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Abstract: We report the fabrication of stretchable transparent electrode films (STEF) using
15-nm-diameter Ag nanowires networks embedded into a cross-linked polydimethylsiloxane
elastomer. 15-nm-diameter Ag NWs with a high aspect ratio (>1000) were synthesized through
pressure-induced polyol synthesis in the presence of AgCl particles with KBr. These Ag NW
network-based STEF exhibited considerably low haze values (<1.5%) with a transparency of 90%
despite the low sheet resistance of 20 Ω/sq. The STEF exhibited an outstanding mechanical
elasticity of up to 20% and no visible change occurred in the sheet resistance after 100 cycles at
a stretching-release test of 20%.

Keywords: 15-nm silver nanowire; Pressure-induced polyol method; stretchable transparent
electrode 2-D films; Low-haze; Embedded electrode film

1. Introduction

Transparent conductive electrode films have increasingly attracted attention owing to their
potential applications in optoelectronic fields, including touch screens, organic light emitting diodes
and organic solar cells [1–4]. In particular, functionalized stretchable films, which have recently
begun to be widely used as stretchable transparent electrode films (STEF), respond to mechanical
deformations by the changes in electrical characteristics, such as resistance, owing to their stretchability
and reproducibility. In this regard, nanomaterials, such as silver nanowires (Ag NWs) [5], single-walled
carbon nanotubes (SWCNTs) [6–8], and graphene sheets [9–11], and their hybrid structures have been
reported for use as sensitive strain sensors, which make them ideal for use as a transparent conductor
in flexible or stretchable devices [12–15].

Among them, silver nanowires (Ag NW) have been gaining interest as a promising transparent
conductive electrode material because of its simple synthesis and the possibility of large-area coating
film fabrication via solution processes [16–21]. Particular attention has been focused on random
network films of Ag NWs because such films can be easily fabricated in solutions and exhibit enhanced
optoelectronic properties. The intrinsic properties of NWs mainly depend on the diameter and length
of NWs. Many recent studies have also focused on the synthesis of Ag NWs with small diameters and
large aspect ratios, which possess a low haze value due to low light scattering and good plasmonic
properties. Polyol synthesis is known to be the most widely used and versatile method for the
preparation of Ag NWs. To thin down the diameters, various polyol processes are being developed.
In this regard, Wiley and a co-worker [3] recently reported the synthesis of Ag NWs with diameters of
~20 nm by controlling the bromide ion concentration in the conventional polyol method. Our group
also have recently reported the synthesis of 20-nm-diameter Ag NWs under a pressure-induced polyol
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method in the presence of NaCl–KBr co-salts [22], but their synthesis mechanisms did not fully account
for the synthesis. However, despite the progress, the synthesis of thin Ag NWs less than 20 nm has
had limited success, meaning more research is required to synthesize wires with diameters below
that amount.

Herein, we report a novel pressure-induced polyol method for synthesizing ultra-thin Ag NWs
with a diameter of 15-nm-diameter or less and a high aspect ratio (>1000), a relatively unreported area
so far. In particular, we have investigated the growth of Ag NWs and seed crystals in the presence
of the AgCl-KBr co-salts instead of the NaCl salt used in the previous work [22] under a pressure of
1000 psi, and found that the K+ ions cause a remarkable pressure effect.

