High resolution SEM and EDX characterization of deposits formed by CH₄+Ar DBD plasma processing in a packed bed reactor

Mohammadreza Taheraslani^{1,2*} and Han Gardeniers¹

- 1.Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
- 2.Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

*Correspondence: m.taheraslani@utwente.nl

Supplementary Information

Table S1. The conversion of CH_4 and the selectivity of gas-phase (C_{2+}) products and deposits for the non-packed (Blank) and the packed DBD plasma reactor. Total flow rate=50 ml/min, CH_4 concentration=5 %vol CH_4 , Voltage = 7-8 kV, f = 23 kHz, P = 7-8 W.

Experiment	CH ₄ Conversion %	C ₂₊ Selectivity %	Deposits Selectivity %
Blank	39.2	49.7	50.3
γ-alumina	47.7	38.8	61.2
Pd/γ-alumina	32.8	75.8	24.2
BaTiO ₃	9.3	76.4	23.6
MgO/Al ₂ O ₃	35.5	42.1	57.9
Silica-SBA-15	33.4	49.4	50.6
α-alumina	46.7	37.8	62.2

$$Conversion of CH_4 (\%) = \frac{CH_4 \, converted \, (mmol/s)}{CH_4 \, introduced \, (mmol/s)} \times 100$$

$$Selectivity of C_{2+} \, gas\text{-phase products} \, (\%) = \frac{\sum C_x H_y \, produced \, (mmol/s) \times x}{CH_4 \, converted \, (mmol/s)} \times 100$$

$$Selectivity \, of \, the \, formed \, deposits \, (\%) = \frac{CH_4 \, converted \, (mmol/s) - CH_4 \, consumed \, to \, form \, gas\text{-phase products} \, (mmol/s)}{CH_4 \, converted \, (mmol/s)} \times 100$$