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Abstract: This paper provides review updates on the current development of bionanocomposites
with polymeric matrices consisting of synthetic biodegradable aliphatic polyesters reinforced with
nanohydroxyaptite (nHA) and/or graphene oxide (GO) nanofillers for bone tissue engineering
applications. Biodegradable aliphatic polyesters include poly(lactic acid) (PLA), polycaprolactone
(PCL) and copolymers of PLA-PGA (PLGA). Those bionanocomposites have been explored for
making 3D porous scaffolds for the repair of bone defects since nHA and GO enhance their
bioactivity and biocompatibility by promoting biomineralization, bone cell adhesion, proliferation
and differentiation, thus facilitating new bone tissue formation upon implantation. The incorporation
of nHA or GO into aliphatic polyester scaffolds also improves their mechanical strength greatly,
especially hybrid GO/nHA nanofilllers. Those mechanically strong nanocomposite scaffolds can
support and promote cell attachment for tissue growth. Porous scaffolds fabricated from conventional
porogen leaching, and thermally induced phase separation have many drawbacks inducing the use
of organic solvents, poor control of pore shape and pore interconnectivity, while electrospinning mats
exhibit small pores that limit cell infiltration and tissue ingrowth. Recent advancement of 3D additive
manufacturing allows the production of aliphatic polyester nanocomposite scaffolds with precisely
controlled pore geometries and large pores for the cell attachment, growth, and differentiation in vitro,
and the new bone formation in vivo.

Keywords: scaffold; bionanocomposite; nanohydroxyapatite; graphene oxide; aliphatic polyesters;
osteoblast; mineralization; tissue engineering; additive manufacturing; fused deposition modeling

1. Introduction

Recently, bone defects and disorders as well as related diseases have attracted considerable
public health concerns due to an increase in the ageing trauma population, bone tumor, injuries from
sports activities and traffic accidents [1–7]. With the ageing population and longer life expectancy,
osteoporosis is increasingly becoming a global health issue. The number of elderly people is rising at a
rapid rate in the Asia-Pacific region, Europe and North America. Osteoporosis results from a reduction
in the bone strength and density, leading to an increased risk of fragility fractures in elderly [2,3].
Moreover, cancer patients also suffer from osteoporosis due to accelerated loss of bone mass by
chemotherapy and the use of drugs [4,5]. Therefore, osteoporosis is a bone disease having a high
impact on morbidity and mortality [5]. Thus, the demand for the use of bone grafts increases globally,
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and surgeons use autografts, allografts or xenografts to treat patients with serious bone injuries
(Figure 1) [8]. Autografts removed from the bones of patients provide osteoinductive, osteoconductive,
and osteogenic properties [9]. However, autografts suffer from the donor site pain, inflammation and
morbidity, and complications following harvest of bone grafts. Allografts and xenografts carry the risk
of immunological rejection and possible disease transmission. In this respect, bone tissue engineering
especially the design of synthetic bone graft substitutes and 3D porous scaffolds, has been shown to
be effective in inducing repair and reconstruction of bone defects, and for eliminating risk of disease
transmission [8,10].
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In bone tissue engineering, porous scaffolds serve as an artificial extracellular matrix (ECM) to
provide structural and mechanical support for bone cells to attach, spread, multiply, and differentiate,
thereby acting as a template to grow cell for bone tissue regeneration [11–14]. The scaffolds for bone
tissue engineering must be osteoinductive, osteoconductive, and osteointegrative. These properties
permit strong integration of the scaffolds with the host tissue upon transplantation Scaffolds
are designed to match the mechanical properties of human trabecular bones. In general,
compressive modulus and compressive strength of trabecular bones depend greatly on the wet/dry
conditions, density, porosity and anatomic location of the bones [15]. Moreover, scaffolds must be
three-dimensional (3D), highly porous with pore sizes ≥100 µm and highly interconnected pore
structure to promote bone ingrowth, nutrient transport and metabolic waste removal [16]. Porous 3D
scaffolds with or without cells and growth factors such as bone morphogenetic protein-2 (BMP-2),
transforming growth factor-β (TGF-β), are then transplanted into bone defective sites [17]. For a nude
scaffold, cells will recruit in vivo from the host tissue. Metals and their alloys are often employed to
repair bone fractures because of their outstanding mechanical properties. However, elastic modulus of
stainless steels and Ti-based alloys typically used for biomedical applications is much higher than that
of human bones, leading to the so-called ‘stress shielding’ effect [18]. Moreover, metals always suffer
from the corrosion issues [19,20]. Corrosion and released ions may induce inflammation response,
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cell apoptosis and the foreign body reaction. Magnesium and its alloys with mechanical properties
close to those of human cortical bones find useful applications as the bone fixation devices and
scaffolds [21]. They are degradable in physiological environment. However, it is difficult to accurately
control the pore morphologies of Mg scaffolds with good mechanical strength. In addition, high
corrosion rate of Mg-based materials and the rise of pH in surrounding tissues due to released Mg
ions tend to limit their application as biodegradable scaffolds in orthopedics [22,23].

Polymers with good processability and light weight are ideal materials for biomedical
applications [24–26]. Polymers can be synthesized and tailored to meet specific needs and applications
through controlling their chemical compositions and structures. As such, they find attractive
biomedical applications in tissue engineering, therapeutics and drug delivery [8,27,28]. From the
literature, non-degradable polyetheretherketone (PEEK) with high temperature durability, excellent
radiation stability and high stiffness has been designed to make scaffolds for interbody spinal
fusion [29]. However, poor degradation behavior of PEEK limits its further application in bone tissue
engineering. By contrast, degradable polymers including natural and synthetic are typically used for
bone tissue engineering applications. Several natural polymers such as collagen, chitosan, gelatin,
alginate, and synthetic polymers like aliphatic polyesters and hydrophilic polyvinyl alcohol have
been employed for these purposes [16,28,30]. Biodegradable aliphatic polyesters include poly(lactic
acid) (PLA), poly(glycolic acid) (PGA), polycaprolactone (PCL) and copolymers of PLA-PGA (PLGA).
Collagen is the most widely adapted into scaffolds as it constitutes an organic phase of the bone tissue.
Collagen can be extracted from animal (bovine and porcine skin/bone) and marine sources [31,32].
However, animal-derived collagen may pose a risk to public health and safety because of the outbreak
of infectious livestock diseases recently, e.g., bovine spongiform encephalopathy and African swine
fever. In addition, collagen and other natural polymers also suffer from low mechanical strength,
inferior thermal stability and processability, and poor control over the degradation rate. Thus, synthetic
polymers offer many advantages over natural polymers for making bone scaffolds including tailored
degradation rate and higher mechanical strength [16].

Bone tissue is a biocomposite consisting of a collagen fibrils and hydroxyapatite nanorods [33].
Hydroxyapatite (Ca10(PO4)6(OH)2) (HA) is a brittle material with low fracture toughness.
This precludes its use as a standalone biomaterial in orthopedics. HA has a calcium-to-phosphate
ratio of 1.67, and shows excellent osteoconductivity due to its chemical and structural similarity to
inorganic components of human bones and teeth. Thus, it is beneficial to incorporate HA into polymers
to form biocomposites with improved osteoblast adhesion and proliferation. For instance, Bonfield
and coworkers first introduced 40 vol% HA microparticles (mHA) into high-density polyethylene
(HDPE) for use in non-load-bearing maxillofacial applications [34]. Synthetic aliphatic polyesters
have poor cellular affinity and low bone bioactivity, so it is beneficial to incorporate HA into those
polymers to overcome these limitations. The combination of degradable polyesters and inorganic
bioactive mHA have been studied by several research groups [35–37]. Russias et al. reported that
PLA-based composites with 70–85 wt% mHA exhibit mechanical properties that match closely with
those of human cortical bones [35]. Apparently, conventional polymer biocomposites require very
high mHA loadings for promoting bone cell adhesion and proliferation. This is a typical behavior of
traditional polymer microcomposites [38–40].

Recent progress in nanotechnology has opened a new route in the development of advanced
functional nanomaterials for industrial and biomedical applications [41–47]. In the latter case,
nanoceramics based on alumina, titania and hydroxyapatite have been reported to enhance
bone growth due to their large surface area over their micro-grained materials [48]. Moreover,
nanoceramic surfaces mimic microenvironments of the natural bones, thereby promoting protein
adsorption and stimulating new bone formation. In particular, nanocrystalline HA (nHA) favors
large amounts adsorption of vitronectin and BMP-2 on its surface, thus accelerating new bone
formation effectively [48–50]. Therefore, bioactivity and biocompatibility of the polymers, especially
biodegradable aliphatic polyesters, can be significantly improved by adding nHA fillers [51–61].
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Graphene is a two-dimensional layer of sp2-bonded carbon atoms that are arranged in a hexagonal
lattice. It is a building block for zero-dimensional (0D) bucky ball and graphene quantum dot
(GQD), one-dimensional (1D) carbon nanotube, and three-dimensional (3D) graphite. Graphene
exhibits exceptionally high elastic modulus of 1 TPa, high electrical mobility of 2 × 105 cm2 V−1 s−1,
and excellent light transparency of 97.7% [62–64]. Graphene and its derivatives can be fabricated
through several processing routes, leading to the products with fundamentally different structural,
chemical and physical properties. Graphene prepared from chemical vapor deposition (CVD) is
mainly used for optoelectronic applications [42]. In contrast, graphene oxide (GO) prepared from
chemical oxidation of graphite flakes in strong oxidants, and reduced graphene oxide (rGO) obtained
by chemical or thermal reduction of GO, are excellent candidates for biomedical applications [65–68].
Generally, insulating GO exhibits a much lower elastic modulus of 207.6 ± 23.4 GPa comparing with
pristine graphene [69]. Nevertheless, the stiffness of GO is much higher than that of nHA (110 GPa) [70].
Thus, very low GO filler contents are needed for enhancing mechanical strength and biocompatibility
of aliphatic polyesters [71–80]. Very recently, Tjong and coworkers demonstrated that PLA hybrid
nanocomposites reinforced with both nHA and GO fillers exhibit better compatibility than binary
PLA/nHA composites [81]. This is because graphene and its derivatives promote new bone formation
by facilitating osteoblastic adhesion and growth, and osteogenic differentiation of mesenchymal stem
cells (MSCs) on their surfaces [82–85]. An additive effect between nHA and GO nanofillers leads to
further enhancement in the mechanical strength and biocompatibility of PLA. This article gives the
state-of-the art review on the recent development, mechanical performance, in vitro biodegradation,
mineralization and cell cultivation, and in vivo animal models of biodegradable aliphatic polyesters
reinforced with nHA, and/or GO nanofillers for bone tissue engineering applications, especially in the
past four years.

2. Preparation of Nanofillers

2.1. Nanohydroxyapatite

Several synthetic strategies have been employed for fabricating nHA including wet chemical
precipitation, hydrothermal method, microwave irradiation, sol gel, emulsion, etc. The morphology,
crystallite size, stoichiometry and chemical composition of nHA prepared from these routes differ
substantially from one to another [86–94]. Among these, wet chemical precipitation is one of the most
commonly technique used for forming nHA due to its simplicity, and ease of fabrication without using
organic solvents. The precipitation process only requires inexpensive Ca and P chemical reagents.
Typical Ca precursors include Ca(OH)2, CaCl2, and Ca(NO3)2, while P precursors are H3PO4, Na2HPO4

and (NH4)2HPO4. Representative chemical reactions for precipitating nHA are given as follows [86]:

10 Ca(OH)2 + 6 H3PO4 → Ca10(PO4)6(OH)2 + 18 H2O (1)

10 Ca(NO3)2 + 6 (NH4)2HPO4 + 2 H2O→ Ca10(PO4)6(OH)2 + 8 HNO3 (2)

The composition and morphology of nHA products depend largely on the selected precursors and
processing parameters or conditions. Ramesh et al. synthesized nHA with needle-like morphologies by
using Ca(OH)2 and H3PO4 precursors; the pH of solution was controlled at 10.5 through the addition
of ammonium solution (Figure 2) [88]. Very recently, Rodrıguez-Lugo et al. demonstrated that the
pH of aqueous solution and sintering temperature play important roles in controlling the final shape
of nHA products (Figure 3). They employed calcium nitrate and ammonium phosphate precursors
as well as ammonium hydroxide (NH4OH) to synthesize nHA of different morphologies [89]. In the
presence of NH4OH, the solution pH can be adjusted to alkaline conditions, resulting in the reaction
products without nitric acid formation. In this respect, reaction (2) can be described as follows:

10 Ca(NO3)2 + 6(NH4)2HPO4 + 8 NH4OH→ Ca10(PO4)6(OH)2 + 20 NH4NO3 + 6 H2O (3)
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Figure 3. Effects of the solution pH values (9, 10 and 11) and sintering temperatures (300 ◦C and
900 ◦C) on the morphologies of nHA. Reproduced from [89]. Published by the Royal Society under the
Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

Hydrothermal technique utilizing elevated temperatures (ca. below 350 ◦C) and pressures
in aqueous solutions enables the formation of nHA crystals with homogeneous chemical
compositions [87,90,91]. Nagata et al. prepared nHA rods from Ca(NO3)2 and (NH4)2HPO4 precursors
by treating the solutions hydrothermally at 60 ◦C, 120 ◦C and 180 ◦C under a pH of 10 [90].
Xue et al. also obtained HA nanorods by means of hydrothermal route [91]. However, the synthesis
of nHA by hydrothermal method is a time consuming and costly process. Instead, microwave (MW)
synthesis of nHA offers several advantages including rapid and uniform heating, short synthesis
time, narrow particle size distribution, and high purity of the product [92–94]. In the MW synthesis,
temperature, pH, MW power and duration as well as the use of chelating agent have a pronounced
effect on the formed phase structure and morphology [94]. Siddharthan et al. synthesized nHA
through a co-precipitation process of calcium nitrate and orthophosphoric acid, followed by microwave
irradiation. The morphology of the nHA changed from needle-like to acicular and finally to platelet
with the increase in microwave power [92]. Kalita and Verma synthesized highly crystalline nHA
using Ca(NO3)2 and Na2HPO4 in the presence of ethylene diamine tetraacetic acid (EDTA) under
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microwave heating at 600 W; EDTA served as a chelating agent for calcium ions. The as-synthesized
nHA possessed rod-shape and elliptical morphologies [93].