For a two-dimensional (2-D) film consisting of an Ag NW networks, in particular, it has excellent
transmittance and sheet resistance, yet its optical haze still needs to be improved in order for it
to be suitable for display applications. Therefore, ultra-thin Ag NWs can be a good candidate for
low-haze transparent electrodes. In particular, in order to obtain low-haze Ag NW network conductive
films superior to indium tin oxide (ITO, up to 90% transmittance and ~1% haze at the low sheet
resistance of 60 ohm/sq) in terms of opto-electrical performance, a diameter of at least 20 nm Ag
NWs is required. However, to achieve the required optical characteristics, more effective processes
that can control the shapes and sizes of the synthesized Ag NWs are required. In this work, 2-D
films based on 15-nm-diameter Ag NW networks embedded into cross-linked polydimethylsiloxane
(PDMS) elastomer, STEF, were formed via a conventional wet-coating technique that adhered the
NWs to a PDMS substrate film, for flexible display applications, as shown in Figure 1. In particular,
the conductor comprising an Ag NW network embedded into PDMS exhibited high elasticity, cycling
stability, transparency, and excellent electrical conductivity. In addition, these films were also confirmed
to exhibit good responses to the stretch/release for ≥100 cycles, while hysteresis tests without the loss
of conductivity under stretching conditions of 20% were also conducted.
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Figure 1. Fabrication of highly strain electrode films based on a Ag NW networks embedded into the
cross-linked PDMS elastomer.

2. Results and Discussion

Herein, we newly synthesized the ultra-thin Ag NWs with 15 nm or less in diameter and aspect
ratio to as high as 1000 using a pressure-induced polyol method via the chemical reduction of AgNO3

in the presence of an AgCl crystal and KBr (molar ratio = 2:1), according to a previous report [22].
Figure 2 is a plot of the change in diameter of Ag NWs synthesized at various pressure conditions
(the four pressure values; 0, 110, 250, and 1000 psi). As shown in Figure 2(I), the diameter of the Ag
NWs decreased with increasing pressure in the presence of KBr supplemented with AgCl, including
NaCl and FeCl3 salts. In particular, at the highest reaction pressure (1000 psi (69 bar)), the Ag NWs
that formed in the presence of AgCl with KBr were ultrathin with a mean diameter of 15 nm and a
narrow size distribution (within ±5 nm). In any case, Ag NWs synthesized under the pressure-induced
conditions of the present experiment were noticeably smaller and more evenly dispersed than those
produced at atmospheric pressure. In contrast, in NaCl, AgCl, and FeCl3 supplemented with NaBr,
the NW diameter was independent of pressure, as shown in Figure 2(II). These results suggest that
in the presence of KBr, particularly in the presence of K+ ions, the pressure controls the rate of
the formation of Ag+ ions, thereby suppressing the growth in the thickness direction of the wire.
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As a result, in the pressure-induced polyol reaction, the reduction in diameter of Ag NW was observed
to be affected by pressure only in the presence of K+ ions. This suggests that K+ ion acts as an effect of
pressure on the growth of Ag NW, but it was difficult to describe the kinetics of K+ ions involved in
the formation and growth of Ag NWs in this work. However, in the process of synthesizing the Ag
NWs, K+ ions greatly acted on the pressure, and ultra-fine Ag NWs with a diameter of 15 nm could
be successfully synthesized. Liao et al. [23] explained that increasing the reaction pressure lowers
the energy barrier of nucleation and accelerates nucleation, resulting in a controlled rate of metal
nanostructure formation when pressure is applied. Here, the nucleation rate of Ag ions is also closely
related to the wire size. Figure 2(III) shows the SEM images of the produced Ag NWs synthesized
in the presence of AgCl–KBr salts; (a) 19–25, (b) 17–18, and (c) 15–16 nm, respectively. These NWs
correspond with 0, 250, and 1000 psi (69 bar), respectively.
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Figure 2. Ag NW diameter vs. pressure in the presence of various salts: [I] AgCl–KBr, NaCl–KBr,
and FeCl3–KBr and [II] AgCl–NaBr, NaCl–NaBr, and FeCl3–NaBr (the error range is observed within
the range of 2~3 nm, respectively). [III] SEM images of the Ag NWs synthesized in the presence of
AgCl–KBr salts; (a) 19–25, (b) 17–18, and (c) 15–16 nm, respectively. These NWs correspond with 0, 250,
and 1000 psi (69 bar), respectively.

