Short-Chain Modified SiO₂ with High Absorption of Organic PCM for Thermal Protection

Fuxian Wang ¹, Shiyuan Gao ^{2,3}, Jiachuan Pan ¹, Xiaomei Li ^{2,3} and Jian Liu ^{1,2,3,*}

- ¹ Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangzhou 510070, China; wangfuxian@fenxi.com.cn (F.W.); panjiachuan@fenxi.com.cn (J.P.)
- ² The Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Dongguan University of Technology, Dongguan 523808, China; gsy0113@126.com (S.G.); L13728356646@163.com (X.L.)
- ³ Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
- * Correspondence: liujian@dgut.edu.cn; Tel.: +86-0769-22861808

Figure S1. FT-IR spectrum of all samples.

Figure S2. leakage test of RT60/SiO2 aerogel and RT60/M-SiO2 aerogel.

Supporting	Modified	Organic	Tm/		Mass	
materials	agent	PCMs	Ωō	ΔΠm/J·g-	fraction %	
Montmorillonite[1]		RT 20	20.8	53.6	39.9%	
Modified	Hexadecyltrimethyl	23.0 RT 20			58.1%	
montmorillonite[2]	ammonium bromide			79.3		
Diatomite[3]		Paraffin	47.8	70.5	47.4%	
Calcined		Paraffin		125.9	61.0%	
diatomite[4]			57.3			
Expanded		Paraffin				
perlite[5]			17.2	35.5	26.6%	
Modified		Paraffin				
expanded			16.3	60.9	45.7%	
perlite[5]						
SiO2 aerogel[6]		Paraffin	17.4	78.1	54.8%	
Modified SiO ₂	Dimethyldichlorosilance	Paraffin				
aerogel[6]		17.7		98.9	69.5%	
Our work	Hexamethyl disilazane	RT60	60	180.2	80.0%	

Table S1. The absorption capacity of different supporting materials.

The XRD results of SiO₂ aerogel and M-SiO₂ aerogel based PCM were shown in Figure S3 and S4. In the pattern of SiO₂ aerogel and M-SiO₂ aerogel, both samples has only one broad peak around 20°. The pattern of RT60 exhibits peaks at 10°, 14.2°, 21.5°, 23.9°, 38.9° and 42.1°. The sharp diffraction peaks at 21.5° and 23.9° are attributed to the diffractions of (110) and (200) crystal planes of paraffin[7]. Figure S4 shows the pattern of RT60/SiO₂ aerogel and RT60/M-SiO₂ aerogel, both RT60/SiO₂ aerogel and RT60/M-SiO₂ aerogel keep two sharp peaks at 21.5° and 23.9° of RT60, while other peaks strongly decrease the intensity, because the RT60 is encapsulated by SiO₂ aerogel and M-SiO₂ aerogel. In general, both of RT60/SiO₂ aerogel and RT60/M-SiO₂ aerogel do not exhibits new peaks in the XRD pattern, verifying the physical combination of RT60 and SiO₂ aerogel/M-SiO₂ aerogel.

Figure S3. XRD patterns of the SiO₂ aerogel and M-SiO₂ aerogel.

Figure S4. XRD patterns of all samples.

Tuble 52. The mething and neezing behavior of bio2 deloger and in bio2 deloger based i eth.								
	$T_m/{}^{\underline{o}}C$	$\Delta H_m/J{\cdot}g^{\text{-}1}$	$T_{\rm f}/ {}^{\rm O}C$	$\Delta H_{\rm f}/J{\cdot}g^{\text{-}1}$	η/%			
RT60	57.98	225.3	56.61	223.6	-			
RT60/SiO2 aerogel	57.78	130.5	57.56	129.4	57.9			
RT60/M-SiO2 aerogel	57.32	180.2	57.16	178.9	80.0			

Table S2. The melting and freezing behavior of SiO₂ aerogel and M-SiO₂ aerogel based PCM.

Figure S5. Weight loss of SiO₂ aerogel and M-SiO₂ aerogel.

Figure S6. Melting and freezing behavior of RT60/ SiO2 aerogel with different heating/cooling.

cycle.

heating/cooling cycle.

REFERENCE

1. Fang, X.; Zhang, Z. A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials. Energy and Buildings 2006, 38, 377-380.

2. Fang, X.; Zhang, Z.; Chen, Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Conversion and Management 2008, 49, 718-723.

3. Xu, B.; Li, Z. Paraffin/diatomite composite phase change material incorporated cementbased composite for thermal energy storage. Applied Energy 2013, 105, 229-237.

4. Sun, Z.; Zhang, Y.; Zheng, S.; Park, Y.; Frost, R.L. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochimica Acta 2013, 558, 16-21.

5. Ramakrishnan, S.; Sanjayan, J.; Wang, X.; Alam, M.; Wilson, J. A novel paraffin/expanded perlite composite phase change material for prevention of pcm leakage in cementitious composites. Applied Energy 2015, 157, 85-94.

6. Li, H.; Chen, H.; Li, X.; Sanjayan, J.G. Development of thermal energy storage composites and prevention of pcm leakage. Applied Energy 2014, 135, 225-233.

7. Zhang, Z.; Zhang, N.; Peng, J.; Fang, X.; Gao, X.; Fang, Y. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Applied Energy 2012, 91, 426-431.