2.2. Graphene Oxide and Its Derivatives

The synthesis of GO and rGO is well described in the literature, so it is discussed briefly
herein [45,95,96]. Modified Hummers process is the most commonly adopted technique for
synthesizing GO [97]. In the process, graphite and sodium nitrate are dispersed in sulfuric acid.
The round flask with a solution mixture is immersed in an ice bath under continuous stirring. This is
followed by slow addition of potassium permanganate. Thereafter, the suspension is diluted with
deionized water. The oxidation reaction is terminated by adding a large amount of water and
hydrogen peroxide. The reaction mixture is filtered, washed with HCl and deionized water to remove
excess of manganese salt. The drawbacks of this process are the generation of toxic gases (NO2 and
N2O4) due to the use of sodium nitrate, and the formation of defective GO. In addition, the use of
potassium permanganate generates trace amounts of Mn and Fe in GO, which may induce toxicity in
mammalian cells [98,99]. From the literature, many researchers tend to use different oxidation times
and temperatures, as well as different types and concentrations of oxidants to synthesize GO [100–102].
As a result, GOs possess different O contents or C/O ratios, especially those prepared from various
oxidation times. Skakalova employed X-ray photoelectron spectroscopy (XPS) to evaluate oxygen
content in the GOs prepared from modified Hummers method with different oxidation periods
(Figure 4A,B) [95]. During chemical oxidation for the first 60 min, deconvoluted C-1s spectrum shows
the main peak at about 284.7 eV and a small shoulder at 286.6 eV, corresponding to the sp2 carbon
and C–O–C bonded species, respectively. Thus, the first-phase oxygen uptake of ∼20 at% leads
to the formation of C–O–C bonded species. The graphitic phase (C–C bond in sp2 hybridization)
still retains, thus part of the structure is partially intercalated by oxygenated species. The oxygen
uptake rises above 30 at% as the oxidation proceeds, and deconvoluted C-1s spectrum shows the
presence of sp3-hybridized C–C bond species (285.6 eV), C=O (287.6 eV) and O–C=O (288.6 eV) groups,
implying a complete oxidative intercalation (Figure 4B). After oxidation for 4 days, the structure
of intercalated graphite becomes unstable and spontaneously exfoliates into individual GO sheets.
Extended oxidation for two weeks leads to a significant decrease in oxygen content from 30 to 20 at%,
due to the spontaneous release of CO2 [95]. The different C/O ratios in GOs result in a large variation
in their structural properties, as revealed by the differences in the degree of exfoliation, number and
thickness of graphene layer, lateral size, functional group content, etc. [97].
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GO is known to possess oxygen functional groups such as carboxyl, hydroxyl, and epoxide on the
basal plane and the edge of graphene sheet [96,103,104]. Thus, GO sheets can be readily hydrated in
water because of the presence of carboxyl groups at the edges. GO can also be dispersed in certain
organic solvents such as N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), tetrahydrofuran
(THF), and ethylene glycol due to the presence of oxygenated groups [105]. Those groups render GO
electrically insulating, thereby restricting its use in the electronic industries. To restore its electrical
conductivity, reducing agents, such as hydrazine and sodium borohydride, are employed to reduce GO
into rGO [106]. In general, hydrazine is the most commonly used agent because of its good reduction
capability for eliminating oxygenated groups. It is noted that chemical reduction of GO to rGO cannot
completely eliminate oxygenated groups. The oxygenated groups can also be removed as carbon
dioxide by rapid heating GO to 1050 ◦C under vacuum or an inert atmosphere to generate thermally
reduced graphene (TRG) [107]. This high temperature treatment generates structural defects in TRG in
the form of etch holes within the graphene basal plane [108].

Graphene quantum dots (GQDs) are 0D carbonaceous nanomaterials having low toxicity,
good biocompatibility, tunable photoluminescene, and remarkable quantum confinement effect,
rendering them attractive for biomedical applications, e.g., bio-imaging, drug delivery, tissue
engineering, etc. [76,79,80,109–112]. GQD can be prepared from GO by cutting its graphene sheet
under hydrothermal treatment, where concentrated H2SO4 and/or HNO3 are employed for oxidizing
GO [113,114]. In the process, graphene sheet of GO is cut by mixed sulfuric/nitric acids under
ultrasonication. Then the treated suspension is transferred to a heated autoclave to form GQDs [113].
Very recently, Zhao et al. prepared GQDs by dispersing GO and KO2 in deionized water under stirring.
The suspension was then transferred into an autoclave, and heated at 200 ◦C for 24 h. With the assistance
of KO2, a conversion rate of ∼35 wt% from GO to GQDs could be achieved. GQDs displayed yellow
emissive photoluminescence that was useful for cellular imaging and pH sensing (Figure 5) [115].
Several chemical preparation methods such as microwave assisted cleaving, solvothermal cutting, and
electrochemical method had been used for making GQDs [110,116,117]. For example, Li et al. prepared
GQDs by cleaving GO under acidic conditions. The cleaving and reduction processes were accomplished
simultaneously using microwave irradiation [116]. Hakkarainen and coworkers employed microwave
assisted hydrothermal technique to prepare GQDs from cellulose-rich paper [68]. The paper was soaked
in dilute sulfuric acid followed by microwave heating at 180 ◦C for 2 h.
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GO and nHA can be added simultaneously to biodegradable polymers to form hybrid
bionanocomposites [81,118–124]. GO/nHA hybrids exhibit remarkable improvements in the
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mechanical performance and osteoconductivity due to the high elastic modulus of GO and
excellent biocompatibility of nHA. GO and nHA can be synthesized in situ to generate GO/nHA
nanocomposites [125–128]. Rodríguez-Gonzalez et al. prepared GO/nHA through hydrothermal
treatment of an aqueous solution containing GO, Ca(NO3)2, (NH4)2HPO4 and NH4OH at 90 ◦C [125].
In the process, GO was reduced to rGO under hydrothermal treatment. Li et al. synthesized GO/nHA
nanocomposite by adding Ca(NO3)2 into aqueous GO solution, followed by adjusting the pH of
solution to 10 with ammonia water [127]. Then (NH4)2HPO4 solution was dropwise added to the
suspension under vigorous stirring, during which the pH was kept at 10 by titration with ammonia
water. The reaction product was finally aged at 37 ◦C for 24 h (Figures 6 and 7). The GO/nHA formation
mechanism was ascribed to the electrostatic interaction between the GO and nHA. The negatively
charged carboxylic groups at the basal plane edges of GO attract Ca2+ cations. Thus, Ca atoms
were favorably adsorbed on the edges. Subsequently, HPO4

2− anions were attracted by Ca2+ cations
through electrostatic interaction, thereby forming nHA on the plane edges during aging. Analogously,
rGO/nHA nanocomposites can also be fabricated in the same way because rGO still contains residual
oxygen functional groups [129]. Very recently, Nie et al. prepared rGO/nHA nanocomposite by
mixing GO and nHA under sonication to form a homogeneous suspension, followed by hydrothermal
treatment at 200 ◦C to induce self-assembly [130]. Self-assembly is a process in which individual
components organize themselves into an ordered structure due to the electrostatic interactions among
the components. GO then converts to rGO during thermal treatment (Figure 8). So GO is effectively
reduced to rGO without using toxic reducing agent such as hydrazine.
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3. Preparation of Polymer Bionanocomposite Scaffolds

Scaffolds for bone tissue engineering must be compatible, biodegradable, bioactive, highly porous
with interconnected pore network and good mechanical strength to support bone tissue ingrowth,
nutrient transport and metabolic waste removal as mentioned previously (Figure 9) [16,17,131].
Those scaffolds can be prepared from a wide variety of techniques including solvent casting/porogen
leaching, gas foaming, freeze drying, thermally induced phase separation, melt- or wet-spinning, and
electrospinning [16,132,133]. Each technique has its advantages and limitations. Conventional porous
scaffold fabrication such as solvent casting/porogen leaching involves the dissolution of a polymer in
an organic solvent, followed by mixing with porogens (e.g., salt, sugar). The polymer solution is then
cast into the desired molds, allowing the solvent to evaporate and leaving behind polymer/porogen
material. Finally, water is employed to dissolve porogens. The size and pore fractions in the scaffolds
are controlled by those of porogens [132]. The major drawbacks of this technique include the use of
solvent, long soaking time in water to leach out porogens, and limited membrane thickness (3 mm).
Gas foaming can create a porous structure in the presence of pressurized gas such as carbon dioxide,
thereby eliminating the use of toxic solvents [133]. This process utilizes supercritical CO2 gas acting
as a plasticizer and foaming agent to produce porous scaffolds. In foaming process, the polymer
is saturated with CO2 in the supercritical state, and dense CO2 diffuses and plasticizes polymer by
reducing its glass transition temperature (Tg). After saturation, CO2 is depressurized quickly such
that Tg begins to rise and CO2 escapes from the polymer matrix owing to a rapid drop in pressure.
This leads to the nucleation of bubbles and the formation of foams. The drawbacks of this method
are the poor control of pore interconnectivity and the formation of a nonporous skin layer at the
scaffold surface [134]. In the freeze-drying technique, a water soluble polymer is frozen such that an
interpenetrating ice crystals are created. Those ice crystals are removed by sublimation, resulting in the
formation of porous scaffolds [135]. Thermally induced phase separation (TIPS) allows the formation
of an interconnected porous structure. It is based on the changes in temperature to induce phase
separation of a homogeneous polymer-solvent solution through solid liquid demixing or liquid-liquid
phase separation. This causes the formation of a polymer-rich phase and polymer-poor phase upon
rapid cooling polymer-solvent solution; the polymer-poor phase is then removed [136,137]. Several
parameters such as the types of polymers and solvents, polymer concentrations and molecular weights,
cooling temperatures and rates can affect the morphology and the size of pores.
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Fibrous scaffolds with a large surface area and a relatively large porosity can be fabricated using
melt- or wet-spinning. In melt spinning, a polymer is melted and extruded through a die having
many small holes. The molten fibers are then cooled and solidified in air. The resulting fibers are
collected by a take-up wheel to form continuous fiber strands. However, the high temperatures
employed for melting polymers prevent its use for the encapsulation of bioactive compounds and
cells. Wet spinning involves dissolving polymer in an appropriate solvent followed by extruding the
polymer solution via a spinneret into a coagulation bath containing a non-solvent. The diameters of
wet spun filaments are typically in the range of 30–600 µm. The advantages of wet spinning include
intrinsic higher porosity and larger pore size [138,139]. Electrospinning is an effective tool to prepare
micro- or nano-fibers using an electric field to manipulate the ejection of polymeric jet from a needle
attached to the syringe. In the process, the applied electric field charges the polymer droplet at the
needle tip held by its surface tension. At a critical voltage, the droplet elongates into a Taylor cone.
By increasing electric field above a critical value, electrostatic repulsion can overcome surface tension
of the droplet. So a polymer jet is drawn from the tip of the Taylor cone towards grounded collector.
As the jet travels in air, it undergoes whipping motion and solvent evaporation. Electrospun nanofibers
with interconnected porous structure and large surface area show morphological similarities to the
natural ECM [140,141]. By adding nHA to biodegradable polymers, the resultant fibrous scaffolds favor
cell adhesion, growth and differentiation [81,142–144]. However, the pores of electrospun scaffolds
are rather small, typically about 200–800 nm and below 5 µm, thus restricting bone cell infiltration
and vascular ingrowth [145]. In this respect, cell-scaffold interaction is limited to the surface only.
As recognized, bone tissues depend greatly on the vascular network to deliver nutrients, oxygen and
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metabolic waste [146]. Thus, the lack of control of pore size and its associated vascularization limit the
widespread use of electrospun mats for clinical applications.

Rapid prototyping (RP), also known as additive manufacturing (AM), has emerged as an effective
tool for printing 3D porous scaffolds with well-defined and reproducible architectures using a wide
variety of materials (Figure 10). Moreover, this technology can fabricate patient-specific 3D objects with
complex geometries. AM scaffolds can be fabricated using different routes, such as stereolithography
(SLA), selective laser sintering, fused deposition modeling (FDM), etc. [147–151]. High-resolution SLA
employs lithographic method to photocrosslink liquid polymer resins, e.g., acrylics and epoxies by a
UV laser. Aliphatic polyesters generally lack biodegradable photoreactive groups for crosslinking [148].
The AM system is typically equipped with a computer aided design (CAD) system for processing
a highly porous 3D scaffolds with a controlled architecture in a layer-by-layer mode. The desired
implant area of a patient is scanned by the X-ray or computer tomography, and the data are converted
into a CAD system. For example, selective laser sintering (SLS) employs a computer-controlled CO2

laser beam to selectively fuse and sinter polymer composite powders in a layer-by-layer manner to
build up a 3D scaffold. The advantages of SLS for forming polymer scaffolds including material
versatility, and capable of producing objects with complicated shapes [150]. However, SLS products
with a grainy surface finish suffer from shrinking and warping due to thermal distortion. FDM is the
most widely used extrusion-based AM, and offers the advantages of simplicity, flexibility, low cost
and ease of fabrication without the use of toxic organic solvents. In FDM, thermoplastic filament
is guided into a liquefier for melting through the rollers, followed by extruding in a layer-by layer
manner using a computer-controlled nozzle. The quality of 3D printed objects depends greatly on the
FDM parameters including the nozzle temperature, nozzle diameter, extrusion speed, layer thickness,
raster angle, etc. [147]. FDM suffers from the need for preformed polymer fibers to feed through the
rollers and nozzle for melting. Alternatively, AM technique based on extrusion of a polymer solution
can be used to fabricate bioactive tissue or cell laden scaffolds. This technique does not require heating
process, thus permitting inclusion of cells and bioactive molecules. Several extrusion set-ups including
solenoid, pneumatic-, and mechanical- (piston or screw-driven) system have been developed for this
purpose (Figure 11) [151].

