Supporting Information: Fabrication of Highly Conductive Porous Cellulose/PEDOT:PSS Nanocomposite Paper via Post-Treatment

Youngsang Ko¹, Jeonghun Kim^{*2}, Dabum Kim¹, Goomin Kwon¹, Yusuke Yamauchi² and Jungmok You^{*1}

¹ Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea.

² School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD 4072, Australia.

* Correspondence: jeonghun.kim@uq.edu.au; jmyou@khu.ac.kr

Table 1. Sheet resistance, thickness, and electrical conductivity of PEDOT:PSS/cellulose-nanofiber composite paper with or without the solvent post-treatment.

Treatment agent	Sheet resistance (Ω /sq)	Thickness (µm)	Conductivity (S/cm)
Pristine	418.73 ± 48.94	23	1.05 ± 0.12
DMSO	5.41 ± 0.26	15	123.37 ± 5.87
EG	6.49 ± 1.49	15	106.6 ± 25.16

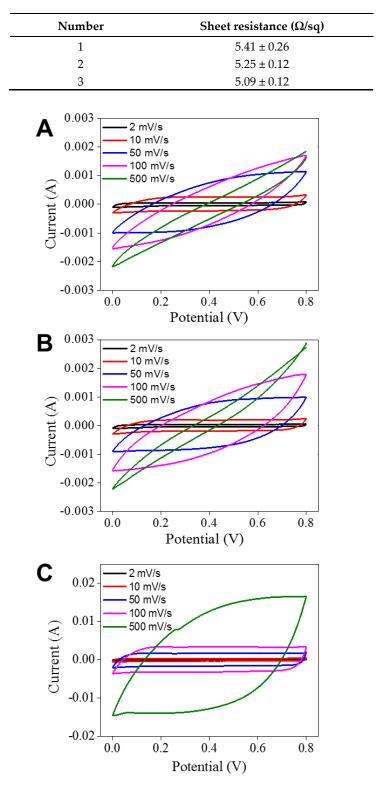
*DMSO- Dimethyl sulfoxide

*EG- Ethylene glycol

Serial #	Sample	Method	Conductance (S/cm)	References
1	PANi/BC	In-situ polymerization	1.4×10 ⁻¹	45
2	PPy/BC	In-situ polymerization	3.39	46
3	PPy/CNF	Vacuum filtration	13.45	39
4	PPy/PEDOT:PSS/CNF	Vacuum filtration	10.55	39
5	PEDOT:PSS/BC	Ex-situ incorporation	12.17	47
6	PEDOT:PSS/Cellulose	In-situ polymerization	30	48
7	PEDOT:PSS/CNF	Vacuum filtration	2.58	39
8	PEDOT:PSS/CNF	Vacuum filtration	22.6	19
9	PEDOT:PSS/CNF	Drop-casting	45	40
10	PEDOT:PSS/CNF	Vacuum filtration	123.4	Present work

Table S2. A comparison of conductive polymer/cellulose nanocomposites

*BC- Bacterial cellulose


*PANi- Polyaniline

*PPy- Polypyrrole

*CNF- Cellulose nanofiber

*PEDOT:PSS- Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

Table S3. Sheet resistance according to the number of times DMSO filtering was conducted on the PEDOT:PSS/cellulose-nanofiber composite paper.

Figure S1. (A–C) Cyclic voltammetry (CV) of PEDOT:PSS/cellulose–nanofiber composite papers. (**A**) Pristine, (**B**) DMSO, and (**C**) EG.