With the increase of time, the particles aggregate and extrude each other to form flat-like HA
crystals with a smooth and compact plane. The Ca/P ratio of the HA coating gradually increases
to 1.34, 1.44, and 1.70 with the increase in deposition time. Roughness of HA coating after
90 min-deposition reaches 0.725 µm, which is 4 times better than that after 60 min deposition.

(b) Crystallinity degree increases from 33.30% to 57.55% when deposition time increases from 60 min
to 120 min. Moreover, HA crystal shows a preferred orientation along the c-axis. Correspondingly,
the unit cell parameter a (Å)/b (Å) decreases first and then increases with deposition time, while
the value of c (Å) increases first and then decreases.

(c) The forming mechanism of HA coating shows as follow. At the initial stage of deposition
(<60 min), HA crystals nucleate on the braid surface; after nuclei completely covers with the
surface of PVA/PLA braid (>60 min), HA crystals begin to grow, and then aggregated to a smooth
plate-like plane; When deposited for a long time (>90 min), circular HA particles are formed on
the plate-like plane again, resulting in a slight increase in roughness.
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Resultantly, 90 min-deposition generates optimal HA coating which is dense, uniform and highly
crystallized, and has Ca/P ratio of 1.70, average roughness of 0.725 µm. This work will provide new
ideas for the preparation of bioactive ceramic coatings on biodegradable materials for bone implants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/5/679/s1,
Table S1. The Ca/P ratio of HA coatings obtained by electrodeposition in the past two years by other authors;
Figure S1. Surface morphology of undeposited braids, (A) SEM image of ×40 magnifications (B) SEM image of
×1000 magnifications; Figure S2. HA Crystal Diameter at 60 min Electrodeposition.
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