In recent years, 3D ink-printing process is widely used in industrial sector for fabricating
optoelectronic and electronic films [43,152]. At present, 3D bioprinting has found potential applications
in the fields of tissue engineering, regenerative medicine and pharmaceutics. 3D ink printing involves
a layer-by-layer deposition of biomaterials with spatial control of functional components using a
liquid ink as shown in Figure 11. For instance, Jakus et al. prepared an ink through simple mixing
of graphene suspension and polylactide-co-glycolide solution. This ink can be utilized for printing
polymer/graphene scaffolds via an extrusion-based 3D printing system [153]. By employing cell
encapsulation approach, porous 3D scaffolds are formed by precisely co-printing bioinks of multiple
materials consisting of polymers, living cells, genes, growth factors, and extra-cellular matrices.
Furthermore, stem cells can adapt readily to tissues, thus they are an attractive option for bioprinting
bone tissues [154–158]. The recent progress of 3D bioprinting technology offers a possible way to solve
the vascularization issues [157]. However, 3D bioprinting also has certain limitation because it is static
and considers only the initial state of the printed object. With the rapid progress of nanotechnology,
four-dimensional (4D) bioprinting has been developed to include conformational changes in printed
structures very recently. By incorporating time as the fourth dimension and combining 3D bioprinting
strategies, the printed objects can change their shapes or functionalities with time under an applied
external stimulus (e.g., magnetic field) [159]. 4D printing can be developed also without the use of
nanotechnology by exploiting other polymer properties to achieve shape memory [160].
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Figure 11. Extrusion-based bioprinting processes: Pneumatic-based extrusion including (A1) valve-free
and (A2) valve-based. Mechanical-based extrusion including (B1) piston-based and (B2) screw-based,
and (C) solenoid-based extrusion [151]. Reproduced with permission from Elsevier, published by
Elsevier, 2016.
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3.1. PLA-Based Nanocomposites

3.1.1. PLA-nHA Nanocomposites

Processing and Properties of PLA/nHA Nanocomposites

Aliphatic polyesters such as PLA, PGA, PLGA and PCL have found useful applications in tissue
engineering, such as degradable sutures, bone fixation devices, stent, etc. [28,161–165]. For instance,
PLA with a slow degradation rate is typically used for long-term bone plates and screws [28]. However,
PGA with a rapid degradation rate is mainly used for sutures and drug delivery carriers [161,164].
Generally, polyesters degrade through hydrolytic chain scission or cleavage of their ester bond linkage,
leading to a reduction of their molecular weight. The hydrolysis rates are affected by several factors
including temperature, molecular structure, and hydrophilicity/hydrophobicity of polymers. PGA
is a semicrystalline polymer, having a high melting temperature ranging from 225–230 ◦C and a
Tg between 35–40 ◦C. Because of its simple chemical structure and stereo-regularity, its degree of
crystallinity varies from fully amorphous to 46–50% [162,164]. PGA is hydrophilic with a low solubility
in organic solvents. Thus, it degrades rapidly in an aqueous solution. PLA has a high melting point of
173–178 ◦C, a Tg of 60–65 ◦C, an elastic modulus of 2.7–3.8 GPa, and a tensile strength in the range
of 48–110 MPa [162,163]. PLA is a chiral polymer having different stereoisomers. These include
poly(L-lactide) [PLLA], poly(D-lactide) [PDLA] and poly(DL-lactide) [PDLLA] with different physical,
mechanical and biodegradation properties. Isotactic PLLA and PDLA are crystalline, whereas atactic
PDLLA is amorphous having no melt point [162]. PLLA is more commonly used for biomedical
applications than PDLA. PLLA stereoisomer is referred to as the PLA in this review. PLA is more
hydrophobic than PGA due to the presence of a methyl group in its molecular structure. Accordingly,
its ester bond is more resistant to hydrolysis, owing to steric hindrance by the methyl group. Thus, PLA
degrades at a slower rate than PGA, releasing lactic acid during hydrolysis. To regulate the hydrolysis
rate, copolymers of PLA and PGA are synthesized to form PLGA in which the physical properties
depend greatly on the ratio of lactic acid (LA) to glycolic acid (GA). PLGA is generally an acronym for
poly D,L-lactic-co-glycolic acid where D- and L- lactic acid forms are in equal ratio [164]. A copolymer
with a LA to GA ratio of 80:20 is semi-crystalline. When the ratio of monomer LA/GA increases,
the degradation rate of the copolymer decreases accordingly. Amorphous copolymer is produced at
a ratio of 25 LA:75 GA. PLGA copolymers with different LA/GA ratios are commercially available
for biomedical applications in different forms, including mesh, scaffold, hydrogel, and suture [165].
PCL is a semi-crystalline polymer with a low melting temperature (58–63 ◦C), a very low Tg (−60 ◦C),
and a low elastic modulus of 0.4 GPa [164]. PCL is hydrophobic and degrades much slower than PLA
due to its highly crystalline structure. The degradation rates of aliphatic polyesters decreases in the
following order: PGA > PDLLA > PLLA > PCL [162].

PLA can be produced from renewable agricultural resources, i.e., lactic acid derived from corn
starch, and the process involves a microbial fermentation. PLA has been used in clinical sector as
the scaffolds and fracture fixation devices, however, several issues may arise from the use of PLA in
orthopedics. For instance, hydrolytic release of lactic acid induces local inflammation response, leading
to a decline of cell adhesion and cell proliferation [161]. PLA possesses little bioactivity for bio-mineral
deposition and osteoconductivity due to its hydrophobic nature. The inherent brittleness and low
toughness of PLA limit its usage. Nevertheless, these shortcomings can be overcome by incorporating
nHA and GO into PLA to form bionanocomposites. In general, nHA promotes the adhesion and
proliferation of osteoblasts on its surface [166–169], as well as promotes the differentiation of human
mesenchymal stem cells (hMSCs) towards osteoblast lineage [170–173]. Furthermore, addition of
alkaline nHA nanoparticles to PLA can neutralize the acidic environment due to the hydrolytic release
of lactic acid. Similarly, CVD-graphene sheet and GO also facilitate stem cell growth and differentiation
into various lineages [82–85,174–176]. This makes GO an effective filler for bone regeneration.
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Michael et al. injection molded PLA/nHA nanocomposites containing nHA contents from
1 to 5 wt% with or without surface modifying agents [177]. In the absence of surface modifiers,
the tensile strength of the PLA/1 wt% nHA nanocomposite is higher than that of neat PLA.
Above 1 wt% nHA, the tensile strength of the PLA/nHA nanocomposites reduces considerably due
to the agglomeration of nHA and poor interfacial adhesion between nHA and PLA. By treating
the surface of nHA with 3-aminopropyl triethoxysilane (APTES), the tensile strength of PLA/nHA
nanocomposites improves markedly.

Processing and Properties of PLA/nHA Scaffolds

Porous polymeric scaffolds should have sufficient mechanical strength and elastic modulus to
support cellular adhesion and growth. Moreover, they should have large pore size and high pore
volume for cell infiltration and proliferation. However, polymeric scaffolds with high porosity levels
and large pores tend to have poor mechanical strength and stiffness [178]. Therefore, the incorporation
of nHA into porous scaffolds can improve their mechanical performance greatly.

Kothapalli et al. fabricated PLA/nHA scaffolds containing 10 to 50 wt% nHA using solvent
casting/salt-leaching process [61]. The porosity of PLA scaffold decreased gradually with the increase
of nHA content (Figure 12a). The incorporation of nHA into PLA scaffolds increased its compressive
modulus and strength markedly. The compressive modulus of PLA scaffold was 4.7 MPa and
reached 9.8 MPa at 50 wt% nHA. The compressive strength of PLA scaffold was 0.29 MPa and
increased to 0.44 MPa by adding 50 wt% nHA (Figure 12b). The improved mechanical performance
of PLA/nHA scaffolds was attributed to a weak ion-dipole interaction between oxygen in the
ester group of PLA (C=O) and calcium in nHA. In this respect, applied stress can be transferred
effectively from the PLA matrix to nHA fillers during compression testing. Wei and Ma employed
TIPS to prepare PLA/nHA scaffolds containing 10–70 wt% nHA via phase separation at −18 ◦C
using dioxane [60]. The morphologies of porous PLA and PLA/50 wt% nHA scaffolds are given in
Figure 13a–c respectively, showing a ladder-like pore feature. The pore structure of the scaffolds was
created from a phase separation of PLA-dioxant solution. The solvent (dioxant) crystallized during
quenching to a cryogenic temperature, and became pores after sublimation [60]. They also reported that
the nHA additions improved the compressive modulus of PLA scaffolds. Nejati et al. also prepared
porous PLA and PLA/50 wt% nHA scaffolds using TIPS process. A ladder-like pore morphology was
also observed in those scaffolds [179]. The mechanical properties of PLA and PLA-nHA scaffolds are
listed in Table 1.
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nHA scaffold exhibits the highest porosity level of 85.1% and largest pore size of 392 µm. The pore 
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Corcione et al. first prepared PLA/nHA filaments followed by printing 3D scaffolds using FDM [191]. 

Figure 13. (a) Low and (b) high magnification SEM images of pure PLA scaffold prepared by thermally
induced phase separation process. (c) SEM micrograph of PLA/50 wt% nHA scaffold [60]. Reproduced
with permission from Elsevier, published by Elsevier, 2004.

As recognized, ECM consists of fibrous structures made of protein molecules. Much effort
has been dedicated by the researchers to fabricate scaffolds that can mimic nanostuctural features
of the ECM to promote tissue regeneration. This can be achieved by using electrospinning
technique [180,181]. Figure 14a,b shows typical SEM images of electrospun PLA and PLA/15 wt%
nHA scaffolds. The inclusion of 15 wt% nHA to PLA reduces its fiber diameters (Figure 14c,d) [81].
Jeong et al. employed electrospinning to fabricate PLA/5 wt% nHA and PLA/20 wt% nHA composite
scaffolds [182]. They reported that the nHA additions increase Young’s modulus, tensile strength and
tensile ductility of PLA significantly. So nHA with an elastic modulus of 110 GPa can stiffen PLA
having low modulus of 2.7–3.8 GPa [70,162–164]. The tensile elongation of PLA increases from 27% to
30% and 36%, by adding 5 wt% and 20 wt% nHA, respectively (Table 1).

As mentioned above, electrospun scaffolds with small pore sizes hinder cell infiltration
and ingrowth of bone tissue [145]. Generally, large macropores (200–400µm) promote the
migration of osteoblasts and osteoprogenitors into the scaffolds, and facilitate tissue formation
and mineralization [183,184]. However, porous scaffolds with large pores, high porosity level and
interconnected pores cannot be well-controlled using conventional fabrication techniques. Accordingly,
3D printing has emerged as an attractive approach to form 3D scaffolds with controlled porosity and
large pore size [147,185,186]. In particular, FGM is the most common technique for printing neat
PLA scaffolds [187–192]. The resulting scaffold had a pore size of 500 µm and 60% porosity. Huang
et al. employed low-temperature additive manufacturing (LAM) technology to print PLA/nHA
scaffolds with different nHA contents, i.e., 10, 20, 30 and 40 wt% nHA at −20 ◦C [190]. PLA generally
lacks thermal stability at high processing temperature, so low temperature printing can avoid fast
degradation of PLA. The pore parameters and mechanical properties of these scaffolds are tabulated in
Table 1. PLA/20 wt% nHA scaffold exhibits the highest porosity level of 85.1% and largest pore size of
392 µm. The pore size of this scaffold is large enough for osteoblastic cell adhesion, infiltration and
proliferation. Corcione et al. first prepared PLA/nHA filaments followed by printing 3D scaffolds
using FDM [191]. From the SEM morphology and compression test results, nHA was found to be
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uniformly dispersed within the PLA matrix of PLA/nHA scaffolds, thereby improving the mechanical
properties of PLA.
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Figure 14. SEM images of electrospun (a) PLA, and (b) PLA/15 wt% nHA fibrous mates. Fiber diameter
distribution of electrospun (c) PLA, and (d) PLA/15% nHA mats determined by ImageJ software.
Reprinted from [81], MDPI under the Creative Commons Attribution (CC-BY) license.

3.1.2. PLA/GO Nanocomposites

Processing and Properties of PLA/GO Nanocomposites

Graphene oxide with higher elastic modulus is more effective than nHA to stiffen PLA. GO with
large surface area and oxygenated functional groups interacts with PLA through hydrogen bonding,
resulting in its uniform dispersion in the PLA matrix, thereby forming PLA/GO nanocomposites with
improved mechanical strength at low filler contents. Pinto et al. reported that the addition of 0.4 wt%
GO to PLA increases its elastic modulus and tensile strength significantly [193]. Arriagada et al.
reported that GOs are more effective than TRGs in enhancing tensile modulus of PLA. The oxygenated
groups of GOs enable homogeneous dispersion of nanofillers in the PLA matrix [194]. In general,
a strong filler-polymer bonding facilitates an efficient stress-transfer from the polymer matrix to
fillers during mechanical testing. As such, the fillers can bear applied stress effectively, leading
to a remarkable improvement in the mechanical strength of polymer nanocomposites. A strong
filler-matrix bonding can be further achieved in the PLA/GO nanocomposites either by adding a
compatibilizer [195], or by grafting GO surface with the PLA or PEG groups [196]. In the latter
case, Li et al. grafted GO with PLA to generate GO-g-PLA, and then mixed with PLA to form
PLA/GO-g-PLA nanocomposites using solvent casting process [196]. By adding 0.5 wt% GO-g-PLA,
the tensile strength of PLA increases from 35 MPa to 72 MPa (an enhancement of 105.7%), while the
elongation at break of PLA increases from 6.50 to 14.48% (an improvement of 122.8%).

More recently, Hakkarainen and coworkers fabricated dense PLA/GQD nanocomposite through
the addition of 0.05 wt% GQD (46 nm) using solution coagulation method (Figure 15a,b) [72].
They reported that GQDs were uniformly dispersed in the PLA matrix due to the point-point contact
created between adjacent GQDs as a result of their small size, and to the interaction between oxygenated
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groups of GQDs and PLA. Consequently, the tensile strength and tensile elongation of PLA/0.05 wt%
GQD nanocomposite were much higher than those of PLA and PLA/0.05 wt% GO (Figure 15c).
Moreover, the GQDs with higher hydrophilicity accelerated the degradation of PLA greatly.
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Figure 15. (a) TEM image of graphene quantum dots (GQDs). (b) Atomic force microscope (AFM)
image of PLA/GQDs showing homogeneous dispersion of GQDs in the PLA matrix. (c) Stress–strain
curves of PLA, PLA/0.05 wt% GO and PLA/0.05 wt% GQD [72]. Reproduced with permission from
the American Chemical Society, published by the American Chemical Society, 2016.

FDM technology has been increasing used to print polymer tensile specimens for evaluating
their mechanical performance in recent years [197]. To achieve high flexibility in the printed products,
Chen et al. combined thermoplastic polyurethane (TPU), PLA and GO (0.5, 2 and 5 wt%) to print solid
FDM specimens with high strength and flexibility [198]. TPU is an elastomer with highly flexible and
transparent properties, and compatible with living cells. Therefore, the combination of PLA and TPU
in different concentration ratios can lead to the formation of ductile and bendable polymer blends that
are suitable for tissue engineering applications. In the printing process, nanocomposite filaments are
first produced by mixing all constituent materials in organic solvents followed by solvent evaporation,
drying and extrusion. The as-produced filaments are then guided by the rollers into a FDM printer
to fabricate tensile bars. Chen et al. demonstrated that the addition of 0.5 wt% GO to TPU/PLA
70/30 blend largely improves the tensile modulus and strength as well as thermal stability of the
nanocomposite. The average tensile modulus and yield strength of FDM-printed TPU/PLA 70/30 are
45.56 MPa and 6.65 MPa, respectively. By adding 0.5 wt% GO, the average tensile modulus and yield
strength increase to 79.96 MPa and 11.25 MPa, respectively. The average strain at break of TPU/PLA
70/30 is 717%, and reduces to 602% by adding 0.5 wt% GO (Figure 16).
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Figure 16. (a) Tensile modulus of fused deposition modeling-printed thermoplastic polyurethane
(TPU)/PLA blend and its nanocomposites with different GO loadings. (b) Tensile stress–strain curves
of printed TPU/PLA blend and its nanocomposites with different GO loadings [198]. Reproduced with
permission from the American Chemical Society, published by the American Chemical Society, 2017.