Figure 3 displays SEM images at low magnification of the 15-nm-diameter Ag NWs synthesized
at 1000 psi. Subsequently, the small-size Ag seed particles grew into Ag NWs with a mean diameter
of 15 nm (range: 6–20 nm; aspect ratio: ~800). The diameter distribution of the synthesized wires
is plotted in Figure 3(II). The mean diameter is at least 5 nm smaller than that of NWs formed at
0 psi (mean diameter = 22 nm; distribution = 14–28 nm). The surface plasmon resonance (SPR)
signals have inherent characteristics depending on the size and structure of the nanomaterials [4,24,25].
Therefore, the size of Ag NWs can be predicted from the absorption bands appearing at different
frequencies critically in the SPR data. In this regard, the SPR characteristic peak of 15-nm-diameter Ag
NW synthesized at 1000 psi pressure with AgCl-KBr present shows at 354 and 362 nm, as shown in
Figure 3(V). The SPR peak in Figure 3(V) appeared at 362 nm, which was significantly shorter than
those in wires with diameters of 20–22 nm [366-nm peak; see Figure 3(IV)] and 30–32 nm [372 nm peak
in Figure 3(III)]. This indicates that the transverse modes appeared at significantly shorter wavelengths
in NWs with pentagonal cross sections than in the abovementioned wires. Besides causing a blue shift
in the peaks, reducing the NW diameter reduces the amount of scattered light.
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Figure 3. [I] SEM images of Ag NWs at low magnification (3000×). The average diameter of the NWs
is 15 nm. [II] Diameter distribution of the Ag NWs synthesized at 1000 and 0 psi. Surface Plasmon
resonance (SPR) absorption characteristics of the synthesized Ag NWs with diameters of [III] 30–32 nm,
[IV] 20–22 nm, and [V] 15 nm.

STEF films based on a 15-nm-diameter Ag NW networks embedded into cross-linked PDMS
elastomer were formed via a conventional spin-coating technique that adhered the NWs to a substrate,
as shown in Figure 1. Ag NW were dispersed in DI water at a density of 0.2 mg/mL and directly
coated onto the Si wafer substrate, which was previously cleaned with acetone, following by drying
at 80 ◦C for 5 min. Second, 0.01 wt% silica gel dispersed in ethanol was spin-coated at 1000 rpm,
and post drying, liquid PDMS with a thickness of ~50 µm was coated on the upper surface of silica
and the Ag NWs network layer, followed by curing and crosslinking. Afterwards, we peeled the cured
PDMS from the Si wafer. Here, when liquid PDMS covers the Ag NW network layer, it penetrates
into the interconnected pores of the Ag NW network because of its low viscosity and low surface
energy. After curing, all Ag NW networks are buried on the cross-linked PDMS surface (crosslinking
between PDMS and silica gel) without considerable voids, indicative of the successful transfer of Ag
NW networks from Si wafers to PDMS and excellent adhesion between Ag NW and PDMS. The Ag
NW network is embedded into the surface of ~50-µm-thick-PDMS films.