Processing and Properties of PLA/GO Scaffolds

Very recently, Mao et al. prepared electrospun PLA/GO mats with different GO concentrations [199].
The GO additions markedly improve the mechanical properties and thermal stabilities of nanofibrous
mats. Zhang et al. surface grafted GO with PEG to enhance its interfacial bonding with PLA.
They then introduced GO and GO-g-PEG nanofillers into PLA to form electrospun fibrous scaffolds [200].
The diameter of PLA decreases from 839 nm to 706 nm by adding 1 wt% GO, but increases to 863 nm due
to the 2 wt% GO addition. Comparing with PLA scaffolds, the fibers of PLA/GO-g-PEG scaffolds have
finer diameters. Generally, two competing processing factors can affect the diameters of electrospun
composite scaffold, i.e., viscosity and electrical conductivity of the polymer solution. High solution
conductivity tends to produce fine fibers, while large solution viscosity leads to the formation of coarse
fibers. The electrical conductivity of PLA solution is 1.19 µS·cm−1. The conductivity increases to
2.08 µS·cm−1 and 2.70 µS·cm−1 by adding 1 wt% GO and 2 wt% GO, respectively [200]. The GO solid
film is generally known to be an electrical insulator. However, its oxygenated groups renders it with a
negative surface charge in the solution. The solution conductivity depends on the presence of ions
in the solution. As such, the conductivity of PLA/GO solutions increase with increasing GO content.
The viscosity of the PLA/GO solutions also increases with increasing filler content as expected. Thus,
the conductivity effect is the dominating factor in reducing the average diameter of PLA/1 wt% GO.
Meanwhile, the increase in the mean diameter of PLA/2% GO can be attributed to a large increase
in the solution viscosity as a result of 2 wt% GO addition. Figure 17a shows the tensile stress–strain
curves of electrospun PLA/GO and PLA/GO-g-PEG scaffolds. Apparently, GO-g-PEG nanofillers are
more effective than GO in improving the tensile strength of PLA at the same filler loading. The grafted
PEG chains of GO can enhance filler dispersion in the PLA matrix and interfacial interaction between
the GO and PLA. The tensile strength of PLA is 2.1 MPa, and increases to 2.9 MPa with 2 wt% GO,
while to 4.5 MPa at 2 wt% GO-g-PEG. It is noted that both nanofillers only led to a slight decrease in
tensile elongation of composite scaffolds. The fiber diameters and tensile properties of PLA/GO and
PLA/GO-g-PEG scaffolds are listed in Table 1. We now consider the effect of GQD additions of the
tensile properties of PLA. Hakkarainen and coworkers introduced 1–5 wt% GQDs into PLA scaffolds
during electrospinning [76]. Comparing with PLA, a remarkable enhancement of elastic modulus and
tensile strength can be achieved by adding GQDs. These tensile parameters increase with increasing
GQD content (Figure 17b).
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Very recently, Chen et al. fabricated dense PLA/nHA-GO hybrid nanocomposite films using 
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Reproduced from [200] with permission of Elsevier. (b) Tensile stress–strain curves of electrospun
PLA and PLA/GQD scaffolds. Reproduced from [76], MDPI under the Creative Commons Attribution
(CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

3.1.3. PLA/nHA-GO Hybrid Nanocomposites

Processing and Properties of PLA/nHA-GO Hybrid Nanocomposites

Very recently, Chen et al. fabricated dense PLA/nHA-GO hybrid nanocomposite films using
coagulation process [201]. In the process, calcium nitrate and ammonium dihydrogen phosphate
were dispersed in a simulated body fluid (SBF) solution followed by adding aqueous GO solution.
Microwave irradiation was employed to heat the mixed solution to generate nHA-GO with 1 wt%
GO. Pure nHA was also prepared using the same processing conditions (Figure 18). Compact
PLA/nHA-GO films with 10 to 30 wt% filler contents were fabricated by slowly dropped ethanol
suspension of nHA-GO into PLA/dichloromethane (DCM) followed by coagulation. The coagulated
products were finally compression molded into dense thin films. PLA/(10–30 wt%) nHA films without
GO were also prepared for comparison purposes. Tensile test results showed that nHA-GO fillers
were more effective than nHA in improving the tensile modulus, tensile strength and elongation at
break of PLA (Figure 19). The tensile modulus, tensile strength and elongation of compact PLA film
were 1303 ± 108 MPa, 58.6 ± 2.7 and 6.2 ± 0.4%, respectively. By adding 20 wt% nHA, the values
of those tensile parameters became 2293 ± 142 MPa, 39.6 ± 3.9 MPa and 5.0 ± 0.4%, respectively.
The addition of 20 wt% nHA led to enhanced tensile modulus and strength at the expense of tensile
ductility. By incorporating 20 wt% nHA-GO hybrid to PLA, further enhancement of tensile properties
was obtained. The esterification between carboxyl group of GO and hydroxyl group of nHA led to a
significant improvement in the tensile properties of PLA/nHA-GO films. The tensile modulus, strength
and elongation of break of the PLA/20 wt% nHA-GO film were reported to be 3513 ± 182 MPa,
93.2 ± 4.9 MPa and 7.4 ± 0.8%, respectively. The tensile properties of the as-produced PLA and its
nanocomposites are better than those of human cancellous bone having an elastic modulus and tensile
strength of 67 MPa and 54 MPa, respectively [202]. Thus, these materials with comparable tensile
strength to cancellous bone can be used as load-bearing fixation devices for bone repair treatment.
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American Chemical Society, published by the American Chemical Society, 2018.

Processing and Properties of Hybrid PLA/nHA-GO Scaffolds

Porous scaffolds made from a single material are generally difficult to fulfill the requirements
of tissue engineering because of their intrinsic material property limitations, e.g., the brittleness of
ceramic fillers, poor osteoinduction of aliphatic polyesters due to the release of acidic degradation
products. In this context, combining two or more types of nanofillers is very effective to make bone
tissue scaffolds with improved mechanical performance and good biocompatibility. Recently, a variety
of polymeric bionanocomposites can be created by adding two nanofillers with significantly different
physical and chemical properties to a single polymer matrix [51–55,81,118,123,203–205]. Accordingly,
novel hybrid polymer nanocomposites with tailored properties can be developed by bringing the
combined advantages of different nanofillers. By inheriting good biocompatibility of nHA and
high stiffness of GO, the resultant PLA/nHA-GO nanocomposites are expected to possess excellent
bioactivity, osteoconductivity and high mechanical strength.

Tjong and coworkers prepared electrospun PLA/15 wt% nHA-(1–3 wt%) GO scaffolds [81].
The results revealed that hybrid addition of 1 wt% GO or 2 wt% GO to the PLA/15 wt% nHA increases
its tensile modulus and strength, especially a marked increase in the elastic modulus. At 3 wt% GO,
both the tensile modulus and strength of PLA/15 wt% nHA-3% GO decreased markedly due to the
agglomeration of nanofillers (Table 1).

3.2. PLGA-Based Nanocomposite Scaffolds

Poly(glycolic acid) exhibits fast degradation rate in physiological solutions, thus hindering
its clinical applications. In this context, PGA is always copolymerized with PLA in different
lactide/glycolide concentrations to yield PLGA with intermediate degradation rates between the
PLA and PGA. Conventional solvent casting/particulate leaching (SC/PL) involves the use of
organic solvents that are harmful to biological cells and tissues. To solve this issue, Kim et al.
combined gas foaming and particulate leaching (GF/PL) to prepare PLGA/nHA scaffolds without
using organic solvents [206]. The GF/PL scaffolds exhibited interconnected porous structures and
superior mechanical performance compared with those of scaffolds prepared by the SC/PL method.
Jose et al. prepared electrospun PLGA nanocomposite scaffolds with 1, 5, 10 and 20 wt% nHA [207].
They reported that the storage modulus (determined from the dynamic mechanical analysis) of the
scaffolds increased from 441 MPa for pure PLGA to 724 MPa for 5 wt% nHA. Further increase in
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filler content causes a reduction in the storage modulus, e.g., 371 MPa for 20 wt% nHA, due to the
filler agglomeration at high filler loading. It is generally known that the properties of electrospinning
solutions including polymer concentration, solution viscosity, solvent, electrical conductivity, surface
tension and polymer molecular weight, and processing parameters such as electrical voltage, spinning
temperature, flow rate, spinning speed, needle tip to collector distance, etc., affect the morphologies
of electrospun fibers greatly [208,209]. Luo et al. prepared a suspension of 15 wt% PLGA or 18 wt%
PLGA with 1% GO by dispersing them in a mixed solvent consisting of tetrahydrofuran (THF) and
DMF [78]. The PLGA/GO suspension was then electrospun to produce fibrous mats. They reported
that the water contact angles of 15%-PLGA and 18%-PLGA nanofibrous mats decreased from 123 ± 4◦

to 115 ± 4◦, and from 122 ± 4◦ to 111 ± 4◦, respectively by adding 1 wt% GO. Thus, GO slightly
reduced hydrophobic behavior of PLGA.

Very recently, Fu et al. demonstrated that the additions of 10 wt% nHA, 2 wt% GO, and 10 wt%
nHA + 2 wt% GO to fibrous PLGA (75/25) scaffold can reduce its water contact angle <90◦, especially
for the GO addition [123]. The water contact angle of nanofibrous PLGA mat was 104.1 ± 5.2◦,
and decreased to 95.2 ± 1.9◦ and 86.9 ± 6.9◦ by adding 10 wt% nHA or 2 wt% GO, respectively.
Moreover, the contact angle further reduced to 74.4 ± 3.5◦ for the PLGA/10 wt% nHA-2 wt% GO
hybrid scaffold. The beneficial effect of GO in reducing the contact angle of hydrophobic PLGA was
pronounced. This effect arouse from the presence of hydrophilic OH, C–O–C and COOH groups on the
GO surface [123]. Considering the mechanical properties, the incorporation of 10 wt% nHA into PLGA
increased its tensile strength from 2.72 MPa to 3.02 MPa. By adding 2 wt% GO, the tensile strength
of PLGA further increased to 5.98 MPa. A maximum tensile strength was achieved by incorporating
10 wt% nHA + 2% GO hybrid nanofillers into the PLGA matrix.

3.3. PCL-Based Nanocomposites

3.3.1. PCL/nHA Nanocomposites

Properties of PCL/nHA Nanocomposites

PCL, with a high degree of crystallinity and poor hydrophilicity, exhibits very slow degradation
rate, thus restricting its use for bone tissue engineering applications. Its degradation rate can be
modified by adding hydrophilic nHA, GO, or hybrid nHA/GO nanofillers. Moeini et al. prepared in
situ PCL/20 wt% nHA nanocomposite by dissolving PCL in acetone under stirring, followed by adding
Ca(OH)2 and H3PO4 to the polymeric solution. The mixed solution was treated under solvothermal
conditions [210]. The PCL/HA nanocomposite was cast onto a Petri dish and dried for 24 h at room
temperature. The tensile modulus and tensile strength of cast PCL film are 106 ± 6 MPa and 9.3 ± 0.3,
respectively. The tensile modulus of cast PCL film is somewhat smaller than that of melt-compounded
PCL (i.e., 337 MPa) [211]. This may due to the formation of few pores inside cast PCL film as a result
of solvent evaporation. By adding 20 wt% nHA to PCL, the tensile modulus and tensile strength
increase to 126 ± 4 MPa and 11.8 ± 0.2 MPa, respectively. In addition, the compressive modulus and
compressive strength of PCL film are 160.8 ± 7 MPa and 15 ± 0.2 MPa, while those of the PCL/20 wt%
nHA are 241.6 ± 12 MPa and 19 ± 0.4 MPa, respectively. Apparently, the addition of 20 wt% nHA to
PCL improves its mechanical performance. Eshraghi and Das employed SLS to fabricate bulk PCL
film [212]. The tensile modulus of bulk PCL ranged from 343.9 to 364.3 MPa, while its tensile strength
ranged from 10.5 to 16.1 MPa. Moreover, the compressive modulus of bulk PCL ranged from 297.8 to
317.1 MPa, and the compressive strength was 38.7 MPa.

Structure and Properties of Porous PCL/nHA Scaffolds

Moeini et al. also prepared porous PCL/20 wt% nHA nanocomposite scaffold with porosity >90%
by means of solvent casting/particulate leaching method [210]. The presence of pores with sizes in
the range of 10–200 µm in the scaffold led to a drastic reduction in the compressive modulus from
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241.6 ± 12 MPa to 1.99 ± 0.076 MPa, and the compressive strength from 19 ± 0.4 MPa to 159 ± 7 kPa.
Very recently, Li et al. fabricated electrospun PCL/nHA mats with high nHA loadings of 30 wt%
and 60 wt% to promote bone cell infiltration [213]. The water contact angle of PCL was 135.4◦, and
decreased to 134.1◦ and 131.8◦ by adding 30% nHA and 60% nHA, respectively. The pore size of
electrospun PCL mat was 1.94 µm, and slightly increased to 2.19 µm and 2.30 µm by adding 30% nHA
and 60% nHA, respectively. Li et el. demonstrated that the nHA additions increase the tensile strength
and tensile elongation of PCL significa ntly. The PCL mat had a tensile strength of 12.3 ± 0.89 MPa,
and increased to 85.17 ± 2.61 MPa and 158.1±12.6 MPa respectively by incorporating 30% and 60%
nHA into PCL. Moreover, the tensile elongation of PCL, PCL/30% nHA and PCL/60% nHA were
380%, 530% and 564%, respectively. From these data, it is apparent that the pore sizes of electrospun
PCL and its nanocomposite scaffolds are very small for bone cell infiltration.

AM technique is an effective tool for fabricating 3D PCL and PCL/nHA scaffolds with
well-defined macropores for cell infiltration [214–216]. SLS is typically used to fabricate PCL
scaffolds due to its good processability as a result of low melting (58–63 ◦C) and glass-transition
temperatures (–60 ◦C) [162,164]. The compressive mechanical properties of SLS-fabricated scaffolds
depend largely on the scaffold design. Williams et al. demonstrated that SLS-prepared PCL scaffolds
can be easily adapted to fit complex anatomic locations. Compressive modulus and yield strength
values of 3D PCL scaffolds range from 52 to 67 MPa, and 2.0 to 3.2 MPa for a design porosity >63%,
respectively [214]. Xia et al. employed SLS technique to fabricate cylinder-shaped PCL/(5–15%) nHA
scaffolds having pore sizes ranged from 600 to 800 µm [215]. The nHA additions were beneficial to
enhance hydrophilicity of PCL. The water contact angle of PCL was 112.98◦, and reduced drastically
to 87.42◦, 81.00◦ and 79.50◦ by adding 5 wt%, 10 wt% and 15 wt% nHA, respectively to PCL. So large
pore sizes and hydrophilic behavior of PCL/nHA scaffolds favored the adhesion, proliferation and
infiltration of hMSCs. Furthermore, nHA fillers were also very effective in improving the compressive
strength of SLS-processed PCL. The compressive strength of PCL was 1.38 ± 0.16 MPa, and increased
to 2.67 ± 0.20 MPa and 3.17 ± 0.11 MPa by adding 10 wt% nHA and 15 wt% nHA, respectively.

From the literature, an extrusion-based printing system have been used to print 3D PCL, and
PCL/nHA scaffolds [216,217]. Huang et al. employed both nHA and β-tricalcium phosphate
(TCP) fillers (10 and 20 wt%) to reinforce 3D PCL/nHA and PCL/TCP nanocomposite scaffolds.
As recognized, beta-TCP material finds attractive application as a bone substitute material in
orthopedics due to its good biocompatibility, and biodegradation. Their results showed that all
scaffolds exhibited a well-defined pore architecture with a uniform pore distribution. The pore sizes of
the PCL, PCL/nHA and PCL/TCP scaffolds were in the range of 287 and 317 µm [217]. Furthermore,
both nHA and TCP fillers increased the compressive strength of PCL scaffolds. The additions of 20 wt%
nHA and 20 wt% TCP increased the compressive modulus of PCL scaffolds from 48.08 ± 0.09 MPa to
75.72 ± 0.57 MPa and 88.07 ± 1.91 MPa, respectively. It is evident that the compressive modulus of 3D
printed PCL/20 wt% nHA scaffold is significantly higher than that of solvent-cast PCL/20 wt% nHA
scaffold (1.99 ± 0.076 MPa) [210]. Moreover, SLS-processed PCL/15 wt% nHA exhibits considerably
higher compressive strength (3.17 ± 0.11 MPa) than that of solvent-cast PCL/20 wt% nHA scaffold
(159 ± 7 kPa) [210,215]. Comparing to conventional scaffold fabrication processes, it appears that
3D AM techniques can produce mechanically strong and stable scaffolds with a well-defined porous
structure for bone tissue engineering applications.

Chiellini and coworkers employed AM technique to fabricate scaffolds with dual-scale porosity at
the micro- and macro-levels based on wet-spinning of PCL, PCL/nHA, star-PCL and star-PCL/nHA
solutions [218–220]. Using the same approach, Kim et al. constructed 3D PCL and PCL/(10–20 wt%)
nHA scaffolds with macro-and micro-porous structures through non-solvent-induced phase separation
(NIPS)-based 3D plotting. This technique creates macropores between the scaffold filaments based
on the printed design, and micropores in the filaments through the phase separation in PCL/HA
solutions under non-solvent/solvent exchange mechanism [221]. In the process, nHA is dispersed in
the PCL/THF, and the suspension is extruded into an ethanol (EtOH) bath by a nozzle. The filament
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was deposited in a layer-by-layer sequence of 0◦/90◦ pattern for obtaining macropores with a square
geometry (Figures 20 and 21). Micropores in the filaments are created by means of phase separation
via the exchange of the solvent (THF) and non-solvent (EtOH). Micropores in the filaments mimic
the structure of human bones, thereby providing effective sites for the cell adhesion and nutrient
transport [222]. Therefore, the formation of a hierarchical structure in the printed 3D scaffolds
consisting of macropores and micropores facilitates osteoconduction and osteointegration in vivo
greatly [223,224]. The filament width and porosity of PCL are 219 ± 16 µm, and 78.4 ± 1.2 µm,
respectively, while those of PCL/10 wt% nHA are 270 ± 3 µm and 77.04 ± 3.5 µm, respectively.
Figure 22A,B are representative SEM images showing uniformly distributed of micropores within PCL
filaments or PCL/nHA filaments.
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It is noted that the specific pore shapes of 3D printed scaffolds would affect their mechanical and
biological properties [225,226]. In other words, the architecture or lay-down pattern of the filaments
influences the mechanical behavior and cell adhesion of printed scaffolds. A PCL scaffold with a simple
0/90◦ pattern generally exhibits square interconnected pores as shown in Figure 21a. By varying the
layer deposition angle to 0/60/120◦ and 0/45/90/135◦, scaffolds with triangular and complex internal
pore geometries are produced [225]. The printed 3D scaffolds with the orthogonal layer design of
0/90◦ orientation generally gives better mechanical performance compared to other deposition layer
architecture. The scaffolds with a 0/90◦ pattern exhibit higher compressive modulus and compressive
strength than those obtained for 0/60/120◦ and 0/45/90/135◦ patterns. The compressive modulus of
PCL scaffolds with 0/90◦, 0/60/120◦ and 0/45/90/135◦ patterns at a filament distance (center to center
of filaments) of 650 µm are 34.2 ± 3.8 MPa, 30.5 ± 4.5 MPa and 19.1 ± 2.8 MPa, respectively [225].

3.3.2. PCL/GO Nanocomposites

Properties of PCL/GO Nanocomposites

In recent years, GO has emerged as an important group of filler material for polymers to form
structural and functional polymer nanocomposites due to the notable improvement in their mechanical
and electrical properties at low filler loadings. The incorporation of GO into a low modulus polymer
matrix can lead to a significant reinforcement [227]. Wan and Chen prepared solid PCL/GO films with
different GO loadings of 0.3–2 wt% by means of solvent casting followed by compression molding
to obtain dense solid films [228]. The found that GO nanofillers stiffen and reinforce PCL effectively.
By adding 0.3 wt% GO, the elastic modulus, tensile strength and tensile elongation of PCL increased
from 209 ± 21 MPa, 14.2 ± 1.6 MPa and 554 ± 72%, to 230 ± 30 MPa, 25.1 ± 4.1 MPa and 802 ± 65%,
respectively. Comparing with pure PCL control, the elastic modulus and tensile strength of PCL were
increased by 10% and 77%, respectively due to the 0.3 wt% GO addition. Increasing GO content to
2 wt%, the elastic modulus and tensile strength further increased to maximum values of 442 ± 35 MPa
and 27.5 ± 5.7 MPa, respectively, but tensile elongation reduced to 548 ± 81%. The reinforcing effect of
GO on PCL was attributed to the formation of hydrogen bonding between the GO and PCL as verified
by Fourier transform infrared spectroscopy (FTIR), and to the homogeneous dispersion of GO in the
PCL matrix.
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Table 1. Mean structural and mechanical properties of porous scaffolds derived from aliphatic polyesters and their nanocomposites reinforced with nHA or
GO nanofillers.

Specimen
Composition, wt%

Fabrication
Route

Porosity,
% Pore Size, µm Fiber

Diameter, nm
Mechanical Test

Method
Modulus,

MPa Strength, MPa Elongation,
% Ref.

PLA-Based Scaffolds

PLA SC/PL 92.0 NA None Compression 4.7 0.29 NA [61]
PLA/10% nHA SC/PL 91.4 NA None Compression 5.0 0.32 NA [61]
PLA/20% nHA SC/PL 90.6 NA None Compression 6.4 0.35 NA [61]
PLA/50% nHA SC/PL 86.5 NA None Compression 9.8 0.44 NA [61]

PLA TIPS 93.0 50–100 None Compression 4.3 NA NA [60]
PLA/10% nHA TIPS 92.8 50–100 None Compression 4.9 NA NA [60]
PLA/30% nHA TIPS 92.3 50–100 None Compression 7.8 NA NA [60]
PLA/50% nHA TIPS 91.8 50–100 None Compression 8.3 NA NA [60]

PLA TIPS 87.4 175 None Compression 2.4 1.79 NA [179]
PLA/50% nHA TIPS 85.1 175 None Compression 14.9 8.67 NA [179]

PLA ES NA 4.51 365 Tension 0.42 0.063 27 [182]
PLA/5% nHA ES NA 1.32 255 Tension 1.80 0.157 30 [182]

PLA/20% nHA ES NA 0.53 135 Tension 4.71 0.262 36 [182]
PLA LAM 55.3 271 None Tension; Bending 2.8 (B) 42.5 (T); 122.8 (B) NA [190]

PLA/10% nHA LAM 68.5 336 None Tension; Bending 3.1 (B) 38.6 (T); 131.9 (B) NA [190]
PLA/20% nHA LAM 85.1 392 None Tension; Bending 3.5 (B) 35.1 (T); 138.6 (B) NA [190]
PLA/30% nHA LAM 76.3 354 None Tension; Bending 3.8 (B) 29.2 (T); 119.1 (B) NA [190]
PLA/40% nHA LAM 72.2 318 None Tension; Bending 3.9 (B) 23.2 (T); 112.5 (B) NA [190]

PLA ES NA NA 839 Tension NA 2.1 97 [200]
PLA/1% GO ES NA NA 706 Tension NA 2.9 85 [200]
PLA/2% GO ES NA NA 863 Tension NA 3.5 87 [200]

PLA/1% GO-g-PEG ES NA NA 593 Tension NA 3.9 95 [200]
PLA/2% GO-g-PEG ES NA NA 761 Tension NA 4.5 83 [200]
PLA/5% GO-g-PEG ES NA NA 685 Tension NA 5.2 84 [200]

PLA ES 70.5 NA 786 Tension 8.58 0.27 NA [81]
PLA/15% nHA ES 74.5 NA 563 Tension 9.88 0.41 NA [81]

PLA/15% nHA-1% GO ES 75.6 NA 516 Tension 12.69 0.47 NA [81]
PLA/15% nHA-2% GO ES 76.2 NA 502 Tension 16.73 0.57 NA [81]
PLA/15% nHA-3% GO ES 77.9 NA 412 Tension 8.10 0.38 NA [81]
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Table 1. Cont.

Specimen
Composition, wt%

Fabrication
Route

Porosity,
% Pore Size, µm Fiber

Diameter, nm
Mechanical Test

Method
Modulus,

MPa Strength, MPa Elongation,
% Ref.

PCL-Based Scaffolds

PCL ES NA 1.94 393 Tension NA 12.3 380 [213]
PCL/30% nHA ES NA 2.19 317 Tension NA 85.17 530 [213]
PCL/60% nHA ES NA 2.30 332 Tension NA 158.1 564 [213]

PCL SLS 63.1 1750 × 1750 NA Compression 65 3.2 NA [214]
PCL SLS 79.0 2000 × 2500 NA Compression 54 2.0 NA [214]
PCL SLS 78.54 NA NA Compression NA 1.38 NA [215]

PCL/10% nHA SLS 72.06 NA NA Compression NA 2.67 NA [215]
PCL/15% nHA SLS 70.31 NA NA Compression NA 3.17 NA [215]

PCL ES 94.1 NA 543 Tension 10.5 2.37 110 [228]
PCL/0.3% GO ES 94.6 NA 640 Tension 17.4 4.61 275 [228]

Trabecular bone;
dried defatted NA NA NA NA Compression 1.1–139 0.3–7.0 NA [15]

Trabecular bone;
fresh frozen NA NA NA NA Compression 1.4–79 1.5–45 NA [15]

Abbreviations: B, three-point bending; ES, electrospinning; LAM, low temperature additive manufacturing; NA, not available; PL, porogen leaching; SC, solvent casting; SLS, selective
laser sintering; T, Tension; TIPS, thermally induced phase separation.
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As mentioned, GO is an electrical insulator and its electrical conductivity can be restored by
adding reducing agents to yield rGO. By incorporating rGO into PCL, the resultant nanocomposites
exhibit good electrical conductivity. Sayyar et al. reported that the rGO additions improve electrical
conductivity and mechanical strength of PCL [229]. Kumar et al. studied the effect of GO, rGO
and amine-functionalized GO (AGO) additions (1, 3 and 5 wt%) on dynamic mechanical behavior,
wettability and stem cell response of compression molded PCL disks. They reported that the storage
modulus at 25 ◦C of PCL increased with increasing filler loadings, and this increase was largest for GO
followed by AGO and rGO [227]. Thus PCL/rGO nanocomposites had the smallest storage modulus
because of the weak interactions between PCL and rGO. The storage modulus of polymers at 25 ◦C
was considered as their elastic modulus. Moreover, GO and AGO additions improved wettability of
PCL, i.e., enhanced its hydrophilicity. However, addition of rGO nanofillers with few oxygenated
functional groups, increased the hydrophobicity of PCL, leading to an increased contact angle for
PCL/rGO composites.

Properties of Porous PCL/GO Scaffolds

Wan and Chen also fabricated electrospun PCL/0.3 wt% GO scaffold, and reported that the GO
filler increases the tensile strength, modulus and energy at break of PCL by 95%, 66% and 416%,
respectively. The elastic modulus and tensile strength of electronspun PCL were 10.5 ± 0.92 MPa
and 2.37 ± 0.09 MPa, and increased to 17.4 ± 1.25 MPa and 4.61 ± 0.15 MPa, respectively by adding
0.3 wt% GO [228]. The modulus and tensile strength were enhanced by 66% and 95%, respectively.
Recently, Song et al. fabricated a series of electrospun PCL/GO mats containing 0.1, 0.3, 0.5, and
1.0 wt% GO [230]. By adding 0.1 wt% and 0.3 wt% GO to PCL, the tensile stress and elastic modulus
of the electrospun nanocomposite scaffolds were higher than those of neat PCL. For GO contents
≥0.5 wt%, the values of these tensile parameters decreased dramatically due to the filler aggregation.
The enhancement in the mechanical properties of electrospun scaffolds was related to homogeneous
dispersion of GO in the PCL matrix, high stiffness of GO, and the interactions between the GO and
PCL. Recently, Ramazani and Karimi incorporated both rGO and GO nanofillers into PCL followed by
electrospinning [231]. The additions of 0.1 wt% GO and 0.1 wt% rGO to PCL led to an increase in the
tensile strength of PCL scaffolds over ~160% and 304% respectively, and an improvement in Young’s
modulus over 103% and 163% due to the good dispersion of both nanofillers and their interactions
with PCL. As mentioned, rGO is an electrical conductor, so the incorporation of rGO into PCL can
create electrically conducting scaffolds. Such conductive scaffolds are beneficial for cell adhesion and
proliferation, because they can stimulate an efficient adsorption and deposition of serum proteins on
their surfaces, thereby assisting cell attachment and cell growth [232].

The small pores formed in electrospun PCL/GO and PCL/rGO scaffolds can limit cell infiltration
as mentioned previously. As such, 3D printing is an effective tool to fabricate PCL-based scaffolds
with well-defined macropores [233–235]. Wang et al. employed AM to fabricate 3D PCL/graphene
scaffolds [234,235]. Their graphene sheets were made by dispersing graphite flakes in organic solvents
using ultrasonic exfoliation method. This process can produce graphene sheets in large quantities,
and the graphene sheets obtained are termed as liquid phase exfoliated (LPE) graphene [236,237].
However, most organic solvents used for the graphite flake exfoliation, e.g., DMF and NMP are
highly toxic, and the retention of toxic solvents in the LPE-graphene sheets can induce cytotoxicity.
This deleterious effect limits the use of LPE-graphene in biomedical engineering applications.
Nevertheless, LPE-graphene additions to 3D printed PCL scaffolds can assist us in understanding
pristine graphene-cell interactions in conductive polymer scaffolds. In their study, LPE-graphene
additions (0.13, 0.50 and 0.78 wt%) enhance hydrophilicity of 3D printed PCL/graphene scaffolds.
The contact angle of PCL scaffold was 96.10◦, and decreased to 91.78◦, 86.48◦ and 88.25◦ by adding
0.13, 0.50 and 0.78 wt% LPE-graphene, respectively.
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3.3.3. PCL/nHA-GO Hybrid Nanocomposite

Zhou et al. synthesized nHA-GO hybrid through hydrothermal process, and then incorporated
0.2%, 0.5%, 1% and 2% nHA-GO into PCL using solvent casting [238]. Figure 23a shows that nHA
rods are densely anchored on the surface of graphene sheet due to the self-assembly mechanism [130].
This leads to strong interactions between nHA and GO. Moreover, GO converts to rGO or graphene
sheets (Gs) during hydrothermal treatment as revealed by the FTIR results. As such, oxygenated
groups of GO are removed to a large extent by hydrothermal treatment. Accordingly, the tensile
properties of PCL/nHA-GO hybrids are markedly improved due to synergistic effects between the
fillers. For comparison, GO is also hydrothermally treated, mixed with PCL, followed by solvent
casting to give PCL/1 wt% Gs. The tensile strength and tensile elongation of the PCL/nHA-Gs hybrids
are higher than those of PCL/1 wt% Gs (Figure 23b). The improvement in the mechanical properties of
hybrid nanocomposites can be ascribed to strong interactions between the nHA and Gs, and uniform
dispersion of hybrid fillers in the PCL matrix.
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and elongation at break of PCL and its nanocomposites [238]. Reproduced with permission from
Elsevier, published by Elsevier, 2017.

4. In Vitro Studies

4.1. In Vitro Hydrolytic Degradation

The hydrolytic degradation behavior of aliphatic polyesters and their nanocomposites is typically
carried out through immersion in a phosphate buffer saline (PBS) solution at 37 ◦C [191,239–241].
Ege et al. fabricated dense PLGA and PLGA/25 wt% nHA nanocomposite using twin screw extrusion
followed by injection molding [239]. Those samples were then immersed in 0.01 M PBS solution at
37 ◦C. The results showed that PLGA had faster degradation rate followed by PLGA/25 wt% nHA
nanocomposite. Huang et al. fabricated PLA/nHA nanocomposite by melt-mixing, and immersed neat
PLGA and nanocomposite in PBS with a pH of 7.4 [240]. They reported that both the flexural strength
and modulus of neat PLA deteriorate faster than those of the nanocomposite sample after immersion
in PBS for up to 20 weeks. Accordingly, the nanocomposite can maintain sufficient mechanical strength
for the bone cell adhesion and growth during the early phase of decomposition. Furthermore, released
ions from nHA of the PLA/nHA composite can neutralize lactic acid decomposed from PLA during
the degradation process. In this respect, the autocatalytic degradation effect of acids in PLA can be
minimized substantially due to the nHA addition, thereby improving bioactivity of PLA. Duan et al.
demonstrated that the oxygenated groups of GO improved the wettability of PLA/(0.5–2 wt% GO)
nanocomposites, thereby accelerating hydrolytic degradation of PLA in deionized water, HCl and
NaOH solutions. The higher GO content in the nanocomposites, the greater the hydrolytic degradation
rate was [241].

Díaz et al. fabricated PCL/nHA scaffolds with 10 wt%, 30 wt% and 50 wt% nHA by freeze-drying
the composite suspensions [242]. Porous scaffolds with porosities of up to 90% were achieved by
this process. Pure PCL and nanocomposite scaffolds were immersed in PBS at 37 ◦C for extended
periods of time. Prior to the solution immersion, the compressive modulus of nanocomposite scaffolds
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increases with increasing nHA content (Figure 24a). Following immersion, compressive modulus of
all samples decreases with increasing immersion time. After 5 weeks immersion, the stiffness of the
PCL/30 wt% nHA and PCL/50 wt% nHA scaffolds is higher than that of pure PCL and PCL/10 wt%
nHA scaffolds (Figure 24b). A similar reducing trend in compressive stress with time is observed for all
samples (not shown). Figure 24c reveals that the weight loss of pure PCL scaffold increases slowly with
increasing immersion time. During immersion, water penetrates into the amorphous phase of PCL,
leading to swelling and chain scission of ester linkage. PCL exhibits a highly crystalline structure and
hydrophobicity, thereby hindering water absorption and producing a small weight loss. In contrast,
nanocomposite scaffolds undergo larger weight loss, especially those with higher nHA loadings
(Figure 24c). Water absorption of the PCL/nHA scaffolds shows a marked increase with immersion
time due to the incorporation of hydrophilic nHA fillers (Figure 24d). Apparently, nHA additions
accelerate the degradation rate of PCL with poor degradability. Very recently, Sanchez-Gonzalez et al.
studied hydrolytic degradation behavior of highly porous PCL and PCL/0.1 wt% rGO scaffold
prepared by a phase inversion technique [243]. Both types of scaffolds were immersed in PBS at 37 ◦C
for 12 months. The high internal porosity of the scaffolds facilitated water permeation, leading to
cleavage of PCL molecular chains. The presence of rGO slightly accelerated the degradation rate.
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4.2. Biomineralization

The bioactivity of porous scaffolds can be assessed through the deposition of apatite layer
on their surfaces by incubation in simulated body fluid (SBF) with ionic concentrations similar to
those of human blood plasma [244]. Synthetic apatite is a highly bioresorbable material having
excellent bioactivity and biocompatibility [245]. Mineralized scaffolds have been found to enhance
osteoblastic activities, osteogenic differentiation and bone formation compared with untreated
counterparts [12,246–248]. The formation of apatite layer on the polymers and composites depends
greatly on the ionic concentrations (0.2–2 SBF) of SBF solutions and the compositions of materials [245].
Zhang and Ma reported that apatite crystals coat the PLA surface after incubation in SBF for 15 days.
They suggested that that a negatively charged COO− ions derived from PLA attract positive Ca2+

ions from SBF, thereby inducing apatite nucleation [249]. However, SBF mineralization test requires
prolonged immersion time for depositing apatite layer on the sample surface. Hence the immersion
time can be reduced by using higher ion concentrations in SBF. Chen et al. reported that apatite coating
can be formed on PLA immersed in supersaturated 5 SBF within 24 h [250].

Tjong and coworkers indicated that nHA fillers of melt-compounded PLA/18 wt% nHA
nanocomposite play an important role on the nucleation of apatite layer on its surface upon immersion
in SBF solution [55]. The thickness of the apatite layer increases with increasing immersion time.
The formation of apatite layer involves the diffusion and precipitation of Ca2+ ions from SBF, and
their electrostatic interactions with the OH− and PO4

3− groups of nHA. Rajzer et al. investigated the
effect of nHA addition on the apatite layer formation on electrospun poly-L/DL-lactide/20 wt% nHA
scaffold upon immersion in SBF solution at 37 ◦C [251]. Poly-L/DL-lactide (P[L/DL]LA is a copolymer
typically used for fracture fixation devices and bone screws. They reported that apatite layer was not
deposited on pure PLDL scaffold after 7 days immersion in SBF solution (Figure 25a,b). However,
round mineral nodules were deposited on electrospun PLDL/20 wt% nHA fibrous mat, and covered
the mat surface completely (Figure 25c,d). These micrographs clearly revealed that nHA fillers acting
as effective nucleation sites for mineralization.
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Figure 25. SEM images of electrospun (a,b) PLDL and (c,d) PLDL/20 wt% nHA scaffolds after 7 days
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It has been shown that the incorporation of GO and GQD into aliphatic polyesters can also
induce the deposition of apatite crystals on their surfaces [76,228]. The oxygenated groups of GO
such as carboxyl (−COOH) and hydroxyl (−OH) provide active sites for biomineralization [228,252].
For instance, a thick layer of calcium phosphate mineral can be deposited on electrospun PCL/0.3 wt%
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GO mat surface by immersion in 10 SBF solution at room temperature for 20 h [228]. Hakkarainen
and coworkers demonstrated that the oxygenated groups of GQDs promote the deposition of apatite
crystals on electrospun PLA/GQD scaffolds with 2.5 wt% and 5 wt% GQD. Figure 26 shows the
SEM images of electrospun PLA and PLA/GQD scaffolds, respectively. From these micrographs,
relatively fewer apatite crystals are seen to coat pure PLA scaffold. However, the extent and thickness
of apatite crystals grow with increasing GQD contents in the PLA/GQD scaffolds. In particular, higher
amounts of mineral deposits can be seen on the PLA/5 wt% GQD surface. Apparently, the additions
of GQDs to PLA scaffolds can promote osteoconductivity through stimulating both biomineralization
and osteoblastic adhesion/proliferation.
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4.3. In Vitro Cell Cultivation

4.3.1. Bionanocomposites

Osteoblast differentiation in vitro can be characterized in three stages including cell proliferation,
matrix maturation, and matrix mineralization. During proliferation, osteoblasts secrete bone matrix
proteins, including collagen type 1 (Col I), osteopontin and fibronectin. Osteoblasts also produce
alkaline phosphatase (ALP), i.e., an early marker of osteoblast differentiation, while maturating the
ECM with ALP and collagen. Thus, an increased ALP activity is associated with the progressive
differentiation of osteoblasts. As recognized, phosphatase is an enzyme that hydrolyzes phosphate
group from an organic substrate. p-nitrophenyl phosphate is typically used as a substrate to investigate
the activity of a phosphatase enzyme. The reaction product, p-nitrophenol, turns yellow under
alkaline conditions. The product generated from the enzymatic reaction is related to the ALP activity
and its absorbance can be examined using a spectrophotometer. The last step proceeds with the
matrix mineralization by expressing osteocalcin, which promotes deposition of calcium phosphate
mineral [253]. Real-time polymerase chain reaction (RT-PCR) is a powerful tool for revealing the
expressions of osteogenic marker genes including ALP, collagen type I (Col I), osteocalcin (OCN) and
Runx2 [254,255]. Calcium deposition can be characterized by staining with Alizarin red S dye, and
inspection in the phase-contrast microscope. For quantitative analysis, the deposit can be extracted
and quantified by a colorimetric assay [256].

Lock et al. prepared PLGA/30 wt% nHA bulk nanocomposite by solvent casting. They then seeded
hMScs on the nanocomposite with or without BMP-7 derived short peptide [257]. They reported that the

http://creativecommons.org/licenses/by/4.0/


Nanomaterials 2019, 9, 590 32 of 56

PLGA/30 wt% nHA nanocomposite promoted hMSCs adhesion and differentiation with or without
osteogenic factors in the culture media. Recently, Kumar et al. cultured hMSCs on compression molded
PCL, PCL/GO, PCL/rGO, and PCL/AGO disks containing 1, 3 and 5 wt% fillers. They then analyzed
mineral matrix deposition by hMSCs quantitatively using Alizarin red S dye [227]. From their study,
PCL/GO and PCL/AGO composites showed significantly higher mineral deposition than neat PCL.
The mineral content increased with increasing GO or AGO filler loadings. In particular, PCL/5 wt%
AGO exhibited the highest mineral deposition amongst all the samples investigated. They attributed
this to the presence of amine groups on AGO surface, leading to enhanced stem cell osteogenesis
and mineralization. In other words, there exists a synergistic effect between amine and oxygenated
functional groups on the AGO surface in enhancing osteogenesis of hMSCs [227].

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay is typically used to
study cell proliferation in vitro. This assay measures cell proliferation or viability through enzymatic
conversion of the tetrazolium salt to water insoluble formazan crystals by dehydrogenases occurring
in the mitochondria of living cells [258]. Figure 27 shows the MTT results of osteosarcoma cell line
(MG-63) cultivated on the PLA/nHA and PLA/nHA-GO nanocomposites with 10–30 wt% filler
contents [201]. Apparently, osteoblast cells cultured on pure PLA film exhibit the lowest viability,
due to its hydrophobic behavior, and the absence of bioactive sites for the cell adhesion. By contrast,
PLA/10 wt% nHA and PLA/20 wt% nHA exhibit higher cell viability or proliferation than pure
PLA. At 30 wt% nHA, cell viability drops somewhat as a result of nHA agglomeration at high filler
loading. Comparing with PLA/nHA counterparts, PLA/nHA-GO hybrids exhibit higher cell viability,
especially for the PLA/1 wt% nHA-GO film.
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nHA-(1–3 wt%)GO mats using MTT assay [81]. The assay measures mitochondrial activity on viable 
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Figure 27. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay of MT63 cells
cultured on PLA and its nanocomposite films. PLA/nHA films with 10, 20 and 30 wt% nHA were
denoted as HA10, HA20, and HA30, respectively. PLA/nHA-GO hybrid films with 10, 20 and
30 wt% nHA-GO were denoted as HG10, HG20, and HG30, respectively. Results are expressed as
mean ± standard deviation [201]. Reproduced with permission from the American Chemical Society,
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4.3.2. Bionanocomposite Scaffolds

Bionanocomposite Scaffolds with nHA Fillers

Electrospun fibrous scaffolds offer several advantages for bone tissue engineering applications
including high porosity, large surface area for cell attachment, and nanofibrous network mimics
the structural feature of the natural ECM. Tjong and coworkers have assessed the adhesion and
proliferation of osteoblastic Saos-2 cells on electrospun PLA, PLA/15 wt% nHA and PLA/15 wt%
nHA-(1–3 wt%)GO mats using MTT assay [81]. The assay measures mitochondrial activity on viable
cells by reducing MTT salt to a colored insoluble formazan. Figure 28a–c are typical SEM micrographs
showing osteoblasts seeding on electrospun PLA, PLA/15% nHA and PLA/15% nHA-2% GO fibrous
mats. Very few osteoblasts are found on the PLA mat surface because it lacks the cell adhesion sites.
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By contrast, osteoblasts attach, grow and spread over the surface of PLA/15% nHA mat since nHA
fillers offer effective seeding sites for osteoblasts. It has been shown that hydrophilic surfaces favor
the adsorption of cellular proteins, thereby promoting cell adhesion and growth [248]. nHA and GO
nanomaterials can induce hydrophobic PLGA mat to hydrophilic by reducing its water contact angle
<90◦, especially GO with abundant oxygenated functional groups [123]. In this respect, enhanced
bone cell adhesion occurs on fibrous PLA/15% nHA-2% GO mat due to a synergistic effect between
nHA and GO fillers in inducing hydrophilicity. The surface of this mat is covered by osteoblasts
extensively (Figure 28c). Figure 29a depicts the MTT results showing the viability of Saos-2 cells
seeded on electrospun PLA, PLA/15% nHA and PLA/15% nHA-(1–3)% GO fibrous mats. At day
10, PLA/15% nHA, PLA/15% nHA-1% GO and PLA/15% nHA-2% GO fibrous mats display higher
cell viability compared to pure PLA mat. The alkaline phosphatase (ALP) activity of representative
fibrous mats are depicted in Figure 29b. ALP is an enzyme secreted by osteoblasts, which is identified
as an early marker of osteoblast differentiation. Comparing with pure PLA mat, PLA/15% nHA
and PLA/15% nHA-1% GO mats exhibit much higher ALP activities at day 7 and day 14. Overall,
PLA/15% nHA-1 wt% GO hybrid exhibits highest biocompatibility in vitro.

Zhang et al. fabricated PCL/nHA spiral scaffolds with different nHA contents, i.e., nHA: PCL
weight ratios of 1:8, 1:4, and 1:2. The pores of those scaffolds were produced by salt leaching. Human
fetal osteoblasts (hFOBs) were cultured on porous PCL/nHA scaffolds [57]. They reported that hFOBs
can adhere, infiltrate the interconnected pores of spiral scaffolds with high cellular viability. In addition,
ALP activity was markedly enhanced with increasing nHA content in the PCL/nHA spiral scaffolds.
Furthermore, nHA promoted mineralized matrix formation on the PCL/nHA scaffolds as revealed by
Arizarin red S staining (Figure 30). The deposition of calcium by hFOBs in the extracellular matrix
is an indicative of osteogenesis and can be considered as a marker for bone regeneration. Morelli
et al. reported that electrospun PLA/20 wt% nHA mat induced osteogenic differentiation of hMSCs
and osteoclastogenic differentiation as evidenced by high expression of specific gene markers such
as osteopontin, osteocalcin, ALP, and receptor activator of nuclear factor kappa B (RANK) [184].
Bone remodeling is a dynamic process involving the resorption of old bone by osteoclasts, and the
formation of new bone tissue by osteoblasts.
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for 3, 7 and 14 days. * p < 0.05, ** p < 0.01. Reprinted from [81], MDPI under the Creative Commons
Attribution (CC-BY) license.
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Figure 30. Alizarin red S staining of calcium deposited on PCL/nHA spiral scaffolds. (A) Human fetal
osteoblasts cultured on neat PCL spiral scaffold, (B) PCL/nHA spiral scaffold with nHA:PCL = 1:8,
(C) PCL/nHA spiral scaffold with nHA:PCL = 1:4 and (D) PCL/nHA spiral scaffold with nHA:PCL =
1:2 for 21 days. (E) Quantitative analysis of the amount of calcium within each spiral scaffold. Data
represent the mean ± standard deviation, n = 6. Significant difference between different material
groups were denoted as * (p < 0.05). Reproduced from [57], PLOS under the Creative Commons
Attribution license.
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Bionanocomposite Scaffolds with GO Fillers

Graphene and its derivatives have been reported to be very effective in promoting osteogenic
differentiation of mesenchymal stem cells [78,82–85,120,174–176,259]. Liang et al. reported that the
addition of 1.5 wt% GO to PLGA/nHA scaffold enhances the proliferation of mouse osteoblasts
(MC3T3-E1) [120]. Luo et al. studied the effect of GO additions on the proliferation and osteogenetic
differentiation of hMCSs on electrospun PLGA mats [78]. They reported that GO nanofillers play two
crucial roles in the fibrous mats, i.e., enhance the hydrophilic performance, and accelerate hMSCs
adhesion, proliferation and osteogenic differentiation. The MTT assay results showing the proliferation
of MSCs cultured on the 15 wt% PLGA, 18 wt% PLGA and their nanocomposite fibrous mats for
different time periods are given in Figure 31a. By adding 1 wt% GO to both PLGA suspensions, the
resulting composite fibrous mats display enhanced adhesion and proliferation of MSCs. Figure 31b–d
shows the RT-PCR assay results for these fibrous mats with or without dexamethasone (DEXA).
Differentiation of hMSCs to osteoblastic lineages in vitro is associated with their ability to express Col I
and ALP. Col I is expressed by osteoblasts during the initial period of proliferation and ECM synthesis,
while ALP is expressed during the post proliferative period of matrix maturation [260–263]. Osteogenic
differentiation of hMSCs in vitro is greatly enhanced by DEXA. In the presence of DEXA, the amounts
of ALP, OCN and Col I extracted from hMSCs cultured on the 15-PLA/1% GO and 18-PLA/1%
GO nanocomposite mats are substantially higher than those cultured on the 15-PLGA and 18-PLGA
scaffolds. This indicates that GO nanofillers are very effective to promote stem cells differentiation.
In general, many in vitro stem cell experiments often use DEXA, ascorbic acid and β-glycerophosphate
to enhance osteogenic expression levels [264,265]. DEXA induces MSCs differentiation into osteoblasts
by activating Runx2, ascorbic acid increases the secretion of Col I, and β-glycerophosphate serves as a
source for the phosphate in hydroxyapatite [265].

Nanomaterials 2019, 9, x FOR PEER REVIEW 34 of 56 

 

Bionanocomposite Scaffolds with GO Fillers 

Graphene and its derivatives have been reported to be very effective in promoting osteogenic 
differentiation of mesenchymal stem cells [78,82–85,120,174–176,259]. Liang et al. reported that the 
addition of 1.5 wt% GO to PLGA/nHA scaffold enhances the proliferation of mouse osteoblasts 
(MC3T3-E1) [120]. Luo et al. studied the effect of GO additions on the proliferation and osteogenetic 
differentiation of hMCSs on electrospun PLGA mats [78]. They reported that GO nanofillers play two 
crucial roles in the fibrous mats, i.e., enhance the hydrophilic performance, and accelerate hMSCs 
adhesion, proliferation and osteogenic differentiation. The MTT assay results showing the 
proliferation of MSCs cultured on the 15 wt% PLGA, 18 wt% PLGA and their nanocomposite fibrous 
mats for different time periods are given in Figure 31a. By adding 1 wt% GO to both PLGA 
suspensions, the resulting composite fibrous mats display enhanced adhesion and proliferation of 
MSCs. Figure 31b–d shows the RT-PCR assay results for these fibrous mats with or without 
dexamethasone (DEXA). Differentiation of hMSCs to osteoblastic lineages in vitro is associated with 
their ability to express Col I and ALP. Col I is expressed by osteoblasts during the initial period of 
proliferation and ECM synthesis, while ALP is expressed during the post proliferative period of 
matrix maturation [260–263]. Osteogenic differentiation of hMSCs in vitro is greatly enhanced by 
DEXA. In the presence of DEXA, the amounts of ALP, OCN and Col I extracted from hMSCs cultured 
on the 15-PLA/1% GO and 18-PLA/1% GO nanocomposite mats are substantially higher than those 
cultured on the 15-PLGA and 18-PLGA scaffolds. This indicates that GO nanofillers are very effective 
to promote stem cells differentiation. In general, many in vitro stem cell experiments often use DEXA, 
ascorbic acid and β-glycerophosphate to enhance osteogenic expression levels [264,265]. DEXA 
induces MSCs differentiation into osteoblasts by activating Runx2, ascorbic acid increases the 
secretion of Col I, and β-glycerophosphate serves as a source for the phosphate in hydroxyapatite 
[265].  

  
(a) (b) 

  
(c) (d) 

Figure 31. (a) MTT assay showing the proliferation of human mesenchymal stem cells (hMSCs) 
cultured on tissue culture plate (TCP), electrospun PLGA copolymers and their nanocomposite 
scaffolds with or without dexamethasone (DEXA), for 14 and 28 days, respectively; (* p < 0.05). Real 
time polymerase chain reaction (RT-PCR) analysis of osteogenic marker genes of hMSCs seeded on 
electrospun PLGA copolymers and their nanocomposite scaffolds with or without DEXA, for 14 and 
28 days, respectively: (b) Alkaline phosphatase (ALP), (c) Collagen I and (d) Oesteocalcin (OCN) [78]. 

Figure 31. (a) MTT assay showing the proliferation of human mesenchymal stem cells (hMSCs) cultured
on tissue culture plate (TCP), electrospun PLGA copolymers and their nanocomposite scaffolds with or
without dexamethasone (DEXA), for 14 and 28 days, respectively; (* p < 0.05). Real time polymerase
chain reaction (RT-PCR) analysis of osteogenic marker genes of hMSCs seeded on electrospun PLGA
copolymers and their nanocomposite scaffolds with or without DEXA, for 14 and 28 days, respectively:
(b) Alkaline phosphatase (ALP), (c) Collagen I and (d) Oesteocalcin (OCN) [78]. Reproduced with
permission from the American Chemical Society, published by the American Chemical Society, 2015.
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As aforementioned, the oxygenated groups of GO provide active sites for depositing calcium
phosphate mineral on electrospun PCL/0.3 wt% GO mat surface by immersion in 10 SBF solution [228].
Fu et al. reported that the inclusion of 2 wt% GO to PCL lead to calcium deposition by MC3T3-E1
mouse pre-osteoblasts on electrospun PCL/GO mat surface as revealed by Alizarin red S staining [266].
Song et al. studied the effect of different GO filler contents (0.1, 0.3, 0.5 and 1.0 wt%) in electrospun
PCL/GO scaffolds on the proliferation and differentiation of mouse marrow mesenchymal stem cells
(mMSCs) [230]. At day 7, the gene expression levels of ALP and Runx2 increase with increasing GO
contents during the initial stage of cell differentiation. So the PCL/1 wt% GO mat exhibits the highest
level of gene expressions of ALP and Runx2 (Figure 32). Runx2 is an osteogenesis specific transcription
factor, which is crucial for the differentiation and maturation of osteoblasts. At day 14, these gene
levels decrease as the cells proceed to a late stage of differentiation. However, OCN gene level of the
PCL/GO mats with GO contents ≥0.3 wt% increases markedly at day 14. OCN is a marker of bone
formation and secreted by osteoblasts, and it involves in the late stage of mineralization. From the
literature, osteogenic differentiation of mMSCs in vitro proceeds into several stages. The first stage
consists of enhanced cell adhesion and proliferation (days 1 to 4), followed by early cell differentiation
as demonstrated by enhanced ALP activity (days 5 to 14). Thereafter, ALP level begins to decline,
and the mineralization produces high levels of OCN and osteopontin (OPN), followed by Ca and
phosphate deposition (days 14 to 28) [267,268]. OPN is an integrin-binding glycoprotein present in
bone matrix, which is important for bone remodeling and immune system signaling. In general,
the cell differentiation periods varies greatly from one to another, depending upon the cell culture
conditions. Apart from the osteogenic differentiation of MSCs, electrospun PCL/GO nanofibers have
been reported to guide the differentiation of neural stem cells into mature oligodendrocytes, i.e.,
myelinating cells of the central nervous system [269].
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Figure 32. The gene expression analysis of ALP, Runx2, OCN, and OPN for mouse marrow
mesenchymal stem cells (mMSCs) differentiated on electrospun PCL/GO nanocomposite scaffolds
with different GO contents at day 7 and day 14, respectively. * represents significant difference between
different material groups [230]. Reproduced with permission from Elsevier, published by Elsevier, 2015.
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The cell differentiation on the hybrid composite scaffolds is now considered. Fu et al. conducted
a comprehensive study on the structure, tensile behavior and wettability of electrospun PLGA,
PLGA/10 wt% nHA, PLGA/2 wt% GO and PLGA/10 wt% nHA-2 wt% GO scaffolds. Overall,
hybrid PLGA/10 wt% nHA-2 wt% GO scaffold exhibits the highest tensile strength and excellent
hydrophilicity compared to pure PLGA, PLGA/10 wt% nHA, and PLGA/2 wt% GO mats [123].
Alizarin red S staining was used to assess the calcium deposition by MC3T3-E1 cells cultured on all
fibrous scaffolds for 14 and 21 days. They demonstrated that the PLGA/10 wt% nHA-2 wt% GO hybrid
scaffold greatly enhanced the adhesion and proliferation of MCET3-E1 cells, and effectively promoted
their ALP activity and mineral deposition (Figure 33), as well as increased osteogenic gene expressions
of Runx2 and OPN (Figure 34). Apparently, PLGA/10 wt% nHA-2 wt% GO scaffold exhibited the
highest gene expression levels of Runx2 and OPN as well as calcium deposition compared to other
nanofibrous mats. These results implied that hybridization of GO and nHA nanofillers is beneficial in
enhancing osteodifferentiation of MC3T3-E1 cells.
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MC3T3-E1 cells cultured on PLGA-based fibrous mats for 7days; * represents significant difference
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As mentioned, AM technology enables the creation of bionanocomposite scaffolds with precisely
controlled pore size, porosity and interconnecting pore network. By incorporating those pore factors
into design models, the constructed 3D scaffolds allow efficient cell penetration, tissue ingrowth and
vascularization [270–272]. Huang et al. employed an extrusion-based AM system to print 3D PCL,
PCL/10 wt% nHA, PCL/20 wt% nHA, PCL/10 wt% TCP and PCL/20 wt% TCP scaffolds [217]. The cell
viability of human adipose derived stem cells (hADSCs) seeded on such nanocomposite scaffolds
were assessed by Alamar Blue assay (Figure 35). At day 14, PCL/10 wt% nHA and PCL/20 wt% nHA
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scaffolds, especially the latter exhibited higher fluorescent intensity compared to pure PCL and
PCL/TCP scaffolds. This led to an increase in cellular proliferation on their surfaces, implying good
biocompatibility of PCL/nHA scaffolds. Figure 36 depicts the cell morphology of PCL, PCL/10 wt%
nHA, PCL/20 wt% nHA, PCL/10 wt% TCP and PCL/20 wt% TCP scaffolds at day 14. It can be seen
that very few cells adhere and migrate on 3D PCL scaffold due to its poor bioactivity. Nevertheless,
these cells tend to bridge the polymer layers and filaments of the scaffold. For the PCL/10 wt%
nHA, PCL/20 wt% nHA, PCL/10 wt% TCP and PCL/20 wt% TCP scaffolds, adipose stem cells tend
to link each other to form dense and continuous cell sheets. Those cell sheets also bridge across
the filaments, demonstrating that the scaffolds can support the adhesion and growth of stem cells.
It is noted that that same research group also fabricated 3D PCL/LPE-graphene scaffolds with a
0◦/90◦ lay-down pattern using an extrusion-based AM system [234,235]. Similarly, hADSC cell sheets
are seen to bridge orthogonal scaffold filaments despite the presence of residual organic solvents
in LPE-graphene. Moreover, LPE-graphene is beneficial in enhancing hydrophilicity of 3D printed
PCL/graphene scaffolds as mentioned previously. This demonstrates that LPE-graphene is very
effective to promote the attachment and proliferation of adipose stem cells.
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Xia et al. investigated the bioactivity and biocompatibility of SLS-fabricated PCL/(5–15 wt%)
nHA scaffolds [215]. They reported that nHA fillers promote the formation of apatite crystals on the
PCL/nHA scaffolds upon immersion in the SBF solution at 37 ◦C. Furthermore, the inclusion of nHA
to PCL was beneficial in enhancing adhesion, proliferation of hMSCs on the basis of CCK-8 assay.
In particular, PCL/15 wt% nHA exhibited the highest cell proliferation, thus it offered an excellent
microenvironment for the growth of hMSCs. Furthermore, PCL/15 wt% nHA also exhibited the
highest level of ALP expression. Alizarin red S staining revealed that calcium deposition of hMSCs
cells cultured on the PCL/nHA scaffolds is more obvious than that on PCL scaffold, especially for the
PCL/15 wt% nHA. This implied that the PCL/nHA scaffolds facilitate more hMSC mineralization
than their PCL counterpart.