Figure 4(I) shows a photograph of the finally produced Ag NW network embedded into the
PDMS film sample, which is STEF, and Figure 4(II) and (III) shows the SEM and AFM surface images of
the Ag NW conductive network layer, respectively. In particular, the SEM image of Figure 4(II) shows
a highly transparent, extensible, and reliable “STEF” based on a 15-nm-diameter Ag NW network
layer embedded in the surface layer of the cross-linked PDMS elastomer film. Here, PDMS completely
penetrated into the Ag NW network and filled the gaps between Ag NWs, as shown in the SEM
surface image of Figure 4(II), affording an Ag NW network and PDMS. The Ag NW network structure
embedded in the surface layer of the cross-linked PDMS elastomer film was clearly observed as the
current map image of AFM in Figure 4(III). The sheet resistance and optical value of the Ag NW
conductive network layer was determined as a function of density of the Ag NWs in the network.
That is, the change in the sheet resistance with increasing density (the content of the Ag NW networks
in the layer is described by areal density, namely the Ag NW weight per unit area of the films) of
the Ag NW network layer is obtained. However, the sheet resistance of the Ag NW network layer
significantly decreased with increasing Ag NW density. Their results showed a low sheet resistance of
20, 40, 50, and 85 Ω/sq at transmittances of 90%, 95%, 96%, and 97% (based on PDMS), respectively.
In particular, these 15-nm-diameter Ag NW network embedded PDMS films were exhibited to have
low haze values of less than 1.5% (net Haze) with a transparency of 90% despite the low sheet resistance
of 20 Ω/sq (up to 90% transmittance and ~1% haze at the sheet resistance of 60 Ω/sq). These haze
values shown above were approximately 0.2–0.3 lower at the same sheet resistance condition than
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that of the 20-nm-diameter Ag NWs reported in the previous work [23]. However, as the diameter
is decreased, the optical haze parameter improved; thus, the scattered light can be reduced and the
haze value is greatly decreased. As a result, it has been suggested that a 2-D percolating network
film constructed using at least 15-nm-diameter Ag NWs is needed to satisfy the electrical and optical
properties of crystalline ITO glass.
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Figure 4. [I] Photograph of a STEF sample and [II] surface SEM image and [III] AFM current image of
the Ag NW network-embedded PDMS.

Elastic behavior was observed for the sample under dynamic loading. In Figure 5(I), at tensile
strains of 10%, 20% and 30%, the change in R/R0 was observed at strain restoration for the tensile
strain. The initial sheet resistance (R0) was almost completely recovered for a stretch/release cycle test
with strains ε of 10% and 20%, revealing the outstanding stretchable property of film. Nevertheless,
at a strain of greater than or equal to 30%, the sheet resistance of the film was not restored to its original
position. Given that the flexible and stretchable characteristics of Ag NW network-embedded PDMS
film can obtain highly reliable mechanical performance under continuous strain deformation, repeated
stretch/release tests were conducted on the films. An automated testing tool was utilized, which
enabled the electrode to exhibit repeated alternate stretch and release. This repeated stretch and release
led to cyclic fatigue failure. Thus, the resistance of the Ag NW network-embedded PDMS film sharply
increases at the very first stretching and then returns to its initial value. In this test, elongation values of
10% and 20% were utilized. With the repetition of the test for ≥100 cycles under stretching conditions
of 10% and 20%, the change in the resistance was restored to its original position without any change
in the resistance (Figure 5(II)). However, highly stretchable films based on the 15-nm Ag NW networks
embedded into the cross-linked PDMS elastomer were simply fabricated using a spin-coating method.
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strains (ε) of 10%, 20%, and 30%). (II) Effect of repeated stretching on the resistance change (R/R0) at
strain recovery (stretch/release cycles of ε = 10% and 20%).
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3. Conclusions

In conclusion, we demonstrated for the first time that ultra-fine Ag NWs with 15-nm-diameter that
could not be realized in previous work [23] via a pressure-induced polyol process and in the presence
of AgCl with KBr and K+ ions induced a notable pressure effect. The characteristic SPR of these
15-nm-diameter NWs appeared at 362 nm. This is a novel finding for Ag NWs and provides evidence
of their high optical performances. Furthermore, we fabricated the stretchable transparent electrode
films (STEF) based on a 15-nm-diameter Ag nanowires networks embedded into a cross-linked
polydimethylsiloxane elastomer. These 2-D embedded Ag NW network film with a 15-nm-diameter
Ag NW showed a low sheet resistance of 20 Ω/sq. at 90% transparency with haze values (<1.5%).
The electrode films also exhibited a high elasticity of 20%, and the strain films exhibited a good
response to the stretch/release of 100 cycles and hysteresis tests. However, these 2-D STEF exhibit good
flexibility, making them promising candidates for use as a transparent electrode in flexible electronics.
In particular, in the case of the Ag NW embedded elastomer films having a high stretchability and a
high electric conductivity, as in the present study, it is expected that these films will provide a much
higher performance material in many areas for flexible transparent devices that can replace ITO.
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