5. In Vivo Animal Models

Comparing with in vitro cell cultivation, fewer information is available in the literature relating
in vivo animal models of porous scaffolds prepared from aliphatic polyesters reinforced with nHA
and/or GO as well as their hybrid nanofillers. Pure PLA and PCL polymers are hydrophobic, so they
lack bioactive sites for the cell adhesion. In the absence of nHA or GO, pure aliphatic polyester
scaffolds must be seeded with bioactive molecules or growth factors followed by implanting into
bone defects of animal models. For instance, Zhang et al. loaded simvastatin (SIM) into 3D PLGA
scaffolds fabricated by the FDM process; collagen was also incorporated into the scaffolds for surface
activation [273]. They reported that such PLGA/Col/SIM scaffolds can induce new bone formation at
the defects created at the femurs of Sprague-Dawley rats. Williams et al. carried out in vivo study of
SLS-processed PCL scaffolds in mice. The scaffolds were seeded with BMP-7 transduced fibroblasts,
and implanted subcutaneously into mice for inducing ingrowth of bone tissue [214].

Moncal et al. prepared a microcomposite ink solution composed of PLGA, PCL, and
HA microparticles with a ratio of 4.5:4.5:1, and 3D printed it into porous constructs [149].
The printed constructs were then implanted into rat calvarial defects. The results showed that
3D-printed PLGA-PCL/HA microcomposite constructs promoted bone regeneration due to the
formation of mineralized bone tissue and blood vessel. Very recently, Nguyen et al. implanted
solvent-cast PLA/30 wt% d-nHA nanocomposite into dog femurs [274]. Magnesium and zinc-doped
nanohydroxyapatite (d-nHA) was used as the filler material. They reported that the nanocomposite
did not induce osteitis, osteomyelitis or structural abnormalities after implantation for three
months. The histological and x-ray image showed that the implant material promoted new bone
growth effectively. Zhang et al. combined the phase inversion and porogen leaching to fabricate
PLGA/10 wt% nHA scaffold. This scaffold was then coated with polydopamine (PDA), followed by
treated with either BMP-2 or insulin-like growth factor 1 (IGF-1) [275]. Both the BMP-2 and IGF-1
immobilized PLGA/10 wt% nHA scaffolds were finally implanted into the rabbit radius defects,
leading to the highest osteoconductivity and excellent bone healing capacity.

Xia et al. reported that SLS-processed PCL/15 wt% nHA scaffold had the highest cell proliferation,
highest ALP activity, and the most obvious Alizarin Red S staining [215]. Thus, PCL/15 wt% nHA
and pure 3D PCL scaffolds were implanted separately into New Zealand rabbits to study osteogenesis
in vivo. Bone defects were created at the distal femur of rabbits, and all scaffolds were then implanted
into the defects. The rabbits were then scanned in a microcomputed tomography (microCT) system at
time points of 3, 6, and 9 weeks (Figure 37). Following week 3 surgery, the scaffolds in bone defects
remained visible in the control, implanted PCL and PCL/15 wt% nHA groups of rabbits. The microCT
images revealed no bone formation within the muscles. At week 6, the PCL/15 wt% nHA scaffold
was almost filled with newly formed bone tissue. At week 9, it showed nearly complete degradation,
and extensive bone ingrowth throughout the entire defect. Apparently, nHA filler is beneficial in
accelerating the degradation rate of PCL under in vivo and in vitro conditions [242]. In addition, nHA
also promotes new bone growth in vivo.
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Figure 37. MicroCT reconstruction images of the PCL and PCL/15 wt% nHA scaffolds implanted into
rabbit distal femur for 3, 6, and 9 weeks. Circle denotes implanted region. Reproduced from [215], Dove
Medical Press under the Creative Commons Attribution—Non Commercial (unported, v3.0) license.

At present, there is no information relating in vivo animal models of aliphatic polyesters reinforced
with GO and its derivatives. For other copolyester biomaterial, Zhou et al. conduced in vivo bone repair
study of electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/GO scaffold. The P3-4HB/GO
scaffold was implanted into full-thickness rat calvarial defects [276]. They reported that GO nanofillers
facilitate new bone generation at rat bone defects. Lee et al. fabricated hybrid rGO/HA grafts, and
then implanted into calvarial bone defects of 12–13 week-old male New Zealand white rabbits [129].
In their study, full-thickness calvarial bone defects (6 mm in diameter and 2.5 mm in depth) were
made in the rabbits by trephining. Hybrid rGO/HA grafts were then seeded into rabbit calvarial
bones, while unseeded bone defects in other rabbits without the grafts were used as the control model.
For the purposes of comparison, HA grafts were also seeded into the calvarial bones. They reported
that hybrid rGO/HA grafts were very effective for promoting new bone formation in rabbit calvarial
defects when compared with HA grafts (Figure 38A). For the control model, the non-treated defects
were filled with thin and loose connective tissues with minimal new bone formation after four
weeks of surgery (left figure panel). By contrast, the defects treated with HA grafts were filled
with dense connective tissue (center panel). Moreover, several newly formed bone were observed
in the defects treated with hybrid rGO/HA grafts, demonstrating the accelerated bone remodeling
process (right panel). The histometric analysis showed that the new bone density in hybrid rGO/HA
grafts was significantly higher than that in the other groups (Figure 38B). In this respect, it is expected
that hybrid PLA/rGO/HA nanocomposite scaffolds would also promote new bone formation upon
implantation into animal models. More future work is needed to elucidate this beneficial effect
in degradable polymer bionanocomposites. Very recently, Peng et al. fabricated non-degradable
PEEK/nHA scaffolds reinforced with 1 wt% GO through FDM process [277]. It is noted that PEEK is
not a polyester. The scaffolds were then implanted into rabbit radial bone defects. They reported that
new bone formed throughout the scaffolds after implantation for 60 days.
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expressed as the mean ± SD (n = 4) based on at least duplicate observations. The small letters denote 
a significant difference between non-treated control and the defects implanted with HA and rGO/HA 
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Figure 38. Histological examinations. (A) Optical images from hematoxylin-eosin (HE) staining. (a–c):
non-treated control, (d–f): the defects treated with HA grafts, and (g–i): the defects treated with
rGO/HA grafts. Original magnifications: ×12.5 in (a,d,g), and ×50 in the others. Symbols: nb, new
bone; s, soft tissue; fv, fibrovascular tissue; *, graft materials. (B) New bone formation (%).The data is
expressed as the mean ± SD (n = 4) based on at least duplicate observations. The small letters denote a
significant difference between non-treated control and the defects implanted with HA and rGO/HA
grafts, p < 0.05. Reproduced from [129], Nature Research under the Creative Commons Attribution
license ( http://creativecommons.org/licenses/by/4.0/).

Despite osteogenesis induced by the GO fillers of P3-4HB/GO scaffold in vivo [276], the biosafety
of GO is an essential concern for its bone tissue engineering applications. After bone regeneration,
biodegradable aliphatic polyesters degrade with time, so GO nanofillers are left behind in the host
tissue. GO nanofillers are difficult to remove from the host tissue due to their nanoscale dimension.
In this respect, the cytotoxicity of GO becomes a major issue for its clinical use. The biocompatibility
and cytotoxicity of standalone GO in vivo have been widely studied [66,277–283]. Conflicting results
were reported relating cellular responses to standalone GO and its derivatives in vivo. For example,
Ali-Boucetta et al. found that GO did not cause inflammation and granuloma formation in mice
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after intraperitoneal injection [279]. Yang et al. indicated that GO retained in the mice tissues for a
long period of time following intraperitoneal injection, its toxicity to the mice was insignificant [280].
However, other workers reported that GOs can induce cytotoxicity in animal models, and the cytotoxic
effect was dependent upon the dose and size of GOs [281–283]. Till to present, there exists no reports
in the literature on the biological effects and cytotoxicity induced by the GO nanofillers of aliphatic
polyester scaffolds. Recently, Kanayama et al. coated collagen scaffolds with GO and rGO, and then
subcutaneously implanted into male Wistar rats [284]. From the histological examination of rat tissues,
they reported that inflammatory cells such as neutrophils and lymphocytes were rarely seen. Instead,
numerous macrophages appeared and ingested GO and rGO, forming giant cells. Therefore, it needs a
thorough in vivo biocompatibility and cytotoxicity assessment of aliphatic polyester/GO scaffolds for
bone tissue engineering applications.

6. Conclusions

We have presented current trends on the development of aliphatic polyester scaffolds reinforced
with nHA and/or GO and its derivatives, especially in the past four years. The fabrication, structure,
mechanical behavior, hydrolytic degradation, biomineralization, in vitro cell cultivation and in vivo
animal model studies of such scaffolds are systematically reviewed. Nanohydroxyaptite and GO
are excellent reinforcements for aliphatic polyester scaffolds that provide mechanical support for the
proliferation and cell ingrowth during tissue regeneration. Furthermore, nHA and GO nanofillers can
increase bioactivity, osteoblastic cell adhesion and proliferation as well as osteogenic differentiation
of MSCs. Significant enhancements in the mechanical properties, bioactivity and biocompatibility of
aliphatic polyester composite scaffolds can be achieved by hybridizing nHA and GO nanofillers.

Aliphatic polyester nanocomposite scaffolds can be fabricated using conventional processing
techniques such as solvent casting/particulate leaching, TIPS and electrospinning. These techniques
require the use of organic solvents that pose serious risk to the environment and to human
health. The major drawbacks of porogen leaching are poor control of the pore geometry and pore
interconnectivity, and the difficulty of removing porogens deep inside the polymer matrix of thick
scaffolds. The TIPS technique can result in low connectivity and difficulty in controlling the pore size.

Electrospun aliphatic polyester nanocomposite scaffolds reinforced with nHA, and GO as well as
nHA/GO nanofillers have been shown to exhibit excellent bioactivity and biocompatibility. However,
their fined pores hinder in vitro cell penetration, in vivo tissue ingrowth and vascularization. In certain
case, the average pore size of PCL/nHA mats falls into about 2 µm range [214]. Osteoblastic and
tissue ingrowth as well as their associated mineralization processes require bone scaffolds with large
macropores (200–400µm). As a result, osteoblasts can only attach on the electrospun mat surface,
so the tissue growth is limited to the periphery of scaffold. In this respect, 3D AM techniques appear
to be very effective for making bone scaffolds with large macropores. In particular, FDM process
has emerged as an effective tool to fabricate 3D bone scaffolds with precisely controlled pore size,
pore shape and porosity. Apart from the macropores, micropores in the filaments of FDM-processed
aliphatic polyester scaffolds provide a better environment for the cell attachment, proliferation and
function. Moreover, advanced AM techniques can design and manufacture biomimetic tissue scaffolds
with much higher mechanical strength and stiffness than conventional fabrication processes.

In the context of tissue engineering, bioinks consisting of nanocomposite components and
biological cells appears to be attractive for printing vascularized constructs for bone tissue engineering
applications. Research on novel compatible biomaterials for bioprinting of vascularized constructs is in
the embryonic stage [155–157,285]. It is anticipated that the development of vascularized networks can
enhance new tissue formation and remodeling, leading to host tissue integration upon implantation.

Finally, we must consider whether or not GO and its derivatives caused toxicity to human
tissues. Conflicting reports in the literature suggests that GO and its derivatives can be either
biocompatible or toxic to mammalian cells [66,278–283]. Graphene oxide is generally synthesized
from modified Hummers process by immersing graphite flakes in strong oxidants under sonication.
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However, different types and concentrations of oxidants, and various oxidation times are used by the
researchers for synthesizing GO. These lead to the as-synthesized GO having different physicochemical
properties in terms of the layer numbers, lateral sizes, impurity levels and the C/O ratios [97,100,103].
The physicochemical properties of GO significantly affect its biocompatibility, cytotoxicity and
biodistribution in vivo. Thus a standard protocol for synthesizing GO is needed to avoid these
issues. We speculate that standalone GO dispersed in the solution suspension or cell culture medium
may induce cytotoxicity by penetrating into cytoplasm. However, GO fillers of polymer nanocomposite
scaffolds are firmly bonded to the polymeric matrix materials. As such, GO nanofillers cannot detach
from the polymer matrix and penetrate into cytoplasm, and their cytotoxic effects are minimized
or eliminated accordingly. Limited in vivo study reveals that GO nanofillers of non-degradable
PEEK-nHA/1 wt% GO scaffold are nontoxic to rabbit bone tissue [277]. For porous scaffolds with
aliphatic polyester nanocomposites, the polymer matrix must degrade in order to be finally replaced by
the bone tissue. So GOs may release from the scaffolds, and enter the host tissue. Till to present, there
is no information available in the literature on in vivo cytotoxicity of porous scaffolds prepared from
aliphatic polyesters with GO nanofillers and their derivatives. Thus in vivo animal models must be
performed by the researchers in order to ensure the safe use of such novel bionanocomposite scaffolds
for bone tissue engineering applications